1
|
Thej C, Kishore R. Epigenetic regulation of sex dimorphism in cardiovascular health. Can J Physiol Pharmacol 2024; 102:498-510. [PMID: 38427976 PMCID: PMC11789622 DOI: 10.1139/cjpp-2023-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality, affecting people of all races, ages, and sexes. Substantial sex dimorphism exists in the prevalence, manifestation, and outcomes of CVDs. Understanding the role of sex hormones as well as sex-hormone-independent epigenetic mechanisms could play a crucial role in developing effective and sex-specific cardiovascular therapeutics. Existing research highlights significant disparities in sex hormones, epigenetic regulators, and gene expression related to cardiac health, emphasizing the need for a nuanced understanding of these variations between men and women. Despite these differences, current treatment approaches for CVDs often lack sex-specific considerations. A pivotal shift toward personalized medicine, informed by comprehensive insights into sex-specific DNA methylation, histone modifications, and non-coding RNA dynamics, holds the potential to revolutionize CVD management. By understanding sex-specific epigenetic complexities, independent of sex hormone influence, future cardiovascular research can be tailored to achieve effective diagnostic and therapeutic interventions for both men and women. This review summarizes the current knowledge and gaps in epigenetic mechanisms and sex dimorphism implicated in CVDs.
Collapse
Affiliation(s)
- Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Thej C, Roy R, Cheng Z, Garikipati VNS, Truongcao MM, Joladarashi D, Mallaredy V, Cimini M, Gonzalez C, Magadum A, Ghosh J, Benedict C, Koch WJ, Kishore R. Epigenetic mechanisms regulate sex differences in cardiac reparative functions of bone marrow progenitor cells. NPJ Regen Med 2024; 9:17. [PMID: 38684697 PMCID: PMC11058271 DOI: 10.1038/s41536-024-00362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Historically, a lower incidence of cardiovascular diseases (CVD) and related deaths in women as compared with men of the same age has been attributed to female sex hormones, particularly estrogen and its receptors. Autologous bone marrow stem cell (BMSC) clinical trials for cardiac cell therapy overwhelmingly included male patients. However, meta-analysis data from these trials suggest a better functional outcome in postmenopausal women as compared with aged-matched men. Mechanisms governing sex-specific cardiac reparative activity in BMSCs, with and without the influence of sex hormones, remain unexplored. To discover these mechanisms, Male (M), female (F), and ovariectomized female (OVX) mice-derived EPCs were subjected to a series of molecular and epigenetic analyses followed by in vivo functional assessments of cardiac repair. F-EPCs and OVX EPCs show a lower inflammatory profile and promote enhanced cardiac reparative activity after intra-cardiac injections in a male mouse model of myocardial infarction (MI). Epigenetic sequencing revealed a marked difference in the occupancy of the gene repressive H3K9me3 mark, particularly at transcription start sites of key angiogenic and proinflammatory genes in M-EPCs compared with F-EPCs and OVX-EPCs. Our study unveiled that functional sex differences in EPCs are, in part, mediated by differential epigenetic regulation of the proinflammatory and anti-angiogenic gene CCL3, orchestrated by the control of H3K9me3 by histone methyltransferase, G9a/Ehmt2. Our research highlights the importance of considering the sex of donor cells for progenitor-based tissue repair.
Collapse
Affiliation(s)
- Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Rajika Roy
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zhongjian Cheng
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | | | - May M Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Walter J Koch
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Yang J, Sun L, Liu X, Huang C, Peng J, Zeng X, Zheng H, Cen W, Xu Y, Zhu W, Wu X, Ling D, Zhang L, Wei M, Liu Y, Wang D, Wang F, Li Y, Li Q, Du Z. Targeted demethylation of the CDO1 promoter based on CRISPR system inhibits the malignant potential of breast cancer cells. Clin Transl Med 2023; 13:e1423. [PMID: 37740473 PMCID: PMC10517212 DOI: 10.1002/ctm2.1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cysteine dioxygenase 1 (CDO1) is frequently methylated, and its expression is decreased in many human cancers including breast cancer (BC). However, the functional and mechanistic aspects of CDO1 inactivation in BC are poorly understood, and the diagnostic significance of serum CDO1 methylation remains unclear. METHODS We performed bioinformatics analysis of publicly available databases and employed MassARRAY EpiTYPER methylation sequencing technology to identify differentially methylated sites in the CDO1 promoter of BC tissues compared to normal adjacent tissues (NATs). Subsequently, we developed a MethyLight assay using specific primers and probes for these CpG sites to detect the percentage of methylated reference (PMR) of the CDO1 promoter. Furthermore, both LentiCRISPR/dCas9-Tet1CD-based CDO1-targeted demethylation system and CDO1 overexpression strategy were utilized to detect the function and underlying mechanism of CDO1 in BC. Finally, the early diagnostic value of CDO1 as a methylation biomarker in BC serum was evaluated. RESULTS CDO1 promoter was hypermethylated in BC tissues, which was related to poor prognosis (p < .05). The CRISPR/dCas9-based targeted demethylation system significantly reduced the PMR of CDO1 promotor and increased CDO1 expression in BC cells. Consequently, this leads to suppression of cell proliferation, migration and invasion. Additionally, we found that CDO1 exerted a tumour suppressor effect by inhibiting the cell cycle, promoting cell apoptosis and ferroptosis. Furthermore, we employed the MethyLight to detect CDO1 PMR in BC serum, and we discovered that serum CDO1 methylation was an effective non-invasive biomarker for early diagnosis of BC. CONCLUSIONS CDO1 is hypermethylated and acts as a tumour suppressor gene in BC. Epigenetic editing of abnormal CDO1 methylation could have a crucial role in the clinical treatment and prognosis of BC. Additionally, serum CDO1 methylation holds promise as a valuable biomarker for the early diagnosis and management of BC.
Collapse
Affiliation(s)
- Jiaojiao Yang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Liyue Sun
- Second Department of OncologyGuangdong Second Provincial General HospitalGuangzhouGuangdongP. R. China
| | - Xiao‐Yun Liu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Chan Huang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Junling Peng
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Xinxin Zeng
- Second Department of OncologyGuangdong Second Provincial General HospitalGuangzhouGuangdongP. R. China
| | - Hailin Zheng
- Department of Clinical LaboratorySun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Wenjian Cen
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Yu‐Xia Xu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Weijie Zhu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Xiao‐Yan Wu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Dongyi Ling
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Lu‐Lu Zhang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Mingbiao Wei
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Ye Liu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Deshen Wang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Feng‐Hua Wang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Yu‐Hong Li
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongP. R. China
- Medical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongP. R. China
| | - Ziming Du
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| |
Collapse
|
4
|
Ornos ED, Cando LF, Catral CD, Quebral EP, Tantengco OA, Arevalo MVP, Dee EC. Molecular basis of sex differences in cancer: Perspective from Asia. iScience 2023; 26:107101. [PMID: 37404373 PMCID: PMC10316661 DOI: 10.1016/j.isci.2023.107101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
Cancer is a leading cause of mortality and morbidity globally. Sex differences in cancer are evident in death rates and treatment responses in several cancers. Asian patients have unique cancer epidemiology influenced by their genetic ancestry and sociocultural factors in the region. In this review, we show molecular associations that potentially mediate sex disparities observed in cancer in Asian populations. Differences in sex characteristics are evident at the cytogenetic, genetic, and epigenetic levels mediating processes that include cell cycle, oncogenesis, and metastasis. Larger clinical and in vitro studies that explore mechanisms can confirm the associations of these molecular markers. In-depth studies of these markers can reveal their importance as diagnostics, prognostics, and therapeutic efficacy markers. Sex differences should be considered in designing novel cancer therapeutics in this era of precision medicine.
Collapse
Affiliation(s)
- Eric David Ornos
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | - Leslie Faye Cando
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | | | - Elgin Paul Quebral
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
- Virology Laboratory, Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ourlad Alzeus Tantengco
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Department of Biology, College of Science, De La Salle University, Manila 0922, Philippines
| | | | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10028, USA
| |
Collapse
|
5
|
Romanowska J, Nustad HE, Page CM, Denault WRP, Lee Y, Magnus MC, Haftorn KL, Gjerdevik M, Novakovic B, Saffery R, Gjessing HK, Lyle R, Magnus P, Håberg SE, Jugessur A. The X-factor in ART: does the use of assisted reproductive technologies influence DNA methylation on the X chromosome? Hum Genomics 2023; 17:35. [PMID: 37085889 PMCID: PMC10122315 DOI: 10.1186/s40246-023-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Assisted reproductive technologies (ART) may perturb DNA methylation (DNAm) in early embryonic development. Although a handful of epigenome-wide association studies of ART have been published, none have investigated CpGs on the X chromosome. To bridge this knowledge gap, we leveraged one of the largest collections of mother-father-newborn trios of ART and non-ART (natural) conceptions to date to investigate sex-specific DNAm differences on the X chromosome. The discovery cohort consisted of 982 ART and 963 non-ART trios from the Norwegian Mother, Father, and Child Cohort Study (MoBa). To verify our results from the MoBa cohort, we used an external cohort of 149 ART and 58 non-ART neonates from the Australian 'Clinical review of the Health of adults conceived following Assisted Reproductive Technologies' (CHART) study. The Illumina EPIC array was used to measure DNAm in both datasets. In the MoBa cohort, we performed a set of X-chromosome-wide association studies ('XWASs' hereafter) to search for sex-specific DNAm differences between ART and non-ART newborns. We tested several models to investigate the influence of various confounders, including parental DNAm. We also searched for differentially methylated regions (DMRs) and regions of co-methylation flanking the most significant CpGs. Additionally, we ran an analogous model to our main model on the external CHART dataset. RESULTS In the MoBa cohort, we found more differentially methylated CpGs and DMRs in girls than boys. Most of the associations persisted after controlling for parental DNAm and other confounders. Many of the significant CpGs and DMRs were in gene-promoter regions, and several of the genes linked to these CpGs are expressed in tissues relevant for both ART and sex (testis, placenta, and fallopian tube). We found no support for parental DNAm-dependent features as an explanation for the observed associations in the newborns. The most significant CpG in the boys-only analysis was in UBE2DNL, which is expressed in testes but with unknown function. The most significant CpGs in the girls-only analysis were in EIF2S3 and AMOT. These three loci also displayed differential DNAm in the CHART cohort. CONCLUSIONS Genes that co-localized with the significant CpGs and DMRs associated with ART are implicated in several key biological processes (e.g., neurodevelopment) and disorders (e.g., intellectual disability and autism). These connections are particularly compelling in light of previous findings indicating that neurodevelopmental outcomes differ in ART-conceived children compared to those naturally conceived.
