1
|
Hamazaki Y, Akuta H, Suzuki H, Tanabe H, Ichiyanagi K, Imamura T, Imamura M. Generation and characterization of induced pluripotent stem cells of small apes. Front Cell Dev Biol 2025; 13:1536947. [PMID: 40177132 PMCID: PMC11961953 DOI: 10.3389/fcell.2025.1536947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Small apes (family Hylobatidae), encompassing gibbons and siamangs, occupy a pivotal evolutionary position within the hominoid lineage, bridging the gap between great apes and catarrhine monkeys. Although they possess distinctive genomic and phenotypic features-such as rapid chromosomal rearrangements and adaptations for brachiation-functional genomic studies on small apes have been hindered by the limited availability of biological samples and developmental models. Here, we address this gap by successfully reprogramming primary skin fibroblasts from three small ape species: lar gibbons (Hylobates lar), Abbott's gray gibbons (Hylobates abbotti), and siamangs (Symphalangus syndactylus). Using Sendai virus-based stealth RNA vectors, we generated 31 reprogrammed cell lines, five of which were developed into transgene-free induced pluripotent stem cells. These iPSCs displayed canonical features of primed pluripotency, both morphologically and molecularly, consistent with other primate iPSCs. Directed differentiation experiments confirmed the capacity of the small ape iPSCs to generate cells representing all three germ layers. In particular, their successful differentiation into limb bud mesoderm cells underscores their utility in investigating the molecular and developmental mechanisms unique to small ape forelimb evolution. Transcriptomic profiling of small ape iPSCs revealed significant upregulation of pluripotency-associated genes, alongside elevated expression of transposable elements. Remarkably, LAVA retrotransposons-a class of elements specific to small apes-exhibited particularly high expression levels in these cells. Comparative transcriptomic analyses with iPSCs from humans, great apes, and macaques identified evolutionary trends and clade-specific gene expression signatures. These signatures highlighted processes linked to genomic stability and cell death, providing insights into small ape-specific adaptations. This study positions small ape iPSCs as a transformative tool for advancing functional genomics and evolutionary developmental biology. By facilitating detailed investigations into hominoid genome evolution and phenotypic diversification, this system bridges critical gaps in comparative research, enabling deeper exploration of the genetic and cellular underpinnings of small ape-specific traits.
Collapse
Affiliation(s)
- Yusuke Hamazaki
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Hiroto Akuta
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Hikaru Suzuki
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideyuki Tanabe
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Masanori Imamura
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Solovei I, Mirny L. Spandrels of the cell nucleus. Curr Opin Cell Biol 2024; 90:102421. [PMID: 39180905 DOI: 10.1016/j.ceb.2024.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
S.J. Gould and R. Lewontin in their famous "Spandrels paper" (1979) argued that many anatomical elements arise in evolution not due to their "current utility" but rather due to other "reasons for origin", such as other developmental processes, physical constraints and mechanical forces. Here, in the same spirit, we argue that a variety of molecular processes, physical constraints, and mechanical forces, alone or together, generate structures that are detectable in the cell nucleus, yet these structures themselves may not carry any specific function, being a mere reflection of processes that produced them.
Collapse
Affiliation(s)
- Irina Solovei
- Biocenter, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany.
| | - Leonid Mirny
- Institute for Medical Engineering and Science, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Li H, Herrmann T, Seeßle J, Liebisch G, Merle U, Stremmel W, Chamulitrat W. Role of fatty acid transport protein 4 in metabolic tissues: insights into obesity and fatty liver disease. Biosci Rep 2022; 42:BSR20211854. [PMID: 35583196 PMCID: PMC9160530 DOI: 10.1042/bsr20211854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Fatty acid (FA) metabolism is a series of processes that provide structural substances, signalling molecules and energy. Ample evidence has shown that FA uptake is mediated by plasma membrane transporters including FA transport proteins (FATPs), caveolin-1, fatty-acid translocase (FAT)/CD36, and fatty-acid binding proteins. Unlike other FA transporters, the functions of FATPs have been controversial because they contain both motifs of FA transport and fatty acyl-CoA synthetase (ACS). The widely distributed FATP4 is not a direct FA transporter but plays a predominant function as an ACS. FATP4 deficiency causes ichthyosis premature syndrome in mice and humans associated with suppression of polar lipids but an increase in neutral lipids including triglycerides (TGs). Such a shift has been extensively characterized in enterocyte-, hepatocyte-, and adipocyte-specific Fatp4-deficient mice. The mutants under obese and non-obese fatty livers induced by different diets persistently show an increase in blood non-esterified free fatty acids and glycerol indicating the lipolysis of TGs. This review also focuses on FATP4 role on regulatory networks and factors that modulate FATP4 expression in metabolic tissues including intestine, liver, muscle, and adipose tissues. Metabolic disorders especially regarding blood lipids by FATP4 deficiency in different cell types are herein discussed. Our results may be applicable to not only patients with FATP4 mutations but also represent a model of dysregulated lipid homeostasis, thus providing mechanistic insights into obesity and development of fatty liver disease.
Collapse
Affiliation(s)
- Huili Li
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746 Heide, Germany
| | - Jessica Seeßle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Storm L, Bruijnesteijn J, de Groot NG, Bontrop RE. The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health And Disease. Front Immunol 2021; 12:716289. [PMID: 34737739 PMCID: PMC8562567 DOI: 10.3389/fimmu.2021.716289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The genes of the leukocyte immunoglobulin-like receptor (LILR) family map to the leukocyte receptor complex (LRC) on chromosome 19, and consist of both activating and inhibiting entities. These receptors are often involved in regulating immune responses, and are considered to play a role in health and disease. The human LILR region and evolutionary equivalents in some rodent and bird species have been thoroughly characterized. In non-human primates, the LILR region is annotated, but a thorough comparison between humans and non-human primates has not yet been documented. Therefore, it was decided to undertake a comprehensive comparison of the human and non-human primate LILR region at the genomic level. During primate evolution the organization of the LILR region remained largely conserved. One major exception, however, is provided by the common marmoset, a New World monkey species, which seems to feature a substantial contraction of the number of LILR genes in both the centromeric and the telomeric region. Furthermore, genomic analysis revealed that the killer-cell immunoglobulin-like receptor gene KIR3DX1, which maps in the LILR region, features one copy in humans and great ape species. A second copy, which might have been introduced by a duplication event, was observed in the lesser apes, and in Old and New World monkey species. The highly conserved gene organization allowed us to standardize the LILR gene nomenclature for non-human primate species, and implies that most of the receptors encoded by these genes likely fulfill highly preserved functions.
Collapse
Affiliation(s)
- Lisanne Storm
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Understanding the Phylogenetics of Indian Hoolock Gibbons: Hoolock hoolock and H. leuconedys. INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00212-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Evolution of the Human Chromosome 13 Synteny: Evolutionary Rearrangements, Plasticity, Human Disease Genes and Cancer Breakpoints. Genes (Basel) 2020; 11:genes11040383. [PMID: 32244767 PMCID: PMC7230465 DOI: 10.3390/genes11040383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/29/2023] Open
Abstract
The history of each human chromosome can be studied through comparative cytogenetic approaches in mammals which permit the identification of human chromosomal homologies and rearrangements between species. Comparative banding, chromosome painting, Bacterial Artificial Chromosome (BAC) mapping and genome data permit researchers to formulate hypotheses about ancestral chromosome forms. Human chromosome 13 has been previously shown to be conserved as a single syntenic element in the Ancestral Primate Karyotype; in this context, in order to study and verify the conservation of primate chromosomes homologous to human chromosome 13, we mapped a selected set of BAC probes in three platyrrhine species, characterised by a high level of rearrangements, using fluorescence in situ hybridisation (FISH). Our mapping data on Saguinus oedipus, Callithrix argentata and Alouatta belzebul provide insight into synteny of human chromosome 13 evolution in a comparative perspective among primate species, showing rearrangements across taxa. Furthermore, in a wider perspective, we have revised previous cytogenomic literature data on chromosome 13 evolution in eutherian mammals, showing a complex origin of the eutherian mammal ancestral karyotype which has still not been completely clarified. Moreover, we analysed biomedical aspects (the OMIM and Mitelman databases) regarding human chromosome 13, showing that this autosome is characterised by a certain level of plasticity that has been implicated in many human cancers and diseases.
