1
|
Perez Palomeque G, Khacha-ananda S, Monum T, Wunnapuk K. Prediction of Skin Color Using Forensic DNA Phenotyping in Asian Populations: A Focus on Thailand. Biomolecules 2025; 15:548. [PMID: 40305359 PMCID: PMC12024907 DOI: 10.3390/biom15040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Forensic DNA phenotyping (FDP) has emerged as an essential tool in criminal investigations, enabling the prediction of physical traits based on genetic information. This review explores the genetic factors influencing skin pigmentation, particularly within Asian populations, with a focus on Thailand. Key genes such as Oculocutaneous Albinism II (OCA2), Dopachrome Tautomerase (DCT), KIT Ligand (KITLG), and Solute Carrier Family 24 Member 2 (SLC24A2) are examined for their roles in melanin production and variations that lead to different skin tones. The OCA2 gene is highlighted for its role in transporting ions that help stabilize melanosomes, while specific variants in the DCT gene, including single nucleotide polymorphisms (SNPs) rs2031526 and rs3782974, are discussed for their potential effects on pigmentation in Asian groups. The KITLG gene, crucial for developing melanocytes, includes the SNP rs642742, which is linked to lighter skin in East Asians. Additionally, recent findings on the SLC24A2 gene are presented, emphasizing its connection to pigmentation through calcium regulation in melanin production. Finally, the review addresses the ethical considerations of using FDP in Thailand, where advances in genetic profiling raise concerns about privacy, consent, and discrimination. Establishing clear guidelines is vital to balancing the benefits of forensic DNA applications with the protection of individual rights.
Collapse
Affiliation(s)
- Gabriel Perez Palomeque
- PhD Program in Medical Sciences, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| | - Tawachai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| | - Klintean Wunnapuk
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| |
Collapse
|
2
|
Ji RL, Tao YX. Melanocortin-1 receptor mutations and pigmentation: Insights from large animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:179-213. [PMID: 35595349 DOI: 10.1016/bs.pmbts.2022.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a G protein-coupled receptor expressed in cutaneous and hair follicle melanocytes, and plays a central role in coat color determination in vertebrates. Numerous MC1R variants have been identified in diverse species. Some of these variants have been associated with specific hair and skin color phenotypes in humans as well as coat color in animals. Gain-of-function mutations of the MC1R gene cause dominant or partially dominant black/dark coat color, and loss-of-function mutations of the MC1R gene cause recessive or partially recessive red/yellow/pale coat color phenotypes. These have been well documented in a large number of mammals, including human, dog, cattle, horse, sheep, pig, and fox. Higher similarities between large mammals and humans makes them better models to understand pathogenesis of human diseases caused by MC1R mutations. High identities in MC1Rs and similar variants identified in both humans and large mammals also provide an opportunity for receptor structure and function study. In this review, we aim to summarize the naturally occurring mutations of MC1R in humans and large animals.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
3
|
Suzuki T, Kawano Y, Matsumoto A, Kondo M, Funayama K, Tanemura S, Miyashiro M, Nishi A, Yamada K, Tsuda M, Sato A, Morokuma K, Yamamoto Y. Melanogenic effect of dersimelagon (MT-7117), a novel oral melanocortin 1 receptor agonist. SKIN HEALTH AND DISEASE 2022; 2:e78. [PMID: 35665216 PMCID: PMC9060023 DOI: 10.1002/ski2.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