Collapse
Affiliation(s)
- Julia Romanowska
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Haakon E Nustad
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- DeepInsight, 0154, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - William R P Denault
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria C Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Miriam Gjerdevik
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Boris Novakovic
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Håkon K Gjessing
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Robert Lyle
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Li N, Wang L, Liang H, Lin C, Yi J, Yang Q, Luo H, Luo T, Zhang L, Li X, Wu K, Li F, Li N. Detecting and monitoring bladder cancer with exfoliated cells in urine. Front Oncol 2022; 12:986692. [PMID: 36158668 PMCID: PMC9491100 DOI: 10.3389/fonc.2022.986692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Current methods for the diagnosis and monitoring of bladder cancer are invasive and have suboptimal sensitivity. Liquid biopsy as a non-invasive approach has been capturing attentions recently. To explore the ability of urine-based liquid biopsy in detecting and monitoring genitourinary tumors, we developed a method based on promoter-targeted DNA methylation of urine sediment DNA. We used samples from a primary bladder cancer cohort (n=40) and a healthy cohort (n=40) to train a model and obtained an integrated area under the curve (AUC) > 0.96 in the 10-fold cross-validation, which demonstrated the ability of our method for detecting bladder cancer from the healthy. We next validated the model with samples from a recurrent cohort (n=21) and a non-recurrent cohort (n=19) and obtained an AUC > 0.91, which demonstrated the ability of our model in monitoring the progress of bladder cancer. Moreover, 80% (4/5) of samples from patients with benign urothelial diseases had been considered to be healthy sample rather than cancer sample, preliminarily demonstrating the potential of distinguishing benign urothelial diseases from cancer. Further analysis basing on multiple-time point sampling revealed that the cancer signal in 80% (4/5) patients had decreased as expected when they achieved the recurrent-free state. All the results suggested that our method is a promising approach for noninvasive detection and prognostic monitoring of bladder cancer.
Collapse
Affiliation(s)
- Nannan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Lei Wang
- Department of Urology, Peking University Shougang Hospital, Beijing, China
- Peking University Wu-jieping Urology Center, Peking University Health Science Center, Beijing, China
| | - Han Liang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Cong Lin
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Ji Yi
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Qin Yang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Huijuan Luo
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Tian Luo
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Liwei Zhang
- Department of Urology, Peking University Shougang Hospital, Beijing, China
- Peking University Wu-jieping Urology Center, Peking University Health Science Center, Beijing, China
| | - Xiaojian Li
- Department of Urology, Peking University Shougang Hospital, Beijing, China
- Peking University Wu-jieping Urology Center, Peking University Health Science Center, Beijing, China
| | - Kui Wu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- *Correspondence: Kui Wu, ; Fuqiang Li, ; Ningchen Li,
| | - Fuqiang Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- *Correspondence: Kui Wu, ; Fuqiang Li, ; Ningchen Li,
| | - Ningchen Li
- Department of Urology, Peking University Shougang Hospital, Beijing, China
- Peking University Wu-jieping Urology Center, Peking University Health Science Center, Beijing, China
- *Correspondence: Kui Wu, ; Fuqiang Li, ; Ningchen Li,
| |
Collapse
|
7
|
Hoang PH, Landi MT. DNA Methylation in Lung Cancer: Mechanisms and Associations with Histological Subtypes, Molecular Alterations, and Major Epidemiological Factors. Cancers (Basel) 2022; 14:cancers14040961. [PMID: 35205708 PMCID: PMC8870477 DOI: 10.3390/cancers14040961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is the major leading cause of cancer-related mortality worldwide. Multiple epigenetic factors-in particular, DNA methylation-have been associated with the development of lung cancer. In this review, we summarize the current knowledge on DNA methylation alterations in lung tumorigenesis, as well as their associations with different histological subtypes, common cancer driver gene mutations (e.g., KRAS, EGFR, and TP53), and major epidemiological risk factors (e.g., sex, smoking status, race/ethnicity). Understanding the mechanisms of DNA methylation regulation and their associations with various risk factors can provide further insights into carcinogenesis, and create future avenues for prevention and personalized treatments. In addition, we also highlight outstanding questions regarding DNA methylation in lung cancer to be elucidated in future studies.
Collapse
|
8
|
Haupt S, Niedrist T, Sourij H, Schwarzinger S, Moser O. The Impact of Exercise on Telomere Length, DNA Methylation and Metabolic Footprints. Cells 2022; 11:153. [PMID: 35011715 PMCID: PMC8750279 DOI: 10.3390/cells11010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
Aging as a major risk factor influences the probability of developing cancer, cardiovascular disease and diabetes, amongst others. The underlying mechanisms of disease are still not fully understood, but research suggests that delaying the aging process could ameliorate these pathologies. A key biological process in aging is cellular senescence which is associated with several stressors such as telomere shortening or enhanced DNA methylation. Telomere length as well as DNA methylation levels can be used as biological age predictors which are able to detect excessive acceleration or deceleration of aging. Analytical methods examining aging are often not suitable, expensive, time-consuming or require a high level of technical expertise. Therefore, research focusses on combining analytical methods which have the potential to simultaneously analyse epigenetic, genomic as well as metabolic changes.
Collapse
Affiliation(s)
- Sandra Haupt
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany;
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8010 Graz, Austria;
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Stephan Schwarzinger
- NBNC—North Bavarian NMR-Centre, University of Bayreuth, 95440 Bayreuth, Germany;
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany;
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
9
|
Pineal parenchymal tumor of intermediate differentiation: a systematic review and contemporary management of 389 cases reported during the last two decades. Neurosurg Rev 2021; 45:1135-1155. [PMID: 34668090 DOI: 10.1007/s10143-021-01674-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Pineal parenchymal tumor of intermediate differentiation (PPTID) is a WHO grade II and III tumor arising from pineal parenchymal cells. PPTID is a rare tumor accounting for less than 1% of all primary central nervous system neoplasms. Therefore, reports describing the clinical characteristics and biological features of PPTID are lacking. Moreover, the therapeutic strategy remains controversial. The current study aimed to evaluate treatment results and problems of contemporary therapeutic modalities of PPTID based on its features compared with other pineal parenchymal tumors. A comprehensive systematic literature review of 69 articles was performed, including articles on PPTID (389 patients) and similar tumors. Patient demographics, disease presentation, imaging characteristics, biological features, and current therapeutic options and their results were reviewed. We found that histopathological findings based on current WHO classification are well associated with survival; however, identifying and treating aggressive PPTID cases with uncommon features could be problematic. A molecular and genetic approach may help improve diagnostic accuracy. Therapeutic strategy, especially for grade III and aforementioned uncommon and aggressive tumors, remains controversial. A combination therapy involving maximum tumor resection, chemotherapy, and radiotherapy could be the first line of treatment. However, although challenging, a large prospective study would be required to identify ways to improve the clinical results of PPTID treatment.
Collapse
|
10
|
Almutairi MH, Al-Numair NS, Parine NR, Almutairi BO, Alrefaei AF, Rouabhia M, Semlali A. The protective effects of the methylenetetrahydrofolate reductase rs1801131 variant among Saudi smokers. Saudi J Biol Sci 2021; 28:3972-3980. [PMID: 34220254 PMCID: PMC8241599 DOI: 10.1016/j.sjbs.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) polymorphism plays a fundamental role in susceptibility to various diseases, including cancers and autoimmune diseases. In the current study, we aimed to compare genotype and allele frequency variations of rs1801131, one of the most common variants found in the MTHFR gene, among Saudi smokers and non-smokers. We hypothesized that genetic variations of this gene are responsible for many diseases, particularly those caused by cigarette smoking (CS) such as pulmonary diseases, oral cancer and lung cancer. We performed a case-control study on a sample of 235 healthy smokers and 239 healthy non-smokers in Saudi Arabia. The rs1801131 SNP genotypes were determined using a genotyping assay and multiple in silico algorithmic software programs were used to identify the effects and structural functions of the rs1801131 (Glu429Ala) mutation. Using chi-squared tests, we found that, among smokers, TG and GG genotype carriers had 0.209-fold (OR = 0.209, P < 0.005) and 0.427-fold (OR = 0.427, P = 0.003) lower risks of CS-related disease compared to TT reference genotypes. In addition, this protective effect was observed in Saudi smokers independent of age, gender, types of smoking, duration, and average daily smoking consumption. Filling a research gap by exploring this topic in the Saudi population, the current findings indicate that genotype and allele distributions of MTHFR rs1801131 polymorphism present fundamental protective effects against the risk of CS-related disease. These findings should be verified in future studies with larger sample sizes, different ethnicities, and patients suffering from CS-related diseases, such as oral cancer and lung cancer.
Collapse
Affiliation(s)
- Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Nouf S. Al-Numair
- Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Narasimha Reddy Parine
- Genome Research Chair, Department of Biochemistry, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Bader O. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Abdulwahed F. Alrefaei
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Département de stomatologie, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Département de stomatologie, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
| |
Collapse
|
11
|
Sarne V, Huter S, Braunmueller S, Rakob L, Jacobi N, Kitzwögerer M, Wiesner C, Obrist P, Seeboeck R. Promoter Methylation of Selected Genes in Non-Small-Cell Lung Cancer Patients and Cell Lines. Int J Mol Sci 2020; 21:E4595. [PMID: 32605217 PMCID: PMC7369760 DOI: 10.3390/ijms21134595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023] Open
Abstract
Specific gene promoter DNA methylation is becoming a powerful epigenetic biomarker in cancer diagnostics. Five genes (CDH1, CDKN2Ap16, RASSF1A, TERT, and WT1) were selected based on their frequently published potential as epigenetic markers. Diagnostic promoter methylation assays were generated based on bisulfite-converted DNA pyrosequencing. The methylation patterns of 144 non-small-cell lung cancer (NSCLC) and 7 healthy control formalin-fixed paraffin-embedded (FFPE) samples were analyzed to evaluate the applicability of the putative diagnostic markers. Statistically significant changes in methylation levels are shown for TERT and WT1. Furthermore, 12 NSCLC and two benign lung cell lines were characterized for promoter methylation. The in vitro tests involved a comparison of promoter methylation in 2D and 3D cultures, as well as therapeutic tests investigating the impact of CDH1/CDKN2Ap16/RASSF1A/TERT/WT1 promoter methylation on sensitivity to tyrosine kinase inhibitor (TKI) and DNA methyl-transferase inhibitor (DNMTI) treatments. We conclude that the selected markers have potential and putative impacts as diagnostic or even predictive marker genes, although a closer examination of the resulting protein expression and pathway regulation is needed.