Collapse
|
7
|
Zhang ML, Li ML, Ayoola AO, Murphy RW, Wu DD, Shao Y. Conserved sequences identify the closest living relatives of primates. Zool Res 2019; 40:532-540. [PMID: 31393097 PMCID: PMC6822925 DOI: 10.24272/j.issn.2095-8137.2019.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Elucidating the closest living relatives of extant primates is essential for fully understanding important biological processes related to the genomic and phenotypic evolution of primates, especially of humans. However, the phylogenetic placement of these primate relatives remains controversial, with three primary hypotheses currently espoused based on morphological and molecular evidence. In the present study, we used two algorithms to analyze differently partitioned genomic datasets consisting of 45.4 Mb of conserved non-coding elements and 393 kb of concatenated coding sequences to test these hypotheses. We assessed different genomic histories and compared with other molecular studies found solid support for colugos being the closest living relatives of primates. Our phylogeny showed Cercopithecinae to have low levels of nucleotide divergence, especially for Papionini, and gibbons to have a high rate of divergence. The MCMCtree comprehensively updated divergence dates of early evolution of Primatomorpha and Primates.
Collapse
Affiliation(s)
- Mei-Ling Zhang
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming Yunnan 650022, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Adeola Oluwakemi Ayoola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.,Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto M5S 2C6, Canada
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
| |
Collapse
|
8
|
Hirai H, Go Y, Hirai Y, Rakotoarisoa G, Pamungkas J, Baicharoen S, Jahan I, Sajuthi D, Tosi AJ. Considerable Synteny and Sequence Similarity of Primate Chromosomal Region VIIq31. Cytogenet Genome Res 2019; 158:88-97. [PMID: 31220833 DOI: 10.1159/000500796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2009] [Indexed: 11/19/2022] Open
Abstract
Human chromosome 7 has been the focus of many behavioral, genetic, and medical studies because it carries genes related to cancer and neurodevelopment. We examined the evolution of the chromosome 7 homologs, and the 7q31 region in particular, using chromosome painting analyses and 3 paint probes derived from (i) the whole of chimpanzee chromosome VII (wcVII), (ii) human 7q31 (h7q31), and (iii) the chimpanzee homolog VIIq31 (cVIIq31). The wcVII probe was used instead of the whole human chromosome 7 because the chimpanzee contains additional C-bands and revealed large areas of synteny conservation as well as fragmentation across 20 primate species. Analyses focusing specifically on the 7q31 homolog and vicinity revealed considerable conservation across lineages with 2 exceptions. First, the probes verified an insertion of repetitive sequence at VIIq22 in chimpanzees and bonobos and also detected the sequence in most subtelomeres of the African apes. Second, a paracentric inversion with a breakpoint in the cVIIq31 block was found in the common marmoset, confirming earlier studies. Subsequent in silico comparative genome analysis of 17 primate species revealed that VIIq31.1 is more significantly conserved at the sequence level than other regions of chromosome VII, which indicates that its components are likely responsible for critical shared traits across the order, including conditions necessary for proper human development and wellbeing.
Collapse
|
9
|
Shi CM, Yang Z. Coalescent-Based Analyses of Genomic Sequence Data Provide a Robust Resolution of Phylogenetic Relationships among Major Groups of Gibbons. Mol Biol Evol 2019; 35:159-179. [PMID: 29087487 PMCID: PMC5850733 DOI: 10.1093/molbev/msx277] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The phylogenetic relationships among extant gibbon species remain unresolved despite numerous efforts using morphological, behavorial, and genetic data and the sequencing of whole genomes. A major challenge in reconstructing the gibbon phylogeny is the radiative speciation process, which resulted in extremely short internal branches in the species phylogeny and extensive incomplete lineage sorting with extensive gene-tree heterogeneity across the genome. Here, we analyze two genomic-scale data sets, with ∼10,000 putative noncoding and exonic loci, respectively, to estimate the species tree for the major groups of gibbons. We used the Bayesian full-likelihood method bpp under the multispecies coalescent model, which naturally accommodates incomplete lineage sorting and uncertainties in the gene trees. For comparison, we included three heuristic coalescent-based methods (mp-est, SVDQuartets, and astral) as well as concatenation. From both data sets, we infer the phylogeny for the four extant gibbon genera to be (Hylobates, (Nomascus, (Hoolock, Symphalangus))). We used simulation guided by the real data to evaluate the accuracy of the methods used. Astral, while not as efficient as bpp, performed well in estimation of the species tree even in presence of excessive incomplete lineage sorting. Concatenation, mp-est and SVDQuartets were unreliable when the species tree contains very short internal branches. Likelihood ratio test of gene flow suggests a small amount of migration from Hylobates moloch to H. pileatus, while cross-genera migration is absent or rare. Our results highlight the utility of coalescent-based methods in addressing challenging species tree problems characterized by short internal branches and rampant gene tree-species tree discordance.
Collapse
Affiliation(s)
- Cheng-Min Shi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Radcliffe Institute for Advanced Studies, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Catacchio CR, Maggiolini FAM, D'Addabbo P, Bitonto M, Capozzi O, Lepore Signorile M, Miroballo M, Archidiacono N, Eichler EE, Ventura M, Antonacci F. Inversion variants in human and primate genomes. Genome Res 2018; 28:910-920. [PMID: 29776991 PMCID: PMC5991517 DOI: 10.1101/gr.234831.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
For many years, inversions have been proposed to be a direct driving force in speciation since they suppress recombination when heterozygous. Inversions are the most common large-scale differences among humans and great apes. Nevertheless, they represent large events easily distinguishable by classical cytogenetics, whose resolution, however, is limited. Here, we performed a genome-wide comparison between human, great ape, and macaque genomes using the net alignments for the most recent releases of genome assemblies. We identified a total of 156 putative inversions, between 103 kb and 91 Mb, corresponding to 136 human loci. Combining literature, sequence, and experimental analyses, we analyzed 109 of these loci and found 67 regions inverted in one or multiple primates, including 28 newly identified inversions. These events overlap with 81 human genes at their breakpoints, and seven correspond to sites of recurrent rearrangements associated with human disease. This work doubles the number of validated primate inversions larger than 100 kb, beyond what was previously documented. We identified 74 sites of errors, where the sequence has been assembled in the wrong orientation, in the reference genomes analyzed. Our data serve two purposes: First, we generated a map of evolutionary inversions in these genomes representing a resource for interrogating differences among these species at a functional level; second, we provide a list of misassembled regions in these primate genomes, involving over 300 Mb of DNA and 1978 human genes. Accurately annotating these regions in the genome references has immediate applications for evolutionary and biomedical studies on primates.
Collapse
Affiliation(s)
| | | | - Pietro D'Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro," Bari 70125, Italy
| | - Miriana Bitonto
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro," Bari 70125, Italy
| | - Oronzo Capozzi
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro," Bari 70125, Italy
| | | | - Mattia Miroballo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro," Bari 70125, Italy
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Mario Ventura
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro," Bari 70125, Italy
| | - Francesca Antonacci
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro," Bari 70125, Italy
| |
Collapse
|
11
|
Mazzoleni S, Rovatsos M, Schillaci O, Dumas F. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes. COMPARATIVE CYTOGENETICS 2018; 12:27-40. [PMID: 29416829 PMCID: PMC5799724 DOI: 10.3897/compcytogen.v12i1.19381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/24/2017] [Indexed: 06/08/2023]
Abstract
We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH) in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor (Günther, 1876) (Scandentia), in order to expand our knowledge of Primate genome reshuffling and to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In addition, we examined the potential homology of chromosomes bearing rDNA genes across different species and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny to human. Our analysis revealed an extensive variability in the topology of the rDNA signals across studied species. In some cases, closely related species show signals on homologous chromosomes, thus representing synapomorphies, while in other cases, signal was detected on distinct chromosomes, leading to species specific patterns. These results led us to support the hypothesis that different mechanisms are responsible for the distribution of the ribosomal DNA cluster in Primates.