Background The activation of melanocortin 1 receptor (MC1R) on melanocytes stimulates the production of eumelanin. A tridecapeptide α melanocyte‐stimulating hormone (αMSH) is known to induce skin pigmentation. Objectives We characterised the properties of a novel oral MC1R agonist dersimelagon (MT‐7117) with respect to its specific binding to MC1R, downstream signalling and eumelanin production in experimental models. Methods The competitive binding and production of intracellular cyclic adenosine 3′, 5′‐monophosphate in cells expressing recombinant melanocortin receptors were examined. A mouse melanoma cell line B16F1 was used for the evaluation of in vitro melanin production. The in vitro activity of MT‐7117 was determined with αMSH and [Nle4, D‐Phe7]‐αMSH (NDP‐αMSH) as reference comparators. The change of coat colour and skin pigmentation were evaluated after repeat administration of MT‐7117 by oral gavage to C57BL/6J‐Ay/+ mice and cynomolgus monkeys, respectively. Results MT‐7117 showed the highest affinity for human MC1R compared to the other melanocortin receptors evaluated and agonistic activity for human, cynomolgus monkey and mouse MC1R, with EC50 values in the nanomolar range. In B16F1 cells, MT‐7117 increased melanin production in a concentration‐dependent manner. In vivo, MT‐7117 (≥0.3 mg/kg/day p.o.) significantly induced coat colour darkening in mice. MT‐7117 (≥1 mg/kg/day p.o.) induced significant skin pigmentation in monkeys and complete reversibility was observed after cessation of its administration. Conclusions MT‐7117 is a novel oral MC1R agonist that induces melanogenesis in vitro and in vivo, suggesting its potential application for the prevention of phototoxic reactions in patients with photodermatoses, such as erythropoietic protoporphyria and X‐linked protoporphyria.
Collapse
Affiliation(s)
- T Suzuki
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - Y Kawano
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - A Matsumoto
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - M Kondo
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - K Funayama
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - S Tanemura
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - M Miyashiro
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - A Nishi
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - K Yamada
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - M Tsuda
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - A Sato
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - K Morokuma
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| | - Y Yamamoto
- Sohyaku Innovative Research Division Mitsubishi Tanabe Pharma Corporation Yokohama Japan
| |
Collapse
|
4
|
Fuiten AM, Fankhauser RG, Smit DJ, Stark MS, Enright TF, Wood MA, DePatie NA, Pivik K, Sturm RA, Berry EG, Kulkarni RP. Genetic analysis of multiple primary melanomas arising within the boundaries of congenital nevi depigmentosa. Pigment Cell Melanoma Res 2021; 34:1123-1130. [PMID: 33884765 DOI: 10.1111/pcmr.12979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022]
Abstract
Here, we present a rare case of a patient who developed multiple primary melanomas within the boundaries of two nevi depigmentosa. The melanomas were excised, and as a preventive measure, the remainder of the nevi depigmentosa were removed. We performed whole-exome sequencing on excised tissue from the nevus depigmentosus, adjacent normal skin, and saliva to explain this intriguing phenomenon. We also performed a GeneTrails Comprehensive Solid Tumor Panel analysis on one of the melanoma tissues. Genetic analysis revealed germline MC1R V92M and TYR R402Q polymorphisms and a MET E168D germline mutation that may have increased the risk of melanoma development. This genetic predisposition, combined with a patient-reported history of substantial sun exposure and sunburns, which were more severe within the boundaries of the nevi depigmentosa due to the lack of photoprotective melanin, produced numerous somatic mutations in the melanocytes of the nevi depigmentosa. Fitting with this paradigm for melanoma development in chronically sun-damaged skin, the patient's melanomas harbored somatic mutations in CDKN2A (splice site), NF1, and ATRX and had a tumor mutation burden in the 90-95th percentile for melanoma.