Collapse
MESH Headings
- Aged
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- DNA Methylation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- Promoter Regions, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Victoria Sarne
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Samuel Huter
- Pathologylab Dr. Obrist & Dr. Brunhuber OG, 6511 Zams, Austria; (S.H.); (P.O.)
| | - Sandrina Braunmueller
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Lisa Rakob
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Nico Jacobi
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Melitta Kitzwögerer
- Clinical Institute of Pathology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, 3100 St. Pölten, Austria;
| | - Christoph Wiesner
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Peter Obrist
- Pathologylab Dr. Obrist & Dr. Brunhuber OG, 6511 Zams, Austria; (S.H.); (P.O.)
| | - Rita Seeboeck
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
- Clinical Institute of Pathology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, 3100 St. Pölten, Austria;
| |
Collapse
|
12
|
Parimon T, Yao C, Stripp BR, Noble PW, Chen P. Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:E2269. [PMID: 32218238 PMCID: PMC7177323 DOI: 10.3390/ijms21072269] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
: Alveolar epithelial type II cells (AT2) are a heterogeneous population that have critical secretory and regenerative roles in the alveolus to maintain lung homeostasis. However, impairment to their normal functional capacity and development of a pro-fibrotic phenotype has been demonstrated to contribute to the development of idiopathic pulmonary fibrosis (IPF). A number of factors contribute to AT2 death and dysfunction. As a mucosal surface, AT2 cells are exposed to environmental stresses that can have lasting effects that contribute to fibrogenesis. Genetical risks have also been identified that can cause AT2 impairment and the development of lung fibrosis. Furthermore, aging is a final factor that adds to the pathogenic changes in AT2 cells. Here, we will discuss the homeostatic role of AT2 cells and the studies that have recently defined the heterogeneity of this population of cells. Furthermore, we will review the mechanisms of AT2 death and dysfunction in the context of lung fibrosis.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
13
|
Li X, Yu B, Wu X, Zhang J, Jia C, Wang Z, Zhou Q, Zhou H, Yi G, Chen X, Fu S. Associations between Placental Insulin-Like Growth Factor-1 Gene Expression, DNA Methylation and Intrauterine Growth Restriction. Health (London) 2020. [DOI: 10.4236/health.2020.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Matzenbacher CA, Da Silva J, Garcia ALH, Cappetta M, de Freitas TRO. Anthropogenic Effects on Natural Mammalian Populations: Correlation Between Telomere Length and Coal Exposure. Sci Rep 2019; 9:6325. [PMID: 31004106 PMCID: PMC6474877 DOI: 10.1038/s41598-019-42804-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The Candiota coal mine in Rio Grande do Sul (RS) is one of the largest in Brazil. Coal is a fossil fuel that causes environmental impacts from its extraction to combustion due to the release of different agents, such as polycyclic aromatic hydrocarbons (PAH) and heavy metals. Ctenomys torquatus are herbivorous and subterranean rodents that dig tunnels with their paws and teeth and can be exposed to coal through contaminated food. Exposure to pollutants can cause DNA damage and affect different tissues, inducing alterations in the population structure and genetic diversity. Our study aimed to evaluate the effect of exposure to coal and its derivatives on the C. torquatus population and to examine the relationship of coal exposure with variations in absolute telomere length (aTL), global DNA methylation and genotoxicity. Our study showed an inverse correlation between telomere length and coal exposure in addition to an increase in DNA damage. The results indicate that coal and its byproducts can contribute to the alteration of the C. torquatus population structure, as evidenced by a reduction in the number of adults.
Collapse
Affiliation(s)
- Cristina A Matzenbacher
- Department of Genetics, Federal University of Rio Grande do Sul, C.P. 15053, 91501-970, Porto Alegre, RS, Brazil
| | - Juliana Da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, ULBRA, Canoas, 92425-900, Rio Grande do Sul, Brazil.
| | - Ana Leticia H Garcia
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, ULBRA, Canoas, 92425-900, Rio Grande do Sul, Brazil.,Laboratory of Ecotoxicology, Postgraduate Program in Environmental Quality, University Feevale, ERS-239, 2755, 93525-075, Novo Hamburgo, RS, Brazil
| | - Mónica Cappetta
- Laboratorio de Epidemiología Genética, Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Thales R O de Freitas
- Department of Genetics, Federal University of Rio Grande do Sul, C.P. 15053, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Sarne V, Braunmueller S, Rakob L, Seeboeck R. The Relevance of Gender in Tumor-Influencing Epigenetic Traits. EPIGENOMES 2019; 3:epigenomes3010006. [PMID: 34991275 PMCID: PMC8594720 DOI: 10.3390/epigenomes3010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Tumorigenesis as well as the molecular orchestration of cancer progression are very complex mechanisms that comprise numerous elements of influence and regulation. Today, many of the major concepts are well described and a basic understanding of a tumor's fine-tuning is given. Throughout the last decade epigenetics has been featured in cancer research and it is now clear that the underlying mechanisms, especially DNA and histone modifications, are important regulators of carcinogenesis and tumor progression. Another key regulator, which is well known but has been neglected in scientific approaches as well as molecular diagnostics and, consequently, treatment conceptualization for a long time, is the subtle influence patient gender has on molecular processes. Naturally, this is greatly based on hormonal differences, but from an epigenetic point of view, the diverse susceptibility to stress and environmental influences is of prime interest. In this review we present the current view on which and how epigenetic modifications, emphasizing DNA methylation, regulate various tumor diseases. It is our aim to elucidate gender and epigenetics and their interconnectedness, which will contribute to understanding of the prospect molecular orchestration of cancer in individual tumors.
Collapse
|
16
|
Sexual dimorphism in solid and hematological malignancies. Semin Immunopathol 2018; 41:251-263. [DOI: 10.1007/s00281-018-0724-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
17
|
Davegårdh C, García-Calzón S, Bacos K, Ling C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol Metab 2018; 14:12-25. [PMID: 29496428 PMCID: PMC6034041 DOI: 10.1016/j.molmet.2018.01.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
Background Type 2 diabetes (T2D) is a multifactorial, polygenic disease caused by impaired insulin secretion and insulin resistance. Genome-wide association studies (GWAS) were expected to resolve a large part of the genetic component of diabetes; yet, the single nucleotide polymorphisms identified by GWAS explain less than 20% of the estimated heritability for T2D. There was subsequently a need to look elsewhere to find disease-causing factors. Mechanisms mediating the interaction between environmental factors and the genome, such as epigenetics, may be of particular importance in the pathogenesis of T2D. Scope of Review This review summarizes knowledge of the impact of epigenetics on the pathogenesis of T2D in humans. In particular, the review will focus on alterations in DNA methylation in four human tissues of importance for the disease; pancreatic islets, skeletal muscle, adipose tissue, and the liver. Case–control studies and studies examining the impact of non-genetic and genetic risk factors on DNA methylation in humans will be considered. These studies identified epigenetic changes in tissues from subjects with T2D versus non-diabetic controls. They also demonstrate that non-genetic factors associated with T2D such as age, obesity, energy rich diets, physical activity and the intrauterine environment impact the epigenome in humans. Additionally, interactions between genetics and epigenetics seem to influence the pathogenesis of T2D. Conclusions Overall, previous studies by our group and others support a key role for epigenetics in the growing incidence of T2D.
Collapse
Affiliation(s)
- Cajsa Davegårdh
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden.
| | - Sonia García-Calzón
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| |
Collapse
|
18
|
Ebner NC, Lin T, Muradoglu M, Weir DH, Plasencia GM, Lillard TS, Pournajafi-Nazarloo H, Cohen RA, Sue Carter C, Connelly JJ. Associations between oxytocin receptor gene (OXTR) methylation, plasma oxytocin, and attachment across adulthood. Int J Psychophysiol 2018; 136:22-32. [PMID: 29410310 DOI: 10.1016/j.ijpsycho.2018.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/23/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
The neuropeptide oxytocin (OT) has been implicated in a wide range of affiliative processes. OT exerts its functions via OT receptors, which are encoded by the oxytocin receptor gene (OXTR). Epigenetic modification of OXTR through the process of DNA methylation has been associated with individual differences in behavioral phenotypes. Specifically, lower levels of OXTR methylation have been linked to better social and affective functioning. However, research on epigenetic mechanisms of OXTR is scarce in non-clinical populations, and even less is known about epigenetic variability across adulthood. The present study assessed methylation levels at OXTR CpG site -934 and plasma OT levels in 22 young (20-31 years, M = 23.6) and 34 older (63-80 years, M = 71.4) participants. Lower levels of OXTR methylation and higher plasma OT levels were associated with less self-reported attachment anxiety in young but not older participants, with largely independent contributions of OXTR methylation and plasma OT levels. In contrast, in the overall sample, lower levels of OXTR methylation were associated with higher self-reported attachment avoidance. Age analysis suggested that these results were largely driven by young adults. Plasma OT levels were unrelated to attachment avoidance. Taken together, these findings support the emerging notion in the literature that epigenetic properties of OXTR, in addition to endogenous OT levels, are related to adult attachment. Further, the age effects observed in the associations between OXTR methylation, plasma OT, and adult attachment emphasize the importance of adopting a developmental perspective when studying properties of the OT system and their relation to affiliative processes. Findings contribute to growing evidence suggesting that epigenetic modification of genes regulating OT pathways and endogenous OT levels are associated with the way people form and maintain intimate social relationships.
Collapse
Affiliation(s)
- Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA; Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Melis Muradoglu
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Devon H Weir
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Gabriela M Plasencia
- Stritch School of Medicine, Loyola University of Chicago, 2160 S 1st Ave, Maywood, IL 60153, USA
| | - Travis S Lillard
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | | | - Ronald A Cohen
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
19
|
Giannakopoulou E, Konstantinou F, Ragia G, Tavridou A, Karaglani M, Chatzaki E, Papapetropoulos A, Mikroulis D, Manolopoulos VG. Epigenetics-by-Sex Interaction for Coronary Artery Disease Risk Conferred by the Cystathionine γ-Lyase Gene Promoter Methylation. ACTA ACUST UNITED AC 2017; 21:741-748. [DOI: 10.1089/omi.2017.0149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Efstathia Giannakopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Fotios Konstantinou
- Department of Cardiothoracic Surgery, Academic General Hospital of Evros, Alexandroupolis, Greece
| | - Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anna Tavridou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Evros, Alexandroupolis, Greece
| | - Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Mikroulis
- Department of Cardiothoracic Surgery, Academic General Hospital of Evros, Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Evros, Alexandroupolis, Greece
| |
Collapse
|
20
|
Aranda G, Fernández-Rebollo E, Pradas-Juni M, Hanzu FA, Kalko SG, Halperin I, Mora M. Effects of sex steroids on the pattern of methylation and expression of the promoter region of estrogen and androgen receptors in people with gender dysphoria under cross-sex hormone treatment. J Steroid Biochem Mol Biol 2017; 172:20-28. [PMID: 28539237 DOI: 10.1016/j.jsbmb.2017.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022]
Abstract
Cross-sex hormone therapy (CHT) is critical for phenotypical and physiological transition in adults with gender dysphoria (GD). However, the impact of the CHT onto the molecular level/epigenetic regulation has not been comprehensively addressed. We postulate that CHT in GD could drive changes at the androgen receptor (AR), estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2), affecting their DNA methylation pattern and mRNA expression that may influence in the phenotypical changes associated to CHT. We carried out a prospective observational study on individuals with a diagnosis of GD. 18 subjects (no previous CHT): 12 female to male (FtoM) and 6 male to female (MtoF). An Epityper Mass array TM method was used to study the DNA methylation and Real-time PCR quantitative reverse transcription PCR (qRT-PCR) was used to quantify the gene expression. The analysis of AR, ESR1 and ESR2 receptor was performed at baseline, 6 and 12 months after CHT. No differences in DNA methylation of ESR were found in MtoF, while DNA methylation was increased in FtoM at 6 and 12 months of CHT. The AR showed a significant increase of methylation in MtoF group after 12 months of estrogenic treatment. Regarding the expression analysis, AR expression was significantly decreased in FtoM upon CHT treatment. AR, ESR1 and ESR2 methylation were correlated with anthropometric, metabolic and hormonal parameters in FtoM and MtoF. Our results support that CHT is associated to epigenetic changes that might affect the response to treatment with sex steroids.