Collapse
Affiliation(s)
- Sofia Mazzoleni
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi 18
- Faculty of Science, Department of Ecology, Viničná 7, Charles University, Pragha 2, Czech Republic
| | - Michail Rovatsos
- Faculty of Science, Department of Ecology, Viničná 7, Charles University, Pragha 2, Czech Republic
| | - Odessa Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi 18
| | - Francesca Dumas
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi 18
| |
Collapse
|
12
|
Fan PF, He K, Chen X, Ortiz A, Zhang B, Zhao C, Li YQ, Zhang HB, Kimock C, Wang WZ, Groves C, Turvey ST, Roos C, Helgen KM, Jiang XL. Description of a new species of Hoolock
gibbon (Primates: Hylobatidae) based on integrative taxonomy. Am J Primatol 2017; 79. [DOI: 10.1002/ajp.22631] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/27/2016] [Accepted: 11/18/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Peng-Fei Fan
- School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Eastern-Himalaya Biodiversity Research; Dali University; Dali China
| | - Kai He
- Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming China
- Department of Vertebrate Zoology; National Museum of Natural History; Smithsonian Institution; Washington, D.C
- The Kyoto University Museum; Kyoto University; Kyoto Japan
| | - Xing Chen
- Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming China
| | - Alejandra Ortiz
- Department of Anthropology; Center for the Study of Human Origins; New York University; New York
- New York Consortium in Evolutionary Primatology (NYCEP); New York
- Institute of Human Origins; School of Human Evolution and Social Change; Arizona State University; Tempe Arizona
| | - Bin Zhang
- Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming China
| | - Chao Zhao
- Cloud Mountain Conservation; Dali China
| | | | | | - Clare Kimock
- Department of Anthropology; Center for the Study of Human Origins; New York University; New York
- New York Consortium in Evolutionary Primatology (NYCEP); New York
| | - Wen-Zhi Wang
- Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming China
| | - Colin Groves
- School of Archaeology and Anthropology; Australian National University; Acton Australian Capital Territory Australia
| | | | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory; German Primate Center; Leibniz Institute for Primate Research; Göttingen Germany
| | - Kristofer M. Helgen
- Department of Vertebrate Zoology; National Museum of Natural History; Smithsonian Institution; Washington, D.C
| | - Xue-Long Jiang
- Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming China
| |
Collapse
|
13
|
Meyer TJ, Held U, Nevonen KA, Klawitter S, Pirzer T, Carbone L, Schumann GG. The Flow of the Gibbon LAVA Element Is Facilitated by the LINE-1 Retrotransposition Machinery. Genome Biol Evol 2016; 8:3209-3225. [PMID: 27635049 PMCID: PMC5174737 DOI: 10.1093/gbe/evw224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
LINE-Alu-VNTR-Alu-like (LAVA) elements comprise a family of non-autonomous, composite, non-LTR retrotransposons specific to gibbons and may have played a role in the evolution of this lineage. A full-length LAVA element consists of portions of repeats found in most primate genomes: CT-rich, Alu-like, and VNTR regions from the SVA retrotransposon, and portions of the AluSz and L1ME5 elements. To evaluate whether the gibbon genome currently harbors functional LAVA elements capable of mobilization by the endogenous LINE-1 (L1) protein machinery and which LAVA components are important for retrotransposition, we established a trans-mobilization assay in HeLa cells. Specifically, we tested if a full-length member of the older LAVA subfamily C that was isolated from the gibbon genome and named LAVAC, or its components, can be mobilized in the presence of the human L1 protein machinery. We show that L1 proteins mobilize the LAVAC element at frequencies exceeding processed pseudogene formation and human SVAE retrotransposition by > 100-fold and ≥3-fold, respectively. We find that only the SVA-derived portions confer activity, and truncation of the 3′ L1ME5 portion increases retrotransposition rates by at least 100%. Tagged de novo insertions integrated into intronic regions in cell culture, recapitulating findings in the gibbon genome. Finally, we present alternative models for the rise of the LAVA retrotransposon in the gibbon lineage.
Collapse
Affiliation(s)
- Thomas J Meyer
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon
| | - Ulrike Held
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Kimberly A Nevonen
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Sabine Klawitter
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
- Present address: Division of Inborn Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Thomas Pirzer
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Lucia Carbone
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
14
|
|
15
|
|
16
|
Lou DI, Kim ET, Meyerson NR, Pancholi NJ, Mohni KN, Enard D, Petrov DA, Weller SK, Weitzman MD, Sawyer SL. An Intrinsically Disordered Region of the DNA Repair Protein Nbs1 Is a Species-Specific Barrier to Herpes Simplex Virus 1 in Primates. Cell Host Microbe 2016; 20:178-88. [PMID: 27512903 PMCID: PMC4982468 DOI: 10.1016/j.chom.2016.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
Humans occasionally transmit herpes simplex virus 1 (HSV-1) to captive primates, who reciprocally harbor alphaherpesviruses poised for zoonotic transmission to humans. To understand the basis for the species-specific restriction of HSV-1 in primates, we simulated what might happen during the cross-species transmission of HSV-1 and found that the DNA repair protein Nbs1 from only some primate species is able to promote HSV-1 infection. The Nbs1 homologs that promote HSV-1 infection also interact with the HSV-1 ICP0 protein. ICP0 interaction mapped to a region of structural disorder in the Nbs1 protein. Chimeras reversing patterns of disorder in Nbs1 reversed titers of HSV-1 produced in the cell. By extending this analysis to 1,237 virus-interacting mammalian proteins, we show that proteins that interact with viruses are highly enriched in disorder, suggesting that viruses commonly interact with host proteins through intrinsically disordered domains.
Collapse
Affiliation(s)
- Dianne I Lou
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Eui Tae Kim
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicholas R Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Neha J Pancholi
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kareem N Mohni
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - David Enard
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sandra K Weller
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew D Weitzman
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Sara L Sawyer
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
17
|
Sangpakdee W, Phimphan S, Liehr T, Fan X, Pinthong K, Patawang I, Tanomtong A. Characterization of chromosomal rearrangements in pileated gibbon (Hylobates pileatus) using multiplex-FISH technique. THE NUCLEUS 2016. [DOI: 10.1007/s13237-016-0171-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
18
|
Sangpakdee W, Tanomtong A, Fan X, Pinthong K, Weise A, Liehr T. Application of multicolor banding combined with heterochromatic and locus-specific probes identify evolutionary conserved breakpoints in Hylobates pileatus. Mol Cytogenet 2016; 9:17. [PMID: 26893612 PMCID: PMC4758170 DOI: 10.1186/s13039-016-0228-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The question what makes Homo sapiens sapiens (HSA) special among other species is one of the basic questions of mankind. A small contribution to answer this question is to study the chromosomal constitution of HSA compared to other, closely related species. In order to check the types and extent of evolutionary conserved breakpoints we studied here for the first time the chromosomes of Hylobates pileatus (HPI) compared to HSA and Hylobates lar (HLA) by means of molecular cytogenetics. RESULTS Overall, 68 new evolutionary conserved breakpoints compared to HSA could be characterized in this study. Interestingly, only seven of those were different compared to HLA. However, application of heterochromatic human DNA-probes provided evidence that observed high chromosomal rearrangement rates of gibbons in HPI happened rather in these repetitive elements than in euchromatin, even though most centromeric positions were preserved in HPI compared to HSA. CONCLUSION Understanding genomes of other species and comparing them to HSA needs full karyotypic and high resolution genomic data to approach both: euchromatic and heterochromatic regions of the studied chromosome-content. This study provides full karyotypic data and previously not available data on heterochromatin-syntenies of HPI and HSA.
Collapse
Affiliation(s)
- Wiwat Sangpakdee
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany ; Department of Biology Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen, 40002 Thailand
| | - Alongklod Tanomtong
- Department of Biology Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen, 40002 Thailand
| | - Xiaobo Fan
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Krit Pinthong
- Faculty of Science and Technology, Surindra Rajabhat University, 186 Moo 1, Maung District, Surin, 32000 Thailand
| | - Anja Weise
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| |
Collapse
|
19
|
Roos C. Phylogeny and Classification of Gibbons (Hylobatidae). DEVELOPMENTS IN PRIMATOLOGY: PROGRESS AND PROSPECTS 2016. [DOI: 10.1007/978-1-4939-5614-2_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Dobigny G, Britton-Davidian J, Robinson TJ. Chromosomal polymorphism in mammals: an evolutionary perspective. Biol Rev Camb Philos Soc 2015; 92:1-21. [PMID: 26234165 DOI: 10.1111/brv.12213] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022]
Abstract
Although chromosome rearrangements (CRs) are central to studies of genome evolution, our understanding of the evolutionary consequences of the early stages of karyotypic differentiation (i.e. polymorphism), especially the non-meiotic impacts, is surprisingly limited. We review the available data on chromosomal polymorphisms in mammals so as to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change. In doing so, we address several key questions: (i) to what extent are mammalian karyotypes polymorphic, and what types of rearrangements are principally involved? (ii) Are some mammalian lineages more prone to chromosomal polymorphism than others? More specifically, do (karyotypically) polymorphic mammalian species belong to lineages that are also characterized by past, extensive karyotype repatterning? (iii) How long can chromosomal polymorphisms persist in mammals? We discuss the evolutionary implications of these questions and propose several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species.