Collapse
Affiliation(s)
- Allison M Fuiten
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - Reilly G Fankhauser
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - Darren J Smit
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mitchell S Stark
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Trevor F Enright
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Mary A Wood
- Computational Biology Program, School of Medicine, Oregon Health and Science University, Portland, OR, USA.,Phase Genomics, Seattle, WA, USA
| | - Nicholas A DePatie
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | | | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth G Berry
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - Rajan P Kulkarni
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA.,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Operative Care Division, VA Portland Health Care System, Portland, OR, USA
| |
Collapse
|
5
|
Shido K, Kojima K, Yamasaki K, Hozawa A, Tamiya G, Ogishima S, Minegishi N, Kawai Y, Tanno K, Suzuki Y, Nagasaki M, Aiba S. Susceptibility Loci for Tanning Ability in the Japanese Population Identified by a Genome-Wide Association Study from the Tohoku Medical Megabank Project Cohort Study. J Invest Dermatol 2019; 139:1605-1608.e13. [DOI: 10.1016/j.jid.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022]
|
6
|
Quillen EE, Norton HL, Parra EJ, Lona-Durazo F, Ang KC, Illiescu FM, Pearson LN, Shriver MD, Lasisi T, Gokcumen O, Starr I, Lin YL, Martin AR, Jablonski NG. Shades of complexity: New perspectives on the evolution and genetic architecture of human skin. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168 Suppl 67:4-26. [PMID: 30408154 DOI: 10.1002/ajpa.23737] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
Like many highly variable human traits, more than a dozen genes are known to contribute to the full range of skin color. However, the historical bias in favor of genetic studies in European and European-derived populations has blinded us to the magnitude of pigmentation's complexity. As deliberate efforts are being made to better characterize diverse global populations and new sequencing technologies, better measurement tools, functional assessments, predictive modeling, and ancient DNA analyses become more widely accessible, we are beginning to appreciate how limited our understanding of the genetic bases of human skin color have been. Novel variants in genes not previously linked to pigmentation have been identified and evidence is mounting that there are hundreds more variants yet to be found. Even for genes that have been exhaustively characterized in European populations like MC1R, OCA2, and SLC24A5, research in previously understudied groups is leading to a new appreciation of the degree to which genetic diversity, epistatic interactions, pleiotropy, admixture, global and local adaptation, and cultural practices operate in population-specific ways to shape the genetic architecture of skin color. Furthermore, we are coming to terms with how factors like tanning response and barrier function may also have influenced selection on skin throughout human history. By examining how our knowledge of pigmentation genetics has shifted in the last decade, we can better appreciate how far we have come in understanding human diversity and the still long road ahead for understanding many complex human traits.
Collapse
Affiliation(s)
- Ellen E Quillen
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Heather L Norton
- Department of Anthropology, University of Cincinnati, Cincinnati, Ohio
| | - Esteban J Parra
- Department of Anthropology, University of Toronto - Mississauga, Mississauga, Ontario, Canada
| | - Frida Lona-Durazo
- Department of Anthropology, University of Toronto - Mississauga, Mississauga, Ontario, Canada
| | - Khai C Ang
- Department of Pathology and Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania
| | - Florin Mircea Illiescu
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Centro de Estudios Interculturales e Indígenas - CIIR, P. Universidad Católica de Chile, Santiago, Chile
| | - Laurel N Pearson
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Tina Lasisi
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Izzy Starr
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Yen-Lung Lin
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nina G Jablonski
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
7
|