Collapse
Affiliation(s)
- Gloria Aranda
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain; Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain
| | - Eduardo Fernández-Rebollo
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Marta Pradas-Juni
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Felicia Alexandra Hanzu
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain; Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain; University of Barcelona, Spain
| | - Susana G Kalko
- Institut d'Investigacions Biomediques August Pi i Sunyer IDIBAPS, Barcelona, Spain
| | - Irene Halperin
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain; Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain; University of Barcelona, Spain
| | - Mireia Mora
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain; Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain; University of Barcelona, Spain.
| |
Collapse
|
21
|
Kobayashi S, Sata F, Miyashita C, Miura R, Azumi K, Kobayashi S, Goudarzi H, Araki A, Ishizuka M, Todaka T, Kajiwara J, Hori T, Kishi R. Gender-specific association of exposure to non-dioxin-like polychlorinated biphenyls during pregnancy with methylation levels of H19 and long interspersed nuclear element-1 in cord blood in the Hokkaido study. Toxicology 2017; 390:135-145. [PMID: 28865728 DOI: 10.1016/j.tox.2017.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Associations between prenatal exposure to polychlorinated biphenyls (PCBs) and reduced birth-size, and between DNA methylation of insulin-like growth factor-2 (IGF-2), H19 locus, and long interspersed nuclear element-1 (LINE-1) and reduced birth-size are well established. To date, however, studies on the associations between prenatal exposure to PCBs and alterations in methylation of IGF-2, H19, and LINE-1 are lacking. Thus, in this study, we examined these associations with infant-gender stratification. METHODS We performed a prospective birth cohort study using the Sapporo cohort from the previously described Hokkaido Birth Cohort Study on Environment and Children's Health conducted between 2002 and 2005 in Japan. In the final 169 study participants included in this study, we measured the concentrations of various non-dioxin-like PCBs in maternal blood during pregnancy using high-resolution gas chromatography/high-resolution mass spectrometry. IGF-2, H19 and LINE-1 methylation levels in cord blood were measured using the bisulfite pyrosequencing methods Finally, we assessed the associations between prenatal exposure to various PCBs and the gene methylation levels using multiple regression models stratified by infant gender. RESULTS We observed a 0.017 (95% confidence interval [CI]: 0.003-0.031) increase in the log10-transformed H19 methylation levels (%) in cord blood for each ten-fold increase in the levels of decachlorinated biphenyls (decaCBs) in maternal blood among all infants. Similarly, a 0.005 (95% CI: 0.000-0.010) increase in the log10-transformed LINE-1 methylation levels (%) in cord blood was associated with each ten-fold increase in heptachlorinated biphenyls (heptaCBs) in maternal blood among all infants. In particular, we observed a dose-dependent association of the decaCB levels in maternal blood with the H19 methylation levels among female infants (P value for trend=0.040); likewise a dose-dependent association of heptaCB levels was observed with LINE-1 methylation levels among female infants (P value for trend=0.015). Moreover, these associations were only observed among infants of primiparous women. CONCLUSION Our results suggest that the dose-dependent association between prenatal exposure to specific non-dioxin-like PCBs and increases in the H19 and LINE-1 methylation levels in cord blood might be more predominant in females than in males.
Collapse
Affiliation(s)
- Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan; Health Center, Chuo University, 42-8, Ichigaya-Hommura-cho, Shinjuku-ku, Tokyo 162-8473, Japan.
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Ryu Miura
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Kaoru Azumi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Sachiko Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Houman Goudarzi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan; Department of Respiratory Medicine, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, North-18, West-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| | - Takashi Todaka
- Kitakyushu Life Science Center, 1-4, Nakabaru-shinmachi, Tobata-ku, Kitakyushu, Fukuoka 804-0003, Japan.
| | - Jumboku Kajiwara
- Fukuoka Institute of Health and Environmental Sciences, Mukaizano 39, Dazaifu, Fukuoka 818-0135, Japan.
| | - Tsuguhide Hori
- Fukuoka Institute of Health and Environmental Sciences, Mukaizano 39, Dazaifu, Fukuoka 818-0135, Japan.
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| |
Collapse
|
22
|
Ebrahimi G, Asadikaram G, Akbari H, Nematollahi MH, Abolhassani M, Shahabinejad G, Khodadadnejad L, Hashemi M. Elevated levels of DNA methylation at the OPRM1 promoter region in men with opioid use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 44:193-199. [DOI: 10.1080/00952990.2016.1275659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ghasem Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Akbari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Moslem Abolhassani
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamabbas Shahabinejad
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Leyla Khodadadnejad
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences. Zahedan, Iran
| |
Collapse
|
23
|
Marzi C, Holdt LM, Fiorito G, Tsai PC, Kretschmer A, Wahl S, Guarrera S, Teupser D, Spector TD, Iacoviello L, Sacerdote C, Strauch K, Lee S, Thasler WE, Peters A, Thorand B, Wolf P, Prokisch H, Tumino R, Gieger C, Krogh V, Panico S, Bell JT, Matullo G, Waldenberger M, Grallert H, Koenig W. Epigenetic Signatures at AQP3 and SOCS3 Engage in Low-Grade Inflammation across Different Tissues. PLoS One 2016; 11:e0166015. [PMID: 27824951 PMCID: PMC5100881 DOI: 10.1371/journal.pone.0166015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Elevated levels of C-reactive protein (CRP, determined by a high-sensitivity assay) indicate low-grade inflammation which is implicated in many age-related disorders. Epigenetic studies on CRP might discover molecular mechanisms underlying CRP regulation. We aimed to identify DNA methylation sites related to CRP concentrations in cells and tissues regulating low-grade inflammation. RESULTS Genome-wide DNA methylation was measured in peripheral blood in 1,741 participants of the KORA F4 study using Illumina HumanMethylation450 BeadChip arrays. Four CpG sites (located at BCL3, AQP3, SOCS3, and cg19821297 intergenic at chromosome 19p13.2, P ≤ 1.01E-07) were significantly hypomethylated at high CRP concentrations independent of various confounders including age, sex, BMI, smoking, and white blood cell composition. Findings were not sex-specific. CRP-related top genes were enriched in JAK/STAT pathways (Benjamini-Hochberg corrected P < 0.05). Results were followed-up in three studies using DNA from peripheral blood (EPICOR, n = 503) and adipose tissue (TwinsUK, n = 368) measured as described above and from liver tissue (LMU liver cohort, n = 286) measured by MALDI-TOF mass spectrometry using EpiTYPER. CpG sites at the AQP3 locus (significant p-values in peripheral blood = 1.72E-03 and liver tissue = 1.51E-03) and the SOCS3 locus (p-values in liver < 2.82E-05) were associated with CRP in the validation panels. CONCLUSIONS Epigenetic modifications seem to engage in low-grade inflammation, possibly via JAK/STAT mediated pathways. Results suggest a shared relevance across different tissues at the AQP3 locus and highlight a role of DNA methylation for CRP regulation at the SOCS3 locus.
Collapse
Affiliation(s)
- Carola Marzi
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- * E-mail:
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Giovanni Fiorito
- Human Genetics Foundation (HuGeF)–Torino, Turin, Italy
- Medical Sciences Department, University of Turin, Turin, Italy
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Anja Kretschmer
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Simone Wahl
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Simonetta Guarrera
- Human Genetics Foundation (HuGeF)–Torino, Turin, Italy
- Medical Sciences Department, University of Turin, Turin, Italy
| | - Daniel Teupser
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli (IS), Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital-University of Turin and Center for Cancer Prevention (CPO), Torino, Italy
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Serene Lee
- Department of Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Petra Wolf
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technical University Munich, München, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technical University Munich, München, Germany
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, “Civile–M.P. Arezzo” Hospital, ASP 7, Ragusa, Italy
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCSS Istituto Nazionale Tumori, Milan, Italy
| | - Salvatore Panico
- Department of Clinical and Medicine and Surgery, Federico II University, Naples, Italy
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Giuseppe Matullo
- Human Genetics Foundation (HuGeF)–Torino, Turin, Italy
- Medical Sciences Department, University of Turin, Turin, Italy
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Wolfgang Koenig
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
24
|
Kaz AM, Wong CJ, Varadan V, Willis JE, Chak A, Grady WM. Global DNA methylation patterns in Barrett's esophagus, dysplastic Barrett's, and esophageal adenocarcinoma are associated with BMI, gender, and tobacco use. Clin Epigenetics 2016; 8:111. [PMID: 27795744 PMCID: PMC5082363 DOI: 10.1186/s13148-016-0273-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The risk of developing Barrett's esophagus (BE) and/or esophageal adenocarcinoma (EAC) is associated with specific demographic and behavioral factors, including gender, obesity/elevated body mass index (BMI), and tobacco use. Alterations in DNA methylation, an epigenetic modification that can affect gene expression and that can be influenced by environmental factors, is frequently present in both BE and EAC and is believed to play a role in the formation of BE and its progression to EAC. It is currently unknown whether obesity or tobacco smoking influences the risk of developing BE/EAC via the induction of alterations in DNA methylation. To investigate this possibility, we assessed the genome-wide methylation status of 81 esophageal tissues, including BE, dysplastic BE, and EAC epithelia using HumanMethylation450 BeadChips (Illumina). RESULTS We found numerous differentially methylated loci in the esophagus tissues when comparing males to females, obese to lean individuals, and smokers to nonsmokers. Differences in DNA methylation between these groups were seen in a variety of functional genomic regions and both within and outside of CpG islands. Several cancer-related pathways were found to have differentially methylated genes between these comparison groups. CONCLUSIONS Our findings suggest obesity and tobacco smoking may influence DNA methylation in the esophagus and raise the possibility that these risk factors affect the development of BE, dysplastic BE, and EAC through influencing the epigenetic status of specific loci that have a biologically plausible role in cancer formation.
Collapse
Affiliation(s)
- Andrew M. Kaz
- Gastroenterology Section, VA Puget Sound Health Care System, Seattle, WA 98108 USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Chao-Jen Wong
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Joseph E. Willis
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Amitabh Chak
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
- Division of Gastroenterology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| |
Collapse
|
25
|
DNA methylation: conducting the orchestra from exposure to phenotype? Clin Epigenetics 2016; 8:92. [PMID: 27602172 PMCID: PMC5012062 DOI: 10.1186/s13148-016-0256-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/22/2016] [Indexed: 01/02/2023] Open
Abstract
DNA methylation, through 5-methyl- and 5-hydroxymethylcytosine (5mC and 5hmC), is considered to be one of the principal interfaces between the genome and our environment, and it helps explain phenotypic variations in human populations. Initial reports of large differences in methylation level in genomic regulatory regions, coupled with clear gene expression data in both imprinted genes and malignant diseases, provided easily dissected molecular mechanisms for switching genes on or off. However, a more subtle process is becoming evident, where small (<10 %) changes to intermediate methylation levels are associated with complex disease phenotypes. This has resulted in two clear methylation paradigms. The latter “subtle change” paradigm is rapidly becoming the epigenetic hallmark of complex disease phenotypes, although we are currently hampered by a lack of data addressing the true biological significance and meaning of these small differences. Our initial expectation of rapidly identifying mechanisms linking environmental exposure to a disease phenotype led to numerous observational/association studies being performed. Although this expectation remains unmet, there is now a growing body of literature on specific genes, suggesting wide ranging transcriptional and translational consequences of such subtle methylation changes. Data from the glucocorticoid receptor (NR3C1) has shown that a complex interplay between DNA methylation, extensive 5′UTR splicing, and microvariability gives rise to the overall level and relative distribution of total and N-terminal protein isoforms generated. Additionally, the presence of multiple AUG translation initiation codons throughout the complete, processed mRNA enables translation variability, hereby enhancing the translational isoforms and the resulting protein isoform diversity, providing a clear link between small changes in DNA methylation and significant changes in protein isoforms and cellular locations. Methylation changes in the NR3C1 CpG island alters the NR3C1 transcription and eventually protein isoforms in the tissues, resulting in subtle but visible physiological variability. This review addresses the current pathophysiological and clinical associations of such characteristically small DNA methylation changes, the ever-growing roles of DNA methylation and the evidence available, particularly from the glucocorticoid receptor of the cascade of events initiated by such subtle methylation changes, as well as addressing the underlying question as to what represents a genuine biologically significant difference in methylation.