Collapse
Affiliation(s)
- Gauthier Dobigny
- Institut de Recherche pour le Développement, Centre de Biologie pour la Gestion des Populations (UMR IRD-INRA-Cirad-Montpellier SupAgro), Campus International de Baillarguet, CS30016, 34988, Montferrier-sur-Lez, France
| | - Janice Britton-Davidian
- Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE, Cc065, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Terence J Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7062, South Africa
| |
Collapse
|
21
|
Choi Y, Jung YD, Ayarpadikannan S, Koga A, Imai H, Hirai H, Roos C, Kim HS. Novel variable number of tandem repeats of gibbon MAOA gene and its evolutionary significance. Genome 2015; 57:427-32. [PMID: 25360715 DOI: 10.1139/gen-2014-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Variable number of tandem repeats (VNTRs) are scattered throughout the primate genome, and genetic variation of these VNTRs have been accumulated during primate radiation. Here, we analyzed VNTRs upstream of the monoamine oxidase A (MAOA) gene in 11 different gibbon species. An abundance of truncated VNTR sequences and copy number differences were observed compared to those of human VNTR sequences. To better understand the biological role of these VNTRs, a luciferase activity assay was conducted and results indicated that selected VNTR sequences of the MAOA gene from human and three different gibbon species (Hylobates klossii, Hylobates lar, and Nomascus concolor) showed silencing ability. Together, these data could be useful for understanding the evolutionary history and functional significance of MAOA VNTR sequences in gibbon species.
Collapse
Affiliation(s)
- Yuri Choi
- a Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Denion E, Hitier M, Levieil E, Mouriaux F. Human rather than ape-like orbital morphology allows much greater lateral visual field expansion with eye abduction. Sci Rep 2015; 5:12437. [PMID: 26190625 PMCID: PMC4507258 DOI: 10.1038/srep12437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/24/2015] [Indexed: 11/16/2022] Open
Abstract
While convergent, the human orbit differs from that of non-human apes in that its lateral orbital margin is significantly more rearward. This rearward position does not obstruct the additional visual field gained through eye motion. This additional visual field is therefore considered to be wider in humans than in non-human apes. A mathematical model was designed to quantify this difference. The mathematical model is based on published computed tomography data in the human neuro-ocular plane (NOP) and on additional anatomical data from 100 human skulls and 120 non-human ape skulls (30 gibbons; 30 chimpanzees / bonobos; 30 orangutans; 30 gorillas). It is used to calculate temporal visual field eccentricity values in the NOP first in the primary position of gaze then for any eyeball rotation value in abduction up to 45° and any lateral orbital margin position between 85° and 115° relative to the sagittal plane. By varying the lateral orbital margin position, the human orbit can be made "non-human ape-like". In the Pan-like orbit, the orbital margin position (98.7°) was closest to the human orbit (107.1°). This modest 8.4° difference resulted in a large 21.1° difference in maximum lateral visual field eccentricity with eyeball abduction (Pan-like: 115°; human: 136.1°).
Collapse
Affiliation(s)
- Eric Denion
- Inserm, U 1075 COMETE, Avenue de la côte de nacre, Caen, 5 Avenue de la côte de nacre, 14033 Caen cedex 9, France
- Department of Ophthalmology, CHU de Caen, Avenue de la côte de nacre, 14033 Caen cedex 9, France
- Medical School, Unicaen, pôle des formations des recherches en santé, 2 rue des Rochambelles, CS 14032, 14032 Caen cedex, France
| | - Martin Hitier
- Inserm, U 1075 COMETE, Avenue de la côte de nacre, Caen, 5 Avenue de la côte de nacre, 14033 Caen cedex 9, France
- Medical School, Unicaen, pôle des formations des recherches en santé, 2 rue des Rochambelles, CS 14032, 14032 Caen cedex, France
- Department of Otolaryngology - Head & Neck Surgery CHU de Caen, Avenue de la côte de nacre, 14033 Caen cedex 9, France
- Anatomy Laboratory, pôle des formations des recherches en santé, 2 rue des Rochambelles, CS 14032, 14032 Caen cedex
| | - Eric Levieil
- Cleverest Code, 24 place Etienne Pernet, 75015 Paris, France
| | - Frédéric Mouriaux
- Department of Ophthalmology, CHU Pontchaillou, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France
- Université de Rennes 1, 2 rue du Thabor CS 46510, 35065 Rennes cedex, France
| |
Collapse
|
23
|
Abstract
The world of primate genomics is expanding rapidly in new and exciting ways owing to lowered costs and new technologies in molecular methods and bioinformatics. The primate order is composed of 78 genera and 478 species, including human. Taxonomic inferences are complex and likely a consequence of ongoing hybridization, introgression, and reticulate evolution among closely related taxa. Recently, we applied large-scale sequencing methods and extensive taxon sampling to generate a highly resolved phylogeny that affirms, reforms, and extends previous depictions of primate speciation. The next stage of research uses this phylogeny as a foundation for investigating genome content, structure, and evolution across primates. Ongoing and future applications of a robust primate phylogeny are discussed, highlighting advancements in adaptive evolution of genes and genomes, taxonomy and conservation management of endangered species, next-generation genomic technologies, and biomedicine.
Collapse
Affiliation(s)
- Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland 21702; Current Affiliation: Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia 22630;
| |
Collapse
|
24
|
Denion E, Hitier M, Guyader V, Dugué AE, Mouriaux F. Unique human orbital morphology compared with that of apes. Sci Rep 2015; 5:11528. [PMID: 26111067 PMCID: PMC4480145 DOI: 10.1038/srep11528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/20/2015] [Indexed: 11/25/2022] Open
Abstract
Humans' and apes' convergent (front-facing) orbits allow a large overlap of monocular visual fields but are considered to limit the lateral visual field extent. However, humans can greatly expand their lateral visual fields using eye motion. This study aimed to assess whether the human orbital morphology was unique compared with that of apes in avoiding lateral visual field obstruction. The orbits of 100 human skulls and 120 ape skulls (30 gibbons; 30 orangutans; 30 gorillas; 30 chimpanzees and bonobos) were analyzed. The orbital width/height ratio was calculated. Two orbital angles representing orbital convergence and rearward position of the orbital margin respectively were recorded using a protractor and laser levels. Humans have the largest orbital width/height ratio (1.19; p < 0.001). Humans and gibbons have orbits which are significantly less convergent than those of chimpanzees/bonobos, gorillas and orangutans (p < 0.001). These elements suggest a morphology favoring lateral vision in humans. More specifically, the human orbit has a uniquely rearward temporal orbital margin (107.1°; p < 0.001), suitable for avoiding visual obstruction and promoting lateral visual field expansion through eye motion. Such an orbital morphology may have evolved mainly as an adaptation to open-country habitat and bipedal locomotion.