Markiewicz E, Idowu OC. Personalized skincare: from molecular basis to clinical and commercial applications. Clin Cosmet Investig Dermatol 2018; 11:161-171. [PMID: 29692619 PMCID: PMC5903487 DOI: 10.2147/ccid.s163799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Individual responses of human skin to the environmental stress are determined by differences in the anatomy and physiology that are closely linked to the genetic characteristics such as pigmentation. Ethnic skin phenotypes can be distinguished based on defined genotypic traits, structural organization and compartmentalized sensitivity to distinct extrinsic aging factors. These differences are not only responsible for the variation in skin performance after exposure to damaging conditions, but can also affect the mechanisms of drug absorption, sensitization and other longer term effects. The unique characteristics of the individual skin function and, particularly, of the ethnic skin type are currently considered to shape the future of clinical and pharmacologic interventions as a basis for personalized skincare. Individual approaches to skincare render a novel and actively growing area with a range of biomedical and commercial applications within cosmetics industry. In this review, we summarize the aspects of the molecular and clinical manifestations of the environmental stress on human skin and proposed protective mechanisms that are linked to ethnic differences and pathophysiology of extrinsic skin aging. We subsequently discuss the possible applications and translation of this knowledge into personalized skincare.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Research & Development, Hexis Lab, Science Central, The Core, Bath Lane, Newcastle upon Tyne, UK
| | - Olusola Clement Idowu
- Research & Development, Hexis Lab, Science Central, The Core, Bath Lane, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Castejón-Griñán M, Herraiz C, Olivares C, Jiménez-Cervantes C, García-Borrón JC. cAMP-independent non-pigmentary actions of variant melanocortin 1 receptor: AKT-mediated activation of protective responses to oxidative DNA damage. Oncogene 2018; 37:3631-3646. [PMID: 29622793 DOI: 10.1038/s41388-018-0216-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
The melanocortin 1 receptor gene (MC1R), a well-established melanoma susceptibility gene, regulates the amount and type of melanin pigments formed within epidermal melanocytes. MC1R variants associated with increased melanoma risk promote the production of photosensitizing pheomelanins as opposed to photoprotective eumelanins. Wild-type (WT) MC1R activates DNA repair and antioxidant defenses in a cAMP-dependent fashion. Since melanoma-associated MC1R variants are hypomorphic in cAMP signaling, these non-pigmentary actions are thought to be defective in MC1R-variant human melanoma cells and epidermal melanocytes, consistent with a higher mutation load in MC1R-variant melanomas. We compared induction of antioxidant enzymes and DNA damage responses in melanocytic cells of defined MC1R genotype. Increased expression of catalase (CAT) and superoxide dismutase (SOD) genes following MC1R activation was cAMP-dependent and required a WT MC1R genotype. Conversely, pretreatment of melanocytic cells with an MC1R agonist before an oxidative challenge with Luperox decreased (i) accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanine, a major product of oxidative DNA damage, (ii) phosphorylation of histone H2AX, a marker of DNA double-strand breaks, and (iii) formation of DNA breaks. These responses were comparable in cells WT for MC1R or harboring hypomorphic MC1R variants without detectable cAMP signaling. In MC1R-variant melanocytic cells, the DNA-protective responses were mediated by AKT. Conversely, in MC1R-WT melanocytic cells, high cAMP production downstream of MC1R blocked AKT activation and was responsible for inducing DNA repair. Accordingly, MC1R activation could promote repair of oxidative DNA damage by a cAMP-dependent pathway downstream of WT receptor, or via AKT in cells of variant MC1R genotype.
Collapse
Affiliation(s)
- María Castejón-Griñán
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Instituto Murciano de Investigacion Biosanitaria (IMIB), Murcia, Spain
| | - Cecilia Herraiz
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Instituto Murciano de Investigacion Biosanitaria (IMIB), Murcia, Spain.
| | - Conchi Olivares
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Instituto Murciano de Investigacion Biosanitaria (IMIB), Murcia, Spain
| | - Celia Jiménez-Cervantes
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Instituto Murciano de Investigacion Biosanitaria (IMIB), Murcia, Spain
| | - Jose Carlos García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia and Instituto Murciano de Investigacion Biosanitaria (IMIB), Murcia, Spain
| |
Collapse
|
9
|
Hernando B, Ibañez MV, Deserio-Cuesta JA, Soria-Navarro R, Vilar-Sastre I, Martinez-Cadenas C. Genetic determinants of freckle occurrence in the Spanish population: Towards ephelides prediction from human DNA samples. Forensic Sci Int Genet 2018; 33:38-47. [DOI: 10.1016/j.fsigen.2017.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 12/01/2022]
|
10
|
Li X, Lee KJ, Duffy DL, Xu D, Basude MER, Hu Y, Zhang H, Jagirdar K, Soyer HP, Dong H, Sturm RA. Acquired melanocytic naevus phenotypes and MC1R genotypes in Han Chinese: a cross-sectional study. PeerJ 2018; 5:e4168. [PMID: 29340229 PMCID: PMC5741976 DOI: 10.7717/peerj.4168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/24/2017] [Indexed: 12/02/2022] Open