Collapse
|
26
|
Gao J, Qiu X, Wang X, Peng C, Zheng F. Associations of ChREBP and Global DNA Methylation with Genetic and Environmental Factors in Chinese Healthy Adults. PLoS One 2016; 11:e0157128. [PMID: 27281235 PMCID: PMC4900669 DOI: 10.1371/journal.pone.0157128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/25/2016] [Indexed: 12/26/2022] Open
Abstract
Age, gender, diet, gene and lifestyle have been reported to affect metabolic status and disease susceptibility through epigenetic pathway. But it remains indistinct that which factors account for certain epigenetic modifications. Our aim was to identify the influencing factors on inter-individual DNA methylation variations of carbohydrate response element binding protein (ChREBP) and global genome in peripheral blood leucocytes (PBLs). ChREBP DNA methylation was determined by bisulfite sequencing, and genomic 5mdC contents were quantified by capillary hydrophilic-interaction liquid chromatography/ in-source fragmentation/ tandem mass spectrometry system in about 300 healthy individuals. Eleven single nucleotide polymorphisms (SNPs) spanning ChREBP and DNA methyltransferase 1 (DNMT1) were genotyped by high resolution melting or PCR-restriction fragment length polymorphism. DNMT1 mRNA expression was analyzed by quantitative PCR. We found ChREBP DNA methylation levels were statistically associated with age (Beta (B) = 0.028, p = 0.006) and serum total cholesterol concentrations (TC) (B = 0.815, p = 0.010), independent of sex, concentrations of triglyceride, high density lipoprotein cholesterol, low density lipoprotein cholesterol (LDL-C), fasting blood glucose and systolic blood pressure, diastolic blood pressure, PBLs counts and classifications. The DNMT1 haplotypes were related to ChREBP (odds ratio (OR) = 0.668, p = 0.029) and global (OR = 0.450, p = 0.015) DNA methylation as well as LDL-C, but not DNMT1 expression. However, only the relation to LDL-C was robust to correction for multiple testing (ORFDR = 1.593, pFDR = 0.013). These results indicated that the age and TC were independent influential factors of ChREBP methylation and DNMT1 variants could probably influence LDL-C to further modify ChREBP DNA methylation. Certainly, sequential comprehensive analysis of the interactions between genetic variants and blood lipid levels on ChREBP and global DNA methylation was required.
Collapse
Affiliation(s)
- Jiajia Gao
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Qiu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuebin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunyan Peng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
27
|
Sanchez-Guerra M, Zheng Y, Osorio-Yanez C, Zhong J, Chervona Y, Wang S, Chang D, McCracken JP, Díaz A, Bertazzi PA, Koutrakis P, Kang CM, Zhang X, Zhang W, Byun HM, Schwartz J, Hou L, Baccarelli AA. Effects of particulate matter exposure on blood 5-hydroxymethylation: results from the Beijing truck driver air pollution study. Epigenetics 2016; 10:633-42. [PMID: 25970091 PMCID: PMC4623004 DOI: 10.1080/15592294.2015.1050174] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies have reported epigenetic changes induced by environmental exposures. However, previous investigations did not distinguish 5-methylcytosine (5mC) from a similar oxidative form with opposite functions, 5-hydroxymethylcytosine (5hmC). Here, we measured blood DNA global 5mC and 5hmC by ELISA and used adjusted mixed-effects regression models to evaluate the effects of ambient PM10 and personal PM2.5 and its elemental components—black carbon (BC), aluminum (Al), calcium (Ca), potassium (K), iron (Fe), sulfur (S), silicon (Si), titanium (Ti), and zinc (Zn)—on blood global 5mC and 5hmC levels. The study was conducted in 60 truck drivers and 60 office workers in Beijing, China from The Beijing Truck Driver Air Pollution Study at 2 exams separated by one to 2 weeks. Blood 5hmC level (0.08%) was ∼83-fold lower than 5mC (6.61%). An inter-quartile range (IQR) increase in same-day PM10 was associated with increases in 5hmC of 26.1% in office workers (P = 0.004), 20.2% in truck drivers (P = 0.014), and 21.9% in all participants combined (P < 0.001). PM10 effects on 5hmC were increasingly stronger when averaged over 4, 7, and 14 d preceding assessment (up to 132.6% for the 14-d average in all participants, P < 0.001). PM10 effects were also significant after controlling for multiple testing (family-wise error rate; FWER < 0.05). 5hmC was not correlated with personal measures of PM2.5 and elemental components (FWER > 0.05). 5mC showed no correlations with PM10, PM2.5, and elemental components measures (FWER > 0.05). Our study suggests that exposure to ambient PM10 affects 5hmC over time, but not 5mC. This finding demonstrates the need to differentiate 5hmC and 5mC in environmental studies of DNA methylation.
Collapse
Key Words
- 10 μm
- 2.5 μm
- 5-hydroxymethylcytosine
- 5-methylcytosine
- 5hmC, 5-hydroxymethylcytosine
- 5mC, 5-methylcytosine
- Al, aluminum
- BC, black carbon
- BMI, body mass index
- CI, confidence interval
- Ca, calcium
- DNA methylation
- ELISA, enzyme-linked immunosorbent assay
- Epigenetics
- FWER, family-wise error rate
- Fe, iron
- HPLC, high-performance liquid chromatography
- K, potassium
- PM, particulate matter
- PM10, particulate matter ≤
- PM2.5, particulate matter ≤
- Particulate Matter
- S, sulfur
- Si: silicon
- TET, ten-eleven translocation enzymes
- Ti, titanium and Zn: zinc.
Collapse
Affiliation(s)
- Marco Sanchez-Guerra
- a Department of Environmental Health; Harvard T.H. Chan School of Public Health ; Boston , MA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li-Tempel T, Larra MF, Sandt E, Mériaux SB, Schote AB, Schächinger H, Muller CP, Turner JD. The cardiovascular and hypothalamus-pituitary-adrenal axis response to stress is controlled by glucocorticoid receptor sequence variants and promoter methylation. Clin Epigenetics 2016; 8:12. [PMID: 26823689 PMCID: PMC4730588 DOI: 10.1186/s13148-016-0180-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/20/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gender, genetic makeup, and prior experience interact to determine physiological responses to an external perceived stressor. Here, we investigated the contribution of both genetic variants and promoter methylation of the NR3C1 (glucocorticoid receptor) gene to the cardiovascular and hypothalamus-pituitary-adrenal (HPA) axis response to the socially evaluated cold pressor test (seCPT). RESULTS Two hundred thirty-two healthy participants were recruited and underwent the experiment. They were randomly assigned to either the seCPT group (cold water) or a control group (warm water). The seCPT group had a clear stress reaction; salivary cortisol levels and peak systolic and diastolic blood pressure all increased significantly compared to the control group. GR genotype (TthIIII, NR3C1-I, 1H, E22E, R23K, BclI and 9beta) and methylation data were obtained from 218 participants. Haplotypes were built from the GR genotypes, and haplotype 2 (minor allele of BclI) carriers had a higher cortisol response to the seCPT in comparison to non-carriers (20.77 ± 13.22; 14.99 ± 8.42; p = 0.034), as well as independently of the experimental manipulation, higher baseline heart rate (72.44 ± 10.99; 68.74 ± 9.79; p = 0.022) and blood pressure (115.81 ± 10.47; 111.61 ± 10.74; p = 0.048). Average methylation levels throughout promoter 1F and 1H were low (2.76 and 1.69 %, respectively), but there was a strong correlation between individual CpGs and the distance separating them (Pearson's correlation r = 0.725, p = 3.03 × 10(-26)). Higher promoter-wide methylation levels were associated with decreased baseline blood pressure, and when incorporated into a linear mixed effect model significantly predicted lower systolic and diastolic blood pressure evolution over time in response to the experimental manipulation. The underlying genotype significantly predicted methylation levels; particularly, the homozygous BclI minor allele was associated with higher methylation in promoter 1H (p = 0.042). CONCLUSIONS This is one of the first studies linking epigenetic modifications of the GR promoter, receptor genotype and physiological measures of the stress response. At baseline, there were clear genetic and epigenetic effects on blood pressure. The seCPT induced a strong cardiovascular and HPA axis response, and both systems were affected by the functional genetic variants, although methylation also predicted blood pressure reactivity. The return to baseline was predominantly influenced by the genomic sequence. Overall, the physiological response to the seCPT is controlled by an exquisite mix of genetic and epigenetic factors.
Collapse
Affiliation(s)
- Ting Li-Tempel
- Department of Neurobehavioral Genetics, Research Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| | - Mauro F Larra
- Department of Clinical Physiology, Research Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| | - Estelle Sandt
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, Esch-sur-Alzette, 4354 Grand-Duchy of Luxembourg
| | - Sophie B Mériaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, Esch-sur-Alzette, 4354 Grand-Duchy of Luxembourg
| | - Andrea B Schote
- Department of Neurobehavioral Genetics, Research Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| | - Hartmut Schächinger
- Department of Clinical Physiology, Research Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| | - Claude P Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, Esch-sur-Alzette, 4354 Grand-Duchy of Luxembourg ; Department of Immunology, Research Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, Esch-sur-Alzette, 4354 Grand-Duchy of Luxembourg
| |
Collapse
|
29
|
Singmann P, Shem-Tov D, Wahl S, Grallert H, Fiorito G, Shin SY, Schramm K, Wolf P, Kunze S, Baran Y, Guarrera S, Vineis P, Krogh V, Panico S, Tumino R, Kretschmer A, Gieger C, Peters A, Prokisch H, Relton CL, Matullo G, Illig T, Waldenberger M, Halperin E. Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin 2015; 8:43. [PMID: 26500701 PMCID: PMC4615866 DOI: 10.1186/s13072-015-0035-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/29/2015] [Indexed: 01/19/2023] Open
Abstract
Background Disease risk and incidence between males and females reveal differences, and sex is an important component of any investigation of the determinants of phenotypes or disease etiology. Further striking differences between men and women are known, for instance, at the metabolic level. The extent to which men and women vary at the level of the epigenome, however, is not well documented. DNA methylation is the best known epigenetic mechanism to date. Results In order to shed light on epigenetic differences, we compared autosomal DNA methylation levels between men and women in blood in a large prospective European cohort of 1799 subjects,
and replicated our findings in three independent European cohorts. We identified and validated 1184 CpG sites to be differentially methylated between men and women and observed that these CpG sites were distributed across all autosomes. We showed that some of the differentially methylated loci also exhibit differential gene expression between men and women. Finally, we found that the differentially methylated loci are enriched among imprinted genes, and that their genomic location in the genome is concentrated in CpG island shores. Conclusion Our epigenome-wide association study indicates that differences between men and women are so substantial that they should be considered in design and analyses of future studies. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0035-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula Singmann
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Doron Shem-Tov
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Simone Wahl
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Giovanni Fiorito
- Human Genetics Foundation-Torino, Turin, Italy ; Department of Medical Sciences, University of Torino, Turin, Italy
| | - So-Youn Shin
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK ; Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Katharina Schramm
- Institute of Human Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Petra Wolf
- Institute of Human Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yael Baran
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Simonetta Guarrera
- Human Genetics Foundation-Torino, Turin, Italy ; Department of Medical Sciences, University of Torino, Turin, Italy
| | - Paolo Vineis
- Human Genetics Foundation-Torino, Turin, Italy ; Epidemiology and Public Health, Imperial College London, London, UK
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCSS Istituto Nazionale Tumori, Milan, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civile-M.P. Arezzo" Hospital, ASP 7, Ragusa, Italy
| | - Anja Kretschmer
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK ; Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppe Matullo
- Human Genetics Foundation-Torino, Turin, Italy ; Department of Medical Sciences, University of Torino, Turin, Italy
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; Hannover Unified Biobank, Hannover Medical School, Hannover, Germany ; Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Eran Halperin
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel ; Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Science, Tel-Aviv University, Tel-Aviv, Israel ; International Computer Science Institute, Berkeley, CA USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options and extensive gene expression changes identified in the lung parenchyma. Multiple lines of evidence suggest that epigenetic factors contribute to dysregulation of gene expression in IPF lung. Most importantly, risk factors that predispose to IPF - age, sex, cigarette smoke, and genetic variants - all influence epigenetic marks. This review summarizes recent findings of association of DNA methylation and histone modifications with the presence of disease and fibroproliferation. RECENT FINDINGS In addition to targeted studies focused on specific gene loci, genome-wide profiles of DNA methylation demonstrate widespread DNA methylation changes in IPF lung tissue and a substantial effect of these methylation changes on gene expression. Genetic loci that have been recently associated with IPF also contain differentially methylated regions, suggesting that genetic and epigenetic factors act in concert to dysregulate gene expression in IPF lung. SUMMARY Although we are in very early stages of understanding the role of epigenetics in IPF, the potential for the use of epigenetic marks as biomarkers and therapeutic targets is high and discoveries made in this field will likely bring us closer to better prognosticating and treating this fatal disease.