Collapse
Affiliation(s)
- Eric Denion
- Inserm, U 1075 COMETE, Avenue de la côte de nacre, Caen, 5 Avenue de la côte de nacre, 14033 Caen cedex 9, France
- Department of Ophthalmology, CHU de Caen, Avenue de la côte de nacre, 14033 Caen cedex 9, France, 14032 Caen cedex 5, France
- Medical School, Unicaen, pôle des formations des recherches en santé, 2 rue des Rochambelles, CS 14032, 14032 Caen cedex, France
| | - Martin Hitier
- Inserm, U 1075 COMETE, Avenue de la côte de nacre, Caen, 5 Avenue de la côte de nacre, 14033 Caen cedex 9, France
- Medical School, Unicaen, pôle des formations des recherches en santé, 2 rue des Rochambelles, CS 14032, 14032 Caen cedex, France
- Department of Otolaryngology - Head & Neck Surgery CHU de Caen, Avenue de la côte de nacre 14033 Caen cedex 9, France
- Department of Anatomy, pôle des formations des recherches en santé, 2 rue des Rochambelles, CS 14032, 14032 Caen cedex, France
| | | | - Audrey-Emmanuelle Dugué
- Department of statistics, Centre François Baclesse, 3 avenue du Général Harris, 14000 Caen, France
| | - Frédéric Mouriaux
- Department of Ophthalmology, CHU Pontchaillou, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France
- Université de Rennes 1, 2 rue du Thabor CS 46510, 35065 Rennes cedex, France
| |
Collapse
|
25
|
Weise A, Kosyakova N, Voigt M, Aust N, Mrasek K, Löhmer S, Rubtsov N, Karamysheva TV, Trifonov VA, Hardekopf D, Jančušková T, Pekova S, Wilhelm K, Liehr T, Fan X. Comprehensive Analyses of White-Handed Gibbon Chromosomes Enables Access to 92 Evolutionary Conserved Breakpoints Compared to the Human Genome. Cytogenet Genome Res 2015; 145:42-9. [PMID: 25926034 DOI: 10.1159/000381764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Gibbon species (Hylobatidae) impress with an unusually high number of numerical and structural chromosomal changes within the family itself as well as compared to other Hominoidea including humans. In former studies applying molecular cytogenetic methods, 86 evolutionary conserved breakpoints (ECBs) were reported in the white-handed gibbon (Hylobates lar, HLA) with respect to the human genome. To analyze those ECBs in more detail and also to achieve a better understanding of the fast karyotype evolution in Hylobatidae, molecular data for these regions are indispensably necessary. In the present study, we obtained whole chromosome-specific probes by microdissection of all 21 HLA autosomes and prepared them for aCGH. Locus-specific DNA probes were also used for further molecular cytogenetic characterization of selected regions. Thus, we could map 6 yet unreported ECBs in HLA with respect to the human genome. Additionally, in 26 of the 86 previously reported ECBs, the present approach enabled a more precise breakpoint mapping. Interestingly, a preferred localization of ECBs within segmental duplications, copy number variant regions, and fragile sites was observed.
Collapse
Affiliation(s)
- Anja Weise
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Examining phylogenetic relationships among gibbon genera using whole genome sequence data using an approximate bayesian computation approach. Genetics 2015; 200:295-308. [PMID: 25769979 DOI: 10.1534/genetics.115.174425] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/04/2015] [Indexed: 12/30/2022] Open
Abstract
Gibbons are believed to have diverged from the larger great apes ∼16.8 MYA and today reside in the rainforests of Southeast Asia. Based on their diploid chromosome number, the family Hylobatidae is divided into four genera, Nomascus, Symphalangus, Hoolock, and Hylobates. Genetic studies attempting to elucidate the phylogenetic relationships among gibbons using karyotypes, mitochondrial DNA (mtDNA), the Y chromosome, and short autosomal sequences have been inconclusive . To examine the relationships among gibbon genera in more depth, we performed second-generation whole genome sequencing (WGS) to a mean of ∼15× coverage in two individuals from each genus. We developed a coalescent-based approximate Bayesian computation (ABC) method incorporating a model of sequencing error generated by high coverage exome validation to infer the branching order, divergence times, and effective population sizes of gibbon taxa. Although Hoolock and Symphalangus are likely sister taxa, we could not confidently resolve a single bifurcating tree despite the large amount of data analyzed. Instead, our results support the hypothesis that all four gibbon genera diverged at approximately the same time. Assuming an autosomal mutation rate of 1 × 10(-9)/site/year this speciation process occurred ∼5 MYA during a period in the Early Pliocene characterized by climatic shifts and fragmentation of the Sunda shelf forests. Whole genome sequencing of additional individuals will be vital for inferring the extent of gene flow among species after the separation of the gibbon genera.
Collapse
|
27
|
Baicharoen S, Miyabe-Nishiwaki T, Arsaithamkul V, Hirai Y, Duangsa-ard K, Siriaroonrat B, Domae H, Srikulnath K, Koga A, Hirai H. Locational diversity of alpha satellite DNA and intergeneric hybridization aspects in the Nomascus and Hylobates genera of small apes. PLoS One 2014; 9:e109151. [PMID: 25290445 PMCID: PMC4188616 DOI: 10.1371/journal.pone.0109151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/29/2014] [Indexed: 01/05/2023] Open
Abstract
Recently, we discovered that alpha satellite DNA has unique and genus-specific localizations on the chromosomes of small apes. This study describes the details of alpha satellite localization in the genera Nomascus and Hylobates and explores their usefulness in distinguishing parental genome sets in hybrids between these genera. Fluorescence in situ hybridization was used to establish diagnostic criteria of alpha satellite DNA markers in discriminating small ape genomes. In particular we established the genus specificity of alpha satellite distribution in three species of light-cheeked gibbons (Nomascus leucogenys, N. siki, and N. gabriellae) in comparison to that of Hylobates lar. Then we determined the localization of alpha satellite DNA in a hybrid individual which resulted from a cross between these two genera. In Nomascus the alpha satellite DNA blocks were located at the centromere, telomere, and four interstitial regions. In Hylobates detectable amounts of alpha satellite DNA were seen only at centromeric regions. The differences in alpha satellite DNA locations between Nomascus and Hylobates allowed us to easily distinguish the parental chromosomal sets in the genome of intergeneric hybrid individuals found in Thai and Japanese zoos. Our study illustrates how molecular cytogenetic markers can serve as diagnostic tools to identify the origin of individuals. These molecular tools can aid zoos, captive breeding programs and conservation efforts in managing small apes species. Discovering more information on alpha satellite distribution is also an opportunity to examine phylogenetic and evolutionary questions that are still controversial in small apes.
Collapse
Affiliation(s)
- Sudarath Baicharoen
- Bioscience Program, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok, Thailand
- Conservation, Research and Education Division, Zoological Park Organization, Bangkok, Thailand
| | | | - Visit Arsaithamkul
- Conservation, Research and Education Division, Zoological Park Organization, Bangkok, Thailand
| | - Yuriko Hirai
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | | | - Boripat Siriaroonrat
- Conservation, Research and Education Division, Zoological Park Organization, Bangkok, Thailand
| | | | - Kornsorn Srikulnath
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok, Thailand
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Hirohisa Hirai
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
- * E-mail:
| |
Collapse
|
28
|
Affiliation(s)
- Michael J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
29
|
Abstract
Recombination maps of ancestral species can be constructed from comparative analyses of genomes from closely related species, exemplified by a recently published map of the human-chimpanzee ancestor. Such maps resolve differences in recombination rate between species into changes along individual branches in the speciation tree, and allow identification of associated changes in the genomic sequences. We describe how coalescent hidden Markov models are able to call individual recombination events in ancestral species through inference of incomplete lineage sorting along a genomic alignment. In the great apes, speciation events are sufficiently close in time that a map can be inferred for the ancestral species at each internal branch - allowing evolution of recombination rate to be tracked over evolutionary time scales from speciation event to speciation event. We see this approach as a way of characterizing the evolution of recombination rate and the genomic properties that influence it.
Collapse
|
30
|
Huang J, Zhao Y, Shiraigol W, Li B, Bai D, Ye W, Daidiikhuu D, Yang L, Jin B, Zhao Q, Gao Y, Wu J, Bao W, Li A, Zhang Y, Han H, Bai H, Bao Y, Zhao L, Zhai Z, Zhao W, Sun Z, Zhang Y, Meng H, Dugarjaviin M. Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype. Sci Rep 2014; 4:4958. [PMID: 24828444 PMCID: PMC4021364 DOI: 10.1038/srep04958] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/22/2014] [Indexed: 12/22/2022] Open
Abstract
Karyotypic diversification is more prominent in Equus species than in other mammals. Here, using next generation sequencing technology, we generated and de novo assembled quality genomes sequences for a male wild horse (Przewalski's horse) and a male domestic horse (Mongolian horse), with about 93-fold and 91-fold coverage, respectively. Portion of Y chromosome from wild horse assemblies (3 M bp) and Mongolian horse (2 M bp) were also sequenced and de novo assembled. We confirmed a Robertsonian translocation event through the wild horse's chromosomes 23 and 24, which contained sequences that were highly homologous with those on the domestic horse's chromosome 5. The four main types of rearrangement, insertion of unknown origin, inserted duplication, inversion, and relocation, are not evenly distributed on all the chromosomes, and some chromosomes, such as the X chromosome, contain more rearrangements than others, and the number of inversions is far less than the number of insertions and relocations in the horse genome. Furthermore, we discovered the percentages of LINE_L1 and LTR_ERV1 are significantly increased in rearrangement regions. The analysis results of the two representative Equus species genomes improved our knowledge of Equus chromosome rearrangement and karyotype evolution.