Abstract
Background Early detection and treatment are the most important elements in reducing the incidence of melanoma deaths. Acquired melanocytic naevi (AMN) are well-known precursors of melanoma but most of our knowledge on the clinico-dermoscopic phenotypes of AMN is based on studies in European-background populations, particularly American and Australian populations. There has been little research in Chinese Han populations on clinico-dermoscopic variability of naevi or how naevi are affected by melanoma-linked variants of the melanocortin 1 receptor (MC1R) gene. Methods Clinical and dermoscopic features of 448 AMN in 115 patients from the Han ethnic group in mainland China were described. Germline polymorphisms in MC1R were determined for 98 of these patients. Results AMN were predominantly found on the head and neck. Dermoscopic patterns observed were nonspecific, reticular, globular, and parallel furrow, with most AMN having a nonspecific pattern. There were no associations between MC1R polymorphisms and clinical or dermoscopic features of AMN. Discussion Our results provide evidence that AMN in the Han population in China have similar dermoscopic patterns to those in European populations, but are present in much lower numbers. As there were no associations between clinical or dermoscopic features of AMN and MC1R polymorphisms, further studies should focus on candidate gene associations with AMN features and the risk of melanoma, with larger sample sizes and comparisons to AMN in other populations.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Key-Disciplines Laboratory, Clinical-Medicine Henan, Zhengzhou, Henan, China
| | - Katie J Lee
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - David L Duffy
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Dandan Xu
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Key-Disciplines Laboratory, Clinical-Medicine Henan, Zhengzhou, Henan, China.,Department of Dermatology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Madhur Eshwar Rao Basude
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Key-Disciplines Laboratory, Clinical-Medicine Henan, Zhengzhou, Henan, China.,Department of Dermatology, Vinayaka Missions Medical College and Hospital, Karaikal, Puducherry, India
| | - Ying Hu
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Department of Dermatology, Central Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Hang Zhang
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Kasturee Jagirdar
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - H Peter Soyer
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Huiting Dong
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Key-Disciplines Laboratory, Clinical-Medicine Henan, Zhengzhou, Henan, China
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Jonnalagadda M, Bharti N, Patil Y, Ozarkar S, K SM, Joshi R, Norton H. Identifying signatures of positive selection in pigmentation genes in two South Asian populations. Am J Hum Biol 2017; 29. [PMID: 28439965 DOI: 10.1002/ajhb.23012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 04/01/2017] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Skin pigmentation is a polygenic trait showing wide phenotypic variations among global populations. While numerous pigmentation genes have been identified to be under positive selection among European and East populations, genes contributing to phenotypic variation in skin pigmentation within and among South Asian populations are still poorly understood. The present study uses data from the Phase 3 of the 1000 genomes project focusing on two South Asian populations-GIH (Gujarati Indian from Houston, Texas) and ITU (Indian Telugu from UK), so as to decode the genetic architecture involved in adaptation to ultraviolet radiation in South Asian populations. METHODS Statistical tests included were (1) tests to identify deviations of the Site Frequency Spectrum (SFS) from neutral expectations (Tajima's D, Fay and Wu's H and Fu and Li's D* and F*), (2) tests focused on the identification of high-frequency haplotypes with extended linkage disequilibrium (iHS and Rsb), and (3) tests based on genetic differentiation between populations (LSBL). RESULTS Twenty-two pigmentation genes fall in the top 1% for at least one statistic in the GIH population, 5 of which (LYST, OCA2, SLC24A5, SLC45A2, and TYR) have been previously associated with normal variation in skin, hair, or eye color. In comparison, 17 genes fall in the top 1% for at least one statistic in the ITU population. Twelve loci which are identified as outliers in the ITU scan were also identified in the GIH population. CONCLUSIONS These results suggest that selection may have affected these loci broadly across the region.
Collapse
Affiliation(s)
- Manjari