Collapse
Affiliation(s)
- Britney A. Helling
- Department of Medicine, University of Colorado School of Medicine, Aurora CO
| | - Ivana V. Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora CO
- Department of Epidemiology, Colorado School of Public Health, Aurora CO
- Center for Genes, Environment and Health, National Jewish Health, Denver CO
| |
Collapse
|
31
|
Rönn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, Jørgensen SW, Brøns C, Jansson PA, Eriksson KF, Pedersen O, Hansen T, Groop L, Stener-Victorin E, Vaag A, Nilsson E, Ling C. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 2015; 24:3792-813. [PMID: 25861810 DOI: 10.1093/hmg/ddv124] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/07/2015] [Indexed: 01/03/2023] Open
Abstract
Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed the DNA methylation of ∼480 000 sites in human adipose tissue from 96 males and 94 females and related methylation to age, BMI and HbA1c. We also compared epigenetic signatures in adipose tissue and blood. Age was significantly associated with both altered DNA methylation and expression of 1050 genes (e.g. FHL2, NOX4 and PLG). Interestingly, many reported epigenetic biomarkers of aging in blood, including ELOVL2, FHL2, KLF14 and GLRA1, also showed significant correlations between adipose tissue DNA methylation and age in our study. The most significant association between age and adipose tissue DNA methylation was found upstream of ELOVL2. We identified 2825 genes (e.g. FTO, ITIH5, CCL18, MTCH2, IRS1 and SPP1) where both DNA methylation and expression correlated with BMI. Methylation at previously reported HIF3A sites correlated significantly with BMI in females only. HbA1c (range 28-46 mmol/mol) correlated significantly with the methylation of 711 sites, annotated to, for example, RAB37, TICAM1 and HLA-DPB1. Pathway analyses demonstrated that methylation levels associated with age and BMI are overrepresented among genes involved in cancer, type 2 diabetes and cardiovascular disease. Our results highlight the impact of age, BMI and HbA1c on epigenetic variation of candidate genes for obesity, type 2 diabetes and cancer in human adipose tissue. Importantly, we demonstrate that epigenetic biomarkers in blood can mirror age-related epigenetic signatures in target tissues for metabolic diseases such as adipose tissue.
Collapse
Affiliation(s)
- Tina Rönn
- Department of Clinical Sciences, Epigenetics and Diabetes and
| | - Petr Volkov
- Department of Clinical Sciences, Epigenetics and Diabetes and
| | - Linn Gillberg
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Milana Kokosar
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Box 434, 405 30 Gothenburg, Sweden
| | | | - Anna Louisa Jacobsen
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark
| | - Sine W Jørgensen
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark, Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark
| | - Charlotte Brøns
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark
| | - Per-Anders Jansson
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karl-Fredrik Eriksson
- Department of Clinical Sciences, Vascular Diseases, Lund University, 205 02 Malmö, Sweden
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark and
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark and
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, CRC, 205 02 Malmö, Sweden
| | - Elisabet Stener-Victorin
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Box 434, 405 30 Gothenburg, Sweden, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Allan Vaag
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Emma Nilsson
- Department of Clinical Sciences, Epigenetics and Diabetes and Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes and
| |
Collapse
|
32
|
Masemola ML, van der Merwe L, Lombard Z, Viljoen D, Ramsay M. Reduced DNA methylation at the PEG3 DMR and KvDMR1 loci in children exposed to alcohol in utero: a South African Fetal Alcohol Syndrome cohort study. Front Genet 2015; 6:85. [PMID: 25806045 PMCID: PMC4354390 DOI: 10.3389/fgene.2015.00085] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/17/2015] [Indexed: 11/22/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a devastating developmental disorder resulting from alcohol exposure during fetal development. It is a considerable public health problem worldwide and is characterized by central nervous system abnormalities, dysmorphic facial features, and growth retardation. Imprinted genes are known to play an important role in growth and development and therefore four imprinting control regions (ICRs), H19 ICR, IG-DMR, KvDMR1 and PEG3 DMR were examined. It is proposed that DNA methylation changes may contribute to developmental abnormalities seen in FAS and which persist into adulthood. The participants included FAS children and controls from the Western and Northern Cape Provinces. DNA samples extracted from blood and buccal cells were bisulfite modified, the ICRs were amplified by PCR and pyrosequencing was used to derive a quantitative estimate of methylation at selected CpG dinucleotides: H19 ICR (six CpG sites; 50 controls and 73 cases); KvDMR1 (7, 55, and 86); IG-DMR (10, 56, and 84); and PEG3 DMR (7, 50, and 79). The most profound effects of alcohol exposure are on neuronal development. In this study we report on epigenetic effects observed in blood which may not directly reflect tissue-specific alterations in the developing brain. After adjusting for age and sex (known confounders for DNA methylation), there was a significant difference at KvDMR1 and PEG3 DMR, but not the H19 ICR, with only a small effect (0.84% lower in cases; p = 0.035) at IG-DMR. The two maternally imprinted loci, KvDMR1 and PEG3 DMR, showed lower average locus-wide methylation in the FAS cases (1.49%; p < 0.001 and 7.09%; p < 0.001, respectively). The largest effect was at the PEG3 DMR though the functional impact is uncertain. This study supports the role of epigenetic modulation as a mechanism for the teratogenic effects of alcohol by altering the methylation profiles of imprinted loci in a locus-specific manner.
Collapse
Affiliation(s)
- Matshane L Masemola
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - Lize van der Merwe
- Department of Statistics, Faculty of Natural Sciences, University of the Western Cape , Cape Town, South Africa ; Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa ; Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand , Johannesburg, South Africa ; School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand , Johannesburg, South Africa
| | - Denis Viljoen
- Foundation for Alcohol Related Research , Cape Town, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa ; Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand , Johannesburg, South Africa
| |
Collapse
|
33
|
Dukal H, Frank J, Lang M, Treutlein J, Gilles M, Wolf IA, Krumm B, Massart R, Szyf M, Laucht M, Deuschle M, Rietschel M, Witt SH. New-born females show higher stress- and genotype-independent methylation of SLC6A4 than males. Borderline Personal Disord Emot Dysregul 2015; 2:8. [PMID: 26401310 PMCID: PMC4579500 DOI: 10.1186/s40479-015-0029-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/24/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Research has demonstrated an association between exposure to early life stress and an increased risk of psychiatric disorders in later life, in particular depression. However, the mechanism through which early life stress contributes to disease development remains unclear. Previous studies have reported an association between early life stress and altered methylation of the serotonin transporter gene (SLC6A4), a key candidate gene for several psychiatric disorders. These differences in methylation are influenced by sex and genetic variation in the SLC6A4-linked polymorphic region (5-HTTLPR). Furthermore, one study indicated that stress during pregnancy may induce methylation changes in SLC6A4 in the newborn. The present study is the first to investigate whether early life stress during pregnancy impacts on SLC6A4 methylation in newborns, taking into account the influence of genetic variation and sex. METHODS Cord blood was obtained from newborns with high (n = 45) or low (n = 45) early life stress, defined as maternal stress during pregnancy. The effect on methylation of early life stress, 5-HTTLPR genotype, and sex was assessed at four cytosin-phosphate-guanine dinucleotide (CpG) sites in the promoter associated CpG island north shore (CpG 1 to 4). The epigenetic analyses focused on these CpG sites, since research has shown that CpG island shore methylation has functional consequences. RESULTS Significant sex-specific methylation was observed, with females displaying higher methylation levels than males (p < 0.001). Importantly, this effect was influenced by neither early life stress nor genotype. CONCLUSIONS The present data suggest that sex-specific methylation of SLC6A4 is present at birth, and is independent of early life stress and 5-HTTLPR genotype. This may contribute to the sex-specific prevalence of depression.