Collapse
Affiliation(s)
- Jinlong Huang
- 1] College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China [2]
| | - Yiping Zhao
- 1] College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China [2]
| | - Wunierfu Shiraigol
- 1] College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China [2]
| | - Bei Li
- 1] College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China [2]
| | - Dongyi Bai
- 1] College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China [2]
| | - Weixing Ye
- 1] Shanghai Personal Biotechnology Limited Company, 777 Longwu Road, Shanghai 200236, P.R. China [2]
| | - Dorjsuren Daidiikhuu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Lihua Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Burenqiqige Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Qinan Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Yahan Gao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Jing Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Wuyundalai Bao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Anaer Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Yuhong Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Haige Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Haitang Bai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Yanqing Bao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Lele Zhao
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhengxiao Zhai
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wenjing Zhao
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zikui Sun
- Shanghai Personal Biotechnology Limited Company, 777 Longwu Road, Shanghai 200236, P.R. China
| | - Yan Zhang
- Virginia Bioinformatics Institute, Virginia Tech, Washington Street, MC0477, Blacksburg, Virginia, 24061, USA
| | - He Meng
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Manglai Dugarjaviin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| |
Collapse
|
31
|
Jahan I, Hirai Y, Rahman ZMM, Islam MA, Hirai H. The first finding of chromosome variations in wild-born western hoolock gibbons. Primates 2013; 54:335-40. [DOI: 10.1007/s10329-013-0382-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/02/2013] [Indexed: 12/23/2022]
|
32
|
Chan YC, Roos C, Inoue-Murayama M, Inoue E, Shih CC, Pei KJC, Vigilant L. Inferring the evolutionary histories of divergences in Hylobates and Nomascus gibbons through multilocus sequence data. BMC Evol Biol 2013; 13:82. [PMID: 23586586 PMCID: PMC3637282 DOI: 10.1186/1471-2148-13-82] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/08/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Gibbons (Hylobatidae) are the most diverse group of living apes. They exist as geographically-contiguous species which diverged more rapidly than did their close relatives, the great apes (Hominidae). Of the four extant gibbon genera, the evolutionary histories of two polyspecific genera, Hylobates and Nomascus, have been the particular focus of research but the DNA sequence data used was largely derived from the maternally inherited mitochondrial DNA (mtDNA) locus. RESULTS To investigate the evolutionary relationships and divergence processes of gibbon species, particularly those of the Hylobates genus, we produced and analyzed a total of 11.5 kb DNA of sequence at 14 biparentally inherited autosomal loci. We find that on average gibbon genera have a high average sequence diversity but a lower degree of genetic differentiation as compared to great ape genera. Our multilocus species tree features H. pileatus in a basal position and a grouping of the four Sundaic island species (H. agilis, H. klossii, H. moloch and H. muelleri). We conducted pairwise comparisons based on an isolation-with-migration (IM) model and detect signals of asymmetric gene flow between H. lar and H. moloch, between H. agilis and H. muelleri, and between N. leucogenys and N. siki. CONCLUSIONS Our multilocus analyses provide inferences of gibbon evolutionary histories complementary to those based on single gene data. The results of IM analyses suggest that the divergence processes of gibbons may be accompanied by gene flow. Future studies using analyses of multi-population model with samples of known provenance for Hylobates and Nomascus species would expand the understanding of histories of gene flow during divergences for these two gibbon genera.
Collapse
Affiliation(s)
- Yi-Chiao Chan
- Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Wall JD, Kim SK, Luca F, Carbone L, Mootnick AR, de Jong PJ, Di Rienzo A. Incomplete lineage sorting is common in extant gibbon genera. PLoS One 2013; 8:e53682. [PMID: 23341974 PMCID: PMC3544895 DOI: 10.1371/journal.pone.0053682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022] Open
Abstract
We sequenced reduced representation libraries by means of Illumina technology to generate over 1.5 Mb of orthologous sequence from a representative of each of the four extant gibbon genera (Nomascus, Hylobates, Symphalangus, and Hoolock). We used these data to assess the evolutionary relationships between the genera by evaluating the likelihoods of all possible bifurcating trees involving the four taxa. Our analyses provide weak support for a tree with Nomascus and Hylobates as sister taxa and with Hoolock and Symphalangus as sister taxa, though bootstrap resampling suggests that other phylogenetic scenarios are also possible. This uncertainty is due to short internal branch lengths and extensive incomplete lineage sorting across taxa. The true phylogenetic relationships among gibbon genera will likely require a more extensive whole-genome sequence analysis.
Collapse
Affiliation(s)
- Jeffrey D Wall
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
34
|
Chan YC, Roos C, Inoue-Murayama M, Inoue E, Shih CC, Vigilant L. A comparative analysis of Y chromosome and mtDNA phylogenies of the Hylobates gibbons. BMC Evol Biol 2012; 12:150. [PMID: 22909292 PMCID: PMC3444420 DOI: 10.1186/1471-2148-12-150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/15/2012] [Indexed: 01/06/2023] Open
Abstract
Background The evolutionary relationships of closely related species have long been of interest to biologists since these species experienced different evolutionary processes in a relatively short period of time. Comparison of phylogenies inferred from DNA sequences with differing inheritance patterns, such as mitochondrial, autosomal, and X and Y chromosomal loci, can provide more comprehensive inferences of the evolutionary histories of species. Gibbons, especially the genus Hylobates, are particularly intriguing as they consist of multiple closely related species which emerged rapidly and live in close geographic proximity. Our current understanding of relationships among Hylobates species is largely based on data from the maternally-inherited mitochondrial DNAs (mtDNAs). Results To infer the paternal histories of gibbon taxa, we sequenced multiple Y chromosomal loci from 26 gibbons representing 10 species. As expected, we find levels of sequence variation some five times lower than observed for the mitochondrial genome (mtgenome). Although our Y chromosome phylogenetic tree shows relatively low resolution compared to the mtgenome tree, our results are consistent with the monophyly of gibbon genera suggested by the mtgenome tree. In a comparison of the molecular dating of divergences and on the branching patterns of phylogeny trees between mtgenome and Y chromosome data, we found: 1) the inferred divergence estimates were more recent for the Y chromosome than for the mtgenome, 2) the species H. lar and H. pileatus are monophyletic in the mtgenome phylogeny, respectively, but a H. pileatus individual falls into the H. lar Y chromosome clade. Conclusions Based on the ~6.4 kb of Y chromosomal DNA sequence data generated for each of the 26 individuals in this study, we provide molecular inferences on gibbon and particularly on Hylobates evolution complementary to those from mtDNA data. Overall, our results illustrate the utility of comparative studies of loci with different inheritance patterns for investigating potential sex specific processes on the evolutionary histories of closely related taxa, and emphasize the need for further sampling of gibbons of known provenance.
Collapse
Affiliation(s)
- Yi-Chiao Chan
- Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Capozzi O, Carbone L, Stanyon RR, Marra A, Yang F, Whelan CW, de Jong PJ, Rocchi M, Archidiacono N. A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons. Genome Res 2012; 22:2520-8. [PMID: 22892276 PMCID: PMC3514681 DOI: 10.1101/gr.138651.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human–gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans.
Collapse
Affiliation(s)
- Oronzo Capozzi
- Department of Genetics and Microbiology, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Szinay D, Wijnker E, van den Berg R, Visser RGF, de Jong H, Bai Y. Chromosome evolution in Solanum traced by cross-species BAC-FISH. THE NEW PHYTOLOGIST 2012; 195:688-698. [PMID: 22686400 DOI: 10.1111/j.1469-8137.2012.04195.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chromosomal rearrangements are relatively rare evolutionary events and can be used as markers to study karyotype evolution. This research aims to use such rearrangements to study chromosome evolution in Solanum. Chromosomal rearrangements between Solanum crops and several related wild species were investigated using tomato and potato bacterial artificial chromosomes (BACs) in a multicolour fluorescent in situ hybridization (FISH). The BACs selected are evenly distributed over seven chromosomal arms containing inversions described in previous studies. The presence/absence of these inversions among the studied Solanum species were determined and the order of the BAC-FISH signals was used to construct phylogenetic trees.Compared with earlier studies, data from this study provide support for the current grouping of species into different sections within Solanum; however, there are a few notable exceptions, such as the tree positions of S. etuberosum (closer to the tomato group than to the potato group) and S. lycopersicoides (sister to S. pennellii). These apparent contradictions might be explained by interspecific hybridization events and/or incomplete lineage sorting. This cross-species BAC painting technique provides unique information on genome organization, evolution and phylogenetic relationships in a wide variety of species. Such information is very helpful for introgressive breeding.
Collapse
Affiliation(s)
- Dóra Szinay
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Ronald van den Berg
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Yuling Bai
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
37
|
Stanyon R, Rocchi M, Bigoni F, Archidiacono N. Evolutionary molecular cytogenetics of catarrhine primates: past, present and future. Cytogenet Genome Res 2012; 137:273-84. [PMID: 22710640 DOI: 10.1159/000339381] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The catarrhine primates were the first group of species studied with comparative molecular cytogenetics. Many of the fundamental techniques and principles of analysis were initially applied to comparisons in these primates, including interspecific chromosome painting, reciprocal chromosome painting and the extensive use of cloned DNA probes for evolutionary analysis. The definition and importance of chromosome syntenies and associations for a correct cladistics analysis of phylogenomic relationships were first applied to catarrhines. These early chromosome painting studies vividly illustrated a striking conservation of the genome between humans and macaques. Contemporarily, it also revealed profound differences between humans and gibbons, a group of species more closely related to humans, making it clear that chromosome evolution did not follow a molecular clock. Chromosome painting has now been applied to more that 60 primate species and the translocation history has been mapped onto the major taxonomic divisions in the tree of primate evolution. In situ hybridization of cloned DNA probes, primarily BAC-FISH, also made it possible to more precisely map breakpoints with spanning and flanking BACs. These studies established marker order and disclosed intrachromosomal rearrangements. When applied comparatively to a range of primate species, they led to the discovery of evolutionary new centromeres as an important new category of chromosome evolution. BAC-FISH studies are intimately connected to genome sequencing, and probes can usually be assigned to a precise location in the genome assembly. This connection ties molecular cytogenetics securely to genome sequencing, assuring that molecular cytogenetics will continue to have a productive future in the multidisciplinary science of phylogenomics.
Collapse
Affiliation(s)
- R Stanyon
- Department of Evolutionary Biology, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
38
|
Meyer TJ, McLain AT, Oldenburg JM, Faulk C, Bourgeois MG, Conlin EM, Mootnick AR, de Jong PJ, Roos C, Carbone L, Batzer MA. An Alu-based phylogeny of gibbons (hylobatidae). Mol Biol Evol 2012; 29:3441-50. [PMID: 22683814 DOI: 10.1093/molbev/mss149] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gibbons (Hylobatidae) are small, arboreal apes indigenous to Southeast Asia that diverged from other apes ∼15-18 Ma. Extant lineages radiated rapidly 6-10 Ma and are organized into four genera (Hylobates, Hoolock, Symphalangus, and Nomascus) consisting of 12-19 species. The use of short interspersed elements (SINEs) as phylogenetic markers has seen recent popularity due to several desirable characteristics: the ancestral state of a locus is known to be the absence of an element, rare potentially homoplasious events are relatively easy to resolve, and samples can be quickly and inexpensively genotyped. During radiation of primates, one particular family of SINEs, the Alu family, has proliferated in primate genomes. Nomascus leucogenys (northern white-cheeked gibbon) sequences were analyzed for repetitive content with RepeatMasker using a custom library. The sequences containing Alu elements identified as members of a gibbon-specific subfamily were then compared with orthologous positions in other primate genomes. A primate phylogenetic panel consisting of 18 primate species, including 13 gibbon species representing all four extant genera, was assayed for all loci, and a total of 125 gibbon-specific Alu insertions were identified. The resulting amplification patterns were used to generate a phylogenetic tree. We demonstrate significant support for Symphalangus as the most basal lineage within the family. Our findings also place Nomascus as a derived lineage, sister to Hoolock, with the Nomascus-Hoolock clade sister to Hylobates. Further, our analysis groups N. leucogenys and Nomascus siki as sister taxa to the exclusion of the other Nomascus species assayed. This study represents the first use of SINEs to determine the genus level phylogenetic relationships within the family Hylobatidae. These relationships have been resolved with robust support at most internal nodes, demonstrating the utility of SINE-based phylogenetic analysis. We postulate that hybridization and rapid radiation may have contributed to the complex and contradictory findings of the previous studies. Our findings will aid in the conservation of these threatened primates and inform future studies of the biogeographical history and distribution of modern gibbon species.
Collapse
Affiliation(s)
- Thomas J Meyer
- Department of Biological Sciences, Louisiana State University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Repetitive sequences originating from the centromere constitute large-scale heterochromatin in the telomere region in the siamang, a small ape. Heredity (Edinb) 2012; 109:180-7. [PMID: 22669075 DOI: 10.1038/hdy.2012.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chromosomes of the siamang Symphalangus syndactylus (a small ape) carry large-scale heterochromatic structures at their ends. These structures look similar, by chromosome C-banding, to chromosome-end heterochromatin found in chimpanzee, bonobo and gorilla (African great apes), of which a major component is tandem repeats of 32-bp-long, AT-rich units. In the present study, we identified repetitive sequences that are a major component of the siamang heterochromatin. Their repeat units are 171 bp in length, and exhibit sequence similarity to alpha satellite DNA, a major component of the centromeres in primates. Thus, the large-scale heterochromatic structures have different origins between the great apes and the small ape. The presence of alpha satellite DNA in the telomere region has previously been reported in the white-cheeked gibbon Nomascus leucogenys, another small ape species. There is, however, a difference in the size of the telomere-region alpha satellite DNA, which is far larger in the siamang. It is not known whether the sequences of these two species (of different genera) have a common origin because the phylogenetic relationship of genera within the small ape family is still not clear. Possible evolutionary scenarios are discussed.
Collapse
|
40
|
Carbone L, Harris RA, Mootnick AR, Milosavljevic A, Martin DIK, Rocchi M, Capozzi O, Archidiacono N, Konkel MK, Walker JA, Batzer MA, de Jong PJ. Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons. Genome Biol Evol 2012; 4:648-58. [PMID: 22593550 PMCID: PMC3606032 DOI: 10.1093/gbe/evs048] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gibbons (Hylobatidae) shared a common ancestor with the other hominoids only 15–18 million years ago. Nevertheless, gibbons show very distinctive features that include heavily rearranged chromosomes. Previous observations indicate that this phenomenon may be linked to the attenuated epigenetic repression of transposable elements (TEs) in gibbon species. Here we describe the massive expansion of a repeat in almost all the centromeres of the eastern hoolock gibbon (Hoolock leuconedys). We discovered that this repeat is a new composite TE originating from the combination of portions of three other elements (L1ME5, AluSz6, and SVA_A) and thus named it LAVA. We determined that this repeat is found in all the gibbons but does not occur in other hominoids. Detailed investigation of 46 different LAVA elements revealed that the majority of them have target site duplications (TSDs) and a poly-A tail, suggesting that they have been retrotransposing in the gibbon genome. Although we did not find a direct correlation between the emergence of LAVA elements and human–gibbon synteny breakpoints, this new composite transposable element is another mark of the great plasticity of the gibbon genome. Moreover, the centromeric expansion of LAVA insertions in the hoolock closely resembles the massive centromeric expansion of the KERV-1 retroelement reported for wallaby (marsupial) interspecific hybrids. The similarity between the two phenomena is consistent with the hypothesis that evolution of the gibbons is characterized by defects in epigenetic repression of TEs, perhaps triggered by interspecific hybridization.
Collapse
Affiliation(s)
- Lucia Carbone
- Children's Hospital Oakland Research Institute, Oakland, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Graphodatsky AS, Trifonov VA, Stanyon R. The genome diversity and karyotype evolution of mammals. Mol Cytogenet 2011; 4:22. [PMID: 21992653 PMCID: PMC3204295 DOI: 10.1186/1755-8166-4-22] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/12/2011] [Indexed: 01/30/2023] Open
Abstract
The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat), laboratory (mice and rat) and agricultural (cattle, pig, and horse) animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH) on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results.
Collapse
|
42
|
Ventura M, Catacchio CR, Alkan C, Marques-Bonet T, Sajjadian S, Graves TA, Hormozdiari F, Navarro A, Malig M, Baker C, Lee C, Turner EH, Chen L, Kidd JM, Archidiacono N, Shendure J, Wilson RK, Eichler EE. Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee. Genome Res 2011; 21:1640-9. [PMID: 21685127 DOI: 10.1101/gr.124461.111] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes.