Collapse
Affiliation(s)
- Helene Dukal
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maren Lang
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Isabell Ac Wolf
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bertram Krumm
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Renaud Massart
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC Canada
| | - Manfred Laucht
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
34
|
Chadwick LH, Sawa A, Yang IV, Baccarelli A, Breakefield XO, Deng HW, Dolinoy DC, Fallin MD, Holland NT, Houseman EA, Lomvardas S, Rao M, Satterlee JS, Tyson FL, Vijayanand P, Greally JM. New insights and updated guidelines for epigenome-wide association studies. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.nepig.2014.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Hall E, Volkov P, Dayeh T, Esguerra JLS, Salö S, Eliasson L, Rönn T, Bacos K, Ling C. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol 2014; 15:522. [PMID: 25517766 PMCID: PMC4256841 DOI: 10.1186/s13059-014-0522-z] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/30/2014] [Indexed: 12/19/2022] Open
Abstract
Background Epigenetic factors regulate tissue-specific expression and X-chromosome inactivation. Previous studies have identified epigenetic differences between sexes in some human tissues. However, it is unclear whether epigenetic modifications contribute to sex-specific differences in insulin secretion and metabolism. Here, we investigate the impact of sex on the genome-wide DNA methylation pattern in human pancreatic islets from 53 males and 34 females, and relate the methylome to changes in expression and insulin secretion. Results Glucose-stimulated insulin secretion is higher in female versus male islets. Genome-wide DNA methylation data in human islets clusters based on sex. While the chromosome-wide DNA methylation level on the X-chromosome is higher in female versus male islets, the autosomes do not display a global methylation difference between sexes. Methylation of 8,140 individual X-chromosome sites and 470 autosomal sites shows sex-specific differences in human islets. These include sites in/near AR, DUSP9, HNF4A, BCL11A and CDKN2B. 61 X-chromosome genes and 18 autosomal genes display sex-specific differences in both DNA methylation and expression. These include NKAP, SPESP1 and APLN, which exhibited lower expression in females. Functional analyses demonstrate that methylation of NKAP and SPESP1 promoters in vitro suppresses their transcriptional activity. Silencing of Nkap or Apln in clonal beta-cells results in increased insulin secretion. Differential methylation between sexes is associated with altered levels of microRNAs miR-660 and miR-532 and related target genes. Conclusions Chromosome-wide and gene-specific sex differences in DNA methylation associate with altered expression and insulin secretion in human islets. Our data demonstrate that epigenetics contribute to sex-specific metabolic phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0522-z) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
McCarthy NS, Melton PE, Cadby G, Yazar S, Franchina M, Moses EK, Mackey DA, Hewitt AW. Meta-analysis of human methylation data for evidence of sex-specific autosomal patterns. BMC Genomics 2014; 15:981. [PMID: 25406947 PMCID: PMC4255932 DOI: 10.1186/1471-2164-15-981] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/08/2014] [Indexed: 11/21/2022] Open
Abstract
Background Several individual studies have suggested that autosomal CpG methylation differs by sex both in terms of individual CpG sites and global autosomal CpG methylation. However, these findings have been inconsistent and plagued by spurious associations due to the cross reactivity of CpG probes on commercial microarrays. We collectively analysed 76 published studies (n = 6,795) for sex-associated differences in both autosomal and sex chromosome CpG sites. Results Overall autosomal methylation profiles varied substantially by study, and we encountered substantial batch effects. We accounted for these by conducting random effects meta-analysis for individual autosomal CpG methylation associations. After excluding non-specific probes, we found 184 autosomal CpG sites differentially methylated by sex after correction for multiple testing. In line with previous studies, average beta differences were small. Many of the most significantly associated CpG probes were new. Of note was differential CpG methylation in the promoters of genes thought to be involved in spermatogenesis and male fertility, such as SLC9A2, SPESP1, CRISP2, and NUPL1. Pathway analysis revealed overrepresentation of genes differentially methylated by sex in several broad Gene Ontology biological processes, including RNA splicing and DNA repair. Conclusions This study represents a comprehensive analysis of sex-specific methylation patterns. We demonstrate the existence of sex-specific methylation profiles and report a large number of novel DNA methylation differences in autosomal CpG sites between sexes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-981) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nina S McCarthy
- Centre for the Genetic Origins of Health and Disease (GOHaD), University of Western Australia, Perth, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Larijani L, Madjd Z, Samadikuchaksaraei A, Younespour S, Zham H, Rakhshan A, Mohammadi F, Rahbari A, Moradi A. Methylation of O6-methyl guanine methyltransferase gene promoter in meningiomas--comparison between tumor grades I, II, and III. Asian Pac J Cancer Prev 2014; 15:33-8. [PMID: 24528051 DOI: 10.7314/apjcp.2014.15.1.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meningiomas are the second most common primary intracranial tumors after gliomas. Epigenetic biomarkers such as DNA methylation, which is found in many tumors and is thus important in tumorigenesis can help diagnose meningiomas and predict response to adjuvant chemotherapy. We investigated aberrant O6- methyl guanine methyltransferase (MGMT) methylation in meningiomas. MATERIALS AND METHODS Sixty-one patients were classified according to the WHO grading, and MGMT promoter methylation status was examined via the methylation-Specific PCR(MSP) method. RESULTS MGMT promoter methylation was found in 22.2% of grade I, 35% of grade I with atypical features, 36% of grade II, and 42.9% of grade III tumors. CONCLUSIONS There was an increase, albeit not statistically significant, in MGMT methylation with a rise in the tumor grade. Higher methylation levels were also observed in the male gender.
Collapse
Affiliation(s)
- Leila Larijani
- Department of Biology, School of Basic Sciences, Science and Research Branch Islamic Azad University (IAU), Tehran, Iran E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Custodio A, Moreno-Rubio J, Aparicio J, Gallego-Plazas J, Yaya R, Maurel J, Rodríguez-Salas N, Burgos E, Ramos D, Calatrava A, Andrada E, Díaz-López E, Sánchez A, Madero R, Cejas P, Feliu J. Pharmacogenetic Predictors of Outcome in Patients with Stage II and III Colon Cancer Treated with Oxaliplatin and Fluoropyrimidine-Based Adjuvant Chemotherapy. Mol Cancer Ther 2014; 13:2226-37. [DOI: 10.1158/1535-7163.mct-13-1109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Berko ER, Suzuki M, Beren F, Lemetre C, Alaimo CM, Calder RB, Ballaban-Gil K, Gounder B, Kampf K, Kirschen J, Maqbool SB, Momin Z, Reynolds DM, Russo N, Shulman L, Stasiek E, Tozour J, Valicenti-McDermott M, Wang S, Abrahams BS, Hargitai J, Inbar D, Zhang Z, Buxbaum JD, Molholm S, Foxe JJ, Marion RW, Auton A, Greally JM. Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder. PLoS Genet 2014; 10:e1004402. [PMID: 24875834 PMCID: PMC4038484 DOI: 10.1371/journal.pgen.1004402] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/09/2014] [Indexed: 12/22/2022] Open
Abstract
DNA mutational events are increasingly being identified in autism spectrum disorder (ASD), but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA) is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD) controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement and interact with DNA mutations in the pathogenesis of the disorder.
Collapse
Affiliation(s)
- Esther R. Berko
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Masako Suzuki
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Faygel Beren
- Stern College for Women, Yeshiva University, New York, New York, United States of America
| | - Christophe Lemetre
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Christine M. Alaimo
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, and Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - R. Brent Calder
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Karen Ballaban-Gil
- Department of Neurology, Children's Hospital at Montefiore, Bronx, New York, United States of America
| | - Batya Gounder
- Stern College for Women, Yeshiva University, New York, New York, United States of America
| | - Kaylee Kampf
- Stern College for Women, Yeshiva University, New York, New York, United States of America
| | - Jill Kirschen
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shahina B. Maqbool
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Zeineen Momin
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David M. Reynolds
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Natalie Russo
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, and Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Psychology, The College of Arts and Sciences, Syracuse University, Syracuse, New York, United States of America
| | - Lisa Shulman
- Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Edyta Stasiek
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jessica Tozour
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maria Valicenti-McDermott
- Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shenglong Wang
- Information Technology Services, New York University, New York, New York, United States of America
| | - Brett S. Abrahams
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Joseph Hargitai
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dov Inbar
- Child Development and Rehabilitation Institute, Schneider Children's Medical Center, Petach Tikvah, Israel
| | - Zhengdong Zhang
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Departments of Psychiatry, Neuroscience, and Genetics and Genomic Sciences, and the Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, and Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - John J. Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, and Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robert W. Marion
- Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Adam Auton
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - John M. Greally
- Center for Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
40
|
Ikegame T, Bundo M, Sunaga F, Asai T, Nishimura F, Yoshikawa A, Kawamura Y, Hibino H, Tochigi M, Kakiuchi C, Sasaki T, Kato T, Kasai K, Iwamoto K. DNA methylation analysis of BDNF gene promoters in peripheral blood cells of schizophrenia patients. Neurosci Res 2013; 77:208-14. [PMID: 23973796 DOI: 10.1016/j.neures.2013.08.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 02/09/2023]
Abstract
Accumulating evidence suggests that epigenetic alterations in brain-derived neurotrophic factor (BDNF) promoters are associated with the pathophysiology of psychiatric disorders. Epigenetic changes in BDNF were reported not only in brain tissues but also in other tissues, including peripheral blood cells (PBC) and saliva. We examined DNA methylation levels of BDNF promoters I and IV using genomic DNA derived from PBC of healthy controls (n=100), and patients with schizophrenia (n=100), all from the Japanese population, by pyrosequencing. The examined CpG sites were chosen based on previous epigenetic studies that reported altered DNA methylation. We found a significantly higher level of methylation at BDNF promoter I in patients with schizophrenia compared to controls, although the difference was small. Subsequent analysis revealed that in controls, the methylation level of BDNF promoters was associated with sex, and the methylation difference observed in promoter I was more prominent in male patients with schizophrenia. Epigenetic alteration of BDNF in the PBC might reflect the pathophysiology of schizophrenia, and could be a potential biomarker.
Collapse
Affiliation(s)
- Tempei Ikegame
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tzschoppe A, Doerr H, Rascher W, Goecke T, Beckmann M, Schild R, Struwe E, Geisel J, Jung H, Dötsch J. DNA methylation of the p66Shc promoter is decreased in placental tissue from women delivering intrauterine growth restricted neonates. Prenat Diagn 2013; 33:484-91. [PMID: 23529764 DOI: 10.1002/pd.4096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The adaptor protein p66Shc generates mitochondrial reactive oxygen species and translates oxidative signals into apoptosis. We aimed to analyze potential alterations in total methylation and in p66Shc activation in placental tissues from women delivering intrauterine growth restricted neonates (IUGR) versus appropriate for gestational age (AGA) and small for gestational age (SGA) neonates. METHOD DNA methylation of the p66Shc promoter and of long interspersed nuclear elements (LINE-1), as a marker for total methylation, was quantified by automatic pyrosequencing in 15 IUGR, 25 AGA and 15 SGA placentas. Placental gene expression of p66Shc was determined by TaqMan real-time polymerase chain reaction. RESULTS No significant difference was found for LINE-1 methylation between IUGR, AGA and SGA newborns. DNA methylation of the p66Shc promoter was significantly decreased in the IUGR compared with the AGA group (p < 0.0001) and the SGA group (p < 0.0001). However, analysis of placental p66Shc gene expression did not show a significant difference between the three groups. CONCLUSION It remains speculative if the decreased p66Shc promoter methylation might play a role in the pathophysiology of endothelial dysfunction and cardiovascular disease after IUGR.
Collapse
Affiliation(s)
- Anja Tzschoppe
- Pediatrics, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bostrom JA, Sodhi M. A Look to the Future. Pharmacogenomics 2013. [DOI: 10.1016/b978-0-12-391918-2.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
43
|
Baynam G, Walters M, Claes P, Kung S, LeSouef P, Dawkins H, Gillett D, Goldblatt J. The facial evolution: looking backward and moving forward. Hum Mutat 2012; 34:14-22. [PMID: 23033261 DOI: 10.1002/humu.22219] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/30/2012] [Indexed: 01/16/2023]
Abstract
Three-dimensional (3D) facial analysis is ideal for high-resolution, nonionizing, noninvasive objective, high-throughput phenotypic, and phenomic studies. It is a natural complement to (epi)genetic technologies to facilitate advances in the understanding of rare and common diseases. The face is uniquely reflective of the primordial tissues, and there is evidence supporting the application of 3D facial analysis to the investigation of variation and disease including studies showing that the face can reflect systemic health, provides diagnostic clues to disorders, and that facial variation reflects biological pathways. In addition, facial variation has been related to evolutionary factors. The purpose of this review is to look backward to suggest that knowledge of human evolution supports, and may instruct, the application and interpretation of studies of facial morphology for documentation of human variation and investigation of its relationships with health and disease. Furthermore, in the context of advances of deep phenotyping and data integration, to look forward to suggest approaches to scalable implementation of facial analysis, and to suggest avenues for future research and clinical application of this technology.