Collapse
Affiliation(s)
- Mario Ventura
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MAM, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MPC, Silva A, O'Brien SJ, Pecon-Slattery J. A molecular phylogeny of living primates. PLoS Genet 2011; 7:e1001342. [PMID: 21436896 PMCID: PMC3060065 DOI: 10.1371/journal.pgen.1001342] [Citation(s) in RCA: 898] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/16/2011] [Indexed: 12/13/2022] Open
Abstract
Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. Advances in human biomedicine, including those focused on changes in genes triggered or disrupted in development, resistance/susceptibility to infectious disease, cancers, mechanisms of recombination, and genome plasticity, cannot be adequately interpreted in the absence of a precise evolutionary context or hierarchy. However, little is known about the genomes of other primate species, a situation exacerbated by a paucity of nuclear molecular sequence data necessary to resolve the complexities of primate divergence over time. We overcome this deficiency by sequencing 54 nuclear gene regions from DNA samples representing ∼90% of the diversity present in living primates. We conduct a phylogenetic analysis to determine the origin, evolution, patterns of speciation, and unique features in genome divergence among primate lineages. The resultant phylogenetic tree is remarkably robust and unambiguously resolves many long-standing issues in primate taxonomy. Our data provide a strong foundation for illuminating those genomic differences that are uniquely human and provide new insights on the breadth and richness of gene evolution across all primate lineages.
Collapse
Affiliation(s)
- Polina Perelman
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Warren E. Johnson
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Hector N. Seuánez
- Division of Genetics, Instituto Nacional de Câncer and Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julie E. Horvath
- Department of Evolutionary Anthropology and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Miguel A. M. Moreira
- Division of Genetics, Instituto Nacional de Câncer and Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bailey Kessing
- SAIC–Frederick, Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Joan Pontius
- SAIC–Frederick, Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Melody Roelke
- SAIC–Frederick, Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Yves Rumpler
- Physiopathologie et Médecine Translationnelle, Faculté de Médecine, Université Louis Pasteur, Strasbourg, France
| | | | | | - Stephen J. O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
44
|
Kim SK, Carbone L, Becquet C, Mootnick AR, Li DJ, de Jong PJ, Wall JD. Patterns of genetic variation within and between Gibbon species. Mol Biol Evol 2011; 28:2211-8. [PMID: 21368318 PMCID: PMC3144381 DOI: 10.1093/molbev/msr033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Gibbons are small, arboreal, highly endangered apes that are understudied compared with other hominoids. At present, there are four recognized genera and approximately 17 species, all likely to have diverged from each other within the last 5-6 My. Although the gibbon phylogeny has been investigated using various approaches (i.e., vocalization, morphology, mitochondrial DNA, karyotype, etc.), the precise taxonomic relationships are still highly debated. Here, we present the first survey of nuclear sequence variation within and between gibbon species with the goal of estimating basic population genetic parameters. We gathered ~60 kb of sequence data from a panel of 19 gibbons representing nine species and all four genera. We observe high levels of nucleotide diversity within species, indicative of large historical population sizes. In addition, we find low levels of genetic differentiation between species within a genus comparable to what has been estimated for human populations. This is likely due to ongoing or episodic gene flow between species, and we estimate a migration rate between Nomascus leucogenys and N. gabriellae of roughly one migrant every two generations. Together, our findings suggest that gibbons have had a complex demographic history involving hybridization or mixing between diverged populations.
Collapse
Affiliation(s)
- Sung K Kim
- Institute for Human Genetics, University of California San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Thinh VN, Rawson B, Hallam C, Kenyon M, Nadler T, Walter L, Roos C. Phylogeny and distribution of crested gibbons (genus Nomascus) based on mitochondrial cytochrome b gene sequence data. Am J Primatol 2011; 72:1047-54. [PMID: 20623503 DOI: 10.1002/ajp.20861] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Crested gibbons, genus Nomascus, are endemic to the Indochinese bioregion and occur only in Vietnam, Laos, Cambodia, and southern China. However, knowledge about the number of species to be recognized and their exact geographical distributions is still limited. To further elucidate the evolutionary history of crested gibbon species and to settle their distribution ranges, we analyzed the complete mitochondrial cytochrome b gene from 79 crested gibbon individuals from known locations. Based on our findings, crested gibbons should be classified into seven species. Within N. concolor, we recognize two subspecies, N. concolor concolor and N. concolor lu. Phylogenetic reconstructions indicate that the northernmost species, N. hainanus, N. nasutus, and N. concolor branched off first, suggesting that the genus originated in the north and successively migrated to the south. The most recent splits within Nomascus occurred between N. leucogenys and N. siki, and between Nomascus sp. and N. gabriellae. Based on our data, the currently postulated distributions of the latter four species have to be revised. Our study shows that molecular methods are a useful tool to elucidate phylogenetic relationships among crested gibbons and to determine species boundaries.
Collapse
Affiliation(s)
- Van Ngoc Thinh
- Primate Genetics Laboratory, German Primate Center, Kellnerweg 4, Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Chan YC, Roos C, Inoue-Murayama M, Inoue E, Shih CC, Pei KJC, Vigilant L. Mitochondrial genome sequences effectively reveal the phylogeny of Hylobates gibbons. PLoS One 2010; 5:e14419. [PMID: 21203450 PMCID: PMC3009715 DOI: 10.1371/journal.pone.0014419] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history. Methodology/Principal Findings We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus) using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining) depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus. Conclusions/Significance Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b) as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species.
Collapse
Affiliation(s)
- Yi-Chiao Chan
- Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Israfil H, Zehr SM, Mootnick AR, Ruvolo M, Steiper ME. Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid Miocene radiation or sudden vicariance event. Mol Phylogenet Evol 2010; 58:447-55. [PMID: 21074627 DOI: 10.1016/j.ympev.2010.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/19/2010] [Accepted: 11/03/2010] [Indexed: 11/28/2022]
Abstract
According to recent taxonomic reclassification, the primate family Hylobatidae contains four genera (Hoolock, Nomascus, Symphalangus, and Hylobates) and between 14 and 18 species, making it by far the most species-rich group of extant hominoids. Known as the "small apes", these small arboreal primates are distributed throughout Southeast, South and East Asia. Considerable uncertainty surrounds the phylogeny of extant hylobatids, particularly the relationships among the genera and the species within the Hylobates genus. In this paper we use parsimony, likelihood, and Bayesian methods to analyze a dataset containing nearly 14 kilobase pairs, which includes newly collected sequences from X-linked, Y-linked, and mitochondrial loci together with data from previous mitochondrial studies. Parsimony, likelihood, and Bayesian analyses largely failed to find a significant difference among phylogenies with any of the four genera as the most basal taxon. All analyses, however, support a tree with Hylobates and Symphalangus as most closely related genera. One strongly supported phylogenetic result within the Hylobates genus is that Hylobates pileatus is the most basal taxon. Multiple analyses failed to find significant support for any singular genus-level phylogeny. While it is natural to suspect that there might not be sufficient data for phylogenetic resolution (whenever that situation occurs), an alternative hypothesis relating to the nature of gibbon speciation exists. This lack of resolution may be the result of a rapid radiation or a sudden vicariance event of the hylobatid genera, and it is likely that a similarly rapid radiation occurred within the Hylobates genus. Additional molecular and paleontological evidence are necessary to better test among these, and other, hypotheses of hylobatid evolution.
Collapse
Affiliation(s)
- H Israfil
- Department of Anthropology, Hunter College of the City University of New York, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
48
|
A Phylogenetic Analysis of Human Syntenies Revealed by Chromosome Painting in Euarchontoglires Orders. J MAMM EVOL 2010. [DOI: 10.1007/s10914-010-9150-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Brown JD, O'Neill RJ. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu Rev Genomics Hum Genet 2010; 11:291-316. [PMID: 20438362 DOI: 10.1146/annurev-genom-082509-141554] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.
Collapse
Affiliation(s)
- Judith D Brown
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
50
|
Phylogenetic relationships and divergence dates of the whole mitochondrial genome sequences among three gibbon genera. Mol Phylogenet Evol 2010; 55:454-9. [DOI: 10.1016/j.ympev.2010.01.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 01/22/2010] [Accepted: 01/29/2010] [Indexed: 11/17/2022]
|