Collapse
Affiliation(s)
- Gareth Baynam
- Genetic Services of Western Australia, Princess Margaret and King Edward Memorial Hospitals, Perth, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen YA, Choufani S, Grafodatskaya D, Butcher DT, Ferreira JC, Weksberg R. Cross-reactive DNA microarray probes lead to false discovery of autosomal sex-associated DNA methylation. Am J Hum Genet 2012; 91:762-4. [PMID: 23040499 DOI: 10.1016/j.ajhg.2012.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 06/12/2012] [Accepted: 06/12/2012] [Indexed: 01/19/2023] Open
|
45
|
Epigenetic changes in response to tai chi practice: a pilot investigation of DNA methylation marks. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:841810. [PMID: 22719790 PMCID: PMC3375016 DOI: 10.1155/2012/841810] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/29/2012] [Indexed: 01/06/2023]
Abstract
Tai chi exercise has been shown to improve physiological and psychosocial functions, well-being, quality of life, and disease conditions. The biological mechanisms by which tai chi exerts its holistic effects remain unknown. We investigated whether tai chi practice results in positive epigenetic changes at the molecular level. Design. The DNA methylation profiles of sixty CpG-dinucleotide marks in female tai chi practitioners (N = 237; 45–88 years old) who have been practising tai chi for three or more years were compared with those of age-matched control females (N = 263) who have never practised tai chi. Results. Six CpG marks originating from three different chromosomes reveal a significant difference (P < 0.05) between the two cohorts. Four marks show losses while two marks show gains in DNA methylation with age in the controls. In the tai chi cohort all six marks demonstrate significant slowing (by 5–70%) of the age-related methylation losses or gains observed in the controls, suggesting that tai chi practice may be associated with measurable beneficial epigenetic changes. Conclusions. The results implicate the potential use of DNA methylation as an epigenetic biomarker to better understand the biological mechanisms and the health and therapeutic efficacies of tai chi.
Collapse
|
46
|
Wang D, Liu X, Zhou Y, Xie H, Hong X, Tsai HJ, Wang G, Liu R, Wang X. Individual variation and longitudinal pattern of genome-wide DNA methylation from birth to the first two years of life. Epigenetics 2012; 7:594-605. [PMID: 22522910 DOI: 10.4161/epi.20117] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prenatal development and early childhood are critical periods for establishing the tissue-specific epigenome, and may have a profound impact on health and disease in later life. However, epigenomic profiles at birth and in early childhood remain largely unexplored. The focus of this report is to examine the individual variation and longitudinal pattern of genome-wide DNA methylation levels from birth through the first two years of life in 105 Black children (59 males and 46 females) enrolled at the Boston Medical Center. We performed epigenomic mapping of cord blood at birth and venous blood samples from the same set of children within the first two years of life using Illumina Infinium Humanmethylation27 BeadChip. We observed a wide range of inter-individual variations in genome-wide methylation at each time point including lower levels at CpG islands, TSS200, 5'UTR and 1st Exon locations, but significantly higher levels in CpG shores, shelves, TSS1500, gene body and 3'UTR. We identified CpG sites with significant intra-individual longitudinal changes in the first two years of life throughout the genome. Specifically, we identified 159 CpG sites in males and 149 CpG sites in females with significant longitudinal changes defined by both statistical significance and magnitude of changes. These significant CpG sites appeared to be located within genes with important biological functions including immunity and inflammation. Further studies are needed to replicate our findings, including analysis by specific cell types, and link those individual variations and longitudinal changes with specific health outcomes in early childhood and later life.
Collapse
Affiliation(s)
- Deli Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
3D facial analysis can investigate vaccine responses. Med Hypotheses 2012; 78:497-501. [DOI: 10.1016/j.mehy.2012.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/09/2012] [Indexed: 02/01/2023]
|
48
|
Mani S, Szymańska K, Cuenin C, Zaridze D, Balassiano K, Lima SCS, Matos E, Daudt A, Koifman S, Filho VW, Menezes AMB, Curado MP, Ferro G, Vaissière T, Sylla BS, Tommasino M, Pinto LFR, Boffetta P, Hainaut P, Brennan P, Herceg Z. DNA methylation changes associated with risk factors in tumors of the upper aerodigestive tract. Epigenetics 2012; 7:270-7. [PMID: 22430803 PMCID: PMC3335950 DOI: 10.4161/epi.7.3.19306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 12/20/2022] Open
Abstract
Cancers of the upper aerodigestive tract (UADT) are common forms of malignancy associated with tobacco and alcohol exposures, although human papillomavirus and nutritional deficiency are also important risk factors. While somatically acquired DNA methylation changes have been associated with UADT cancers, what triggers these events and precise epigenetic targets are poorly understood. In this study, we applied quantitative profiling of DNA methylation states in a panel of cancer-associated genes to a case-control study of UADT cancers. Our analyses revealed a high frequency of aberrant hypermethylation of several genes, including MYOD1, CHRNA3 and MTHFR in UADT tumors, whereas CDKN2A was moderately hypermethylated. Among differentially methylated genes, we identified a new gene (the nicotinic acetycholine receptor gene) as target of aberrant hypermethylation in UADT cancers, suggesting that epigenetic deregulation of nicotinic acetycholine receptors in non-neuronal tissues may promote the development of UADT cancers. Importantly, we found that sex and age is strongly associated with the methylation states, whereas tobacco smoking and alcohol intake may also influence the methylation levels in specific genes. This study identifies aberrant DNA methylation patterns in UADT cancers and suggests a potential mechanism by which environmental factors may deregulate key cellular genes involved in tumor suppression and contribute to UADT cancers.
Collapse
Affiliation(s)
- Samson Mani
- International Agency for Research on Cancer (IARC); Lyon, France
| | | | - Cyrille Cuenin
- International Agency for Research on Cancer (IARC); Lyon, France
| | | | - Karen Balassiano
- International Agency for Research on Cancer (IARC); Lyon, France
| | - Sheila CS Lima
- International Agency for Research on Cancer (IARC); Lyon, France
- Divisão de Genética; Instituto Nacional de Câncer; Rio de Janeiro, Brazil
| | - Elena Matos
- Institut of Oncology Angel H. Roffo; University of Buenos Aires; Buenos Aires, Argentina
| | | | - Sergio Koifman
- Escola Nacional de Saude Publica; Rio de Janeiro, Brazil
| | | | | | | | - Gilles Ferro
- International Agency for Research on Cancer (IARC); Lyon, France
| | - Thomas Vaissière
- International Agency for Research on Cancer (IARC); Lyon, France
| | - Bakary S Sylla
- International Agency for Research on Cancer (IARC); Lyon, France
| | | | - Luis Felipe Ribeiro Pinto
- Divisão de Genética; Instituto Nacional de Câncer; Rio de Janeiro, Brazil
- Departamento de Bioquímica; Universidade do Estado do Rio de Janeiro; Instituto de Biologia Roberto Alcantara Gomes; Rio de Janeiro, Brazil
| | - Paolo Boffetta
- The International Prevention Research Institute; Lyon, France
| | - Pierre Hainaut
- International Agency for Research on Cancer (IARC); Lyon, France
| | - Paul Brennan
- International Agency for Research on Cancer (IARC); Lyon, France
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC); Lyon, France
| |
Collapse
|
49
|
Kontic M, Stojsic J, Jovanovic D, Bunjevacki V, Ognjanovic S, Kuriger J, Puumala S, Nelson HH. Aberrant promoter methylation of CDH13 and MGMT genes is associated with clinicopathologic characteristics of primary non-small-cell lung carcinoma. Clin Lung Cancer 2011; 13:297-303. [PMID: 22169480 DOI: 10.1016/j.cllc.2011.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/31/2011] [Accepted: 11/09/2011] [Indexed: 01/02/2023]
Abstract
UNLABELLED Non–small-cell lung carcinoma (NSCLC) (n = 65) were analyzed for promoter methylation of RASSF1A, CDH13, MGMT, ESR1, and DAPK genes in matching lung tumors, normal lung tissue, and blood samples. Aberrant methylation in CDH13 and MGMT was associated with clinicopathologic features of NSCLC. Hypermethylation detected in primary tumors was not observed in corresponding blood samples, which rendered this an unsuitable blood-based test for NSCLC detection. INTRODUCTION Systemic methylation changes may be a diagnostic marker for tumor development or prognosis. Here, we investigate the relationship between gene methylation in lung tumors relative to normal lung tissue and whether DNA methylation changes can be detected in paired blood samples. MATERIAL AND METHODS Sixty-five patients were enrolled in a surgical case series of non-small-cell lung carcinoma at a single institution. By using bisulfite pyrosequencing, CpG methylation was quantified at 5 genes (RASSF1A, CDH13, MGMT, ESR1, and DAPK) in lung tumor, pathologically normal lung tissue, and circulating blood from enrolled cases. RESULTS The analyses of methylation in tumors compared with normal lung tissue identified higher methylation of CDH13, RASSF1A, and DAPK genes, whereas ESR1 and MGMT methylation did not differ significantly between these tissue types. We then examined whether the 3 aberrantly methylated genes could be detected in blood. The difference in methylation observed in tumors was not reflected in methylation status of matching blood samples, which indicated a low feasibility of detecting lung cancer by analyzing these genes in a blood-based test. Lastly, we probed whether tumor methylation was associated with clinical and demographic characteristics. Histology and sex were associated with methylation at the CDH13 gene, whereas, stage was associated with methylation at MGMT. CONCLUSION Our results showed higher methylation of RASSF1A, CDH13, and DAPK genes in lung tumors compared with normal lung. The lack of reflection of these methylation changes in blood samples from patients with non-small-cell lung carcinoma indicates their poor suitability for a screening test.
Collapse
Affiliation(s)
- Milica Kontic
- Pulmonology Clinic, Clinical Centre of Serbia, Medical Faculty, University in Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Altered methylation of the DNA repair gene MGMT is associated with neural tube defects. J Mol Neurosci 2011; 47:42-51. [PMID: 22101741 DOI: 10.1007/s12031-011-9676-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/07/2011] [Indexed: 12/16/2022]
Abstract
DNA repair is critical for proper embryogenesis, and altered expression of DNA repair genes has been associated with neural tube defects (NTDs). The expression of DNA repair enzymes may be controlled, in part, by methylation of the promoter region. To assess whether disturbed promoter methylation pattern increases the incidence of NTDs, we employed methylation specific-multiplex ligation-dependent probe amplification (MS-MLPA) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to quantify the methylation levels of multiple promoter CpG sites in normal human embryos and embryos with NTDs. Of the total seven DNA repair genes, two genes (MGMT, MSH6) were examined as having disturbed methylation levels by MS-MLPA kit, while only one gene was confirmed with a significant alternated methylation pattern by MALDI-TOF MS. In our research, methylation profiling of the DNA repair gene O (6)-methylguanine-DNA methyltransferase (MGMT) showed gender difference in embryogenesis. Comparison of MGMT promoter methylation revealed that hypomethylation was associated with an increased risk for cephalic malformations, especially with female embryos (Adjusted Odds Ratio = 8.250). The majority of individual CpG units within the promoter demonstrated hypomethylation. Meanwhile, the expression of MGMT was proven to increase significant in female cases. These results underscore the role of stable promoter methylation in the DNA repair enzymes MGMT for proper embryogenesis.
Collapse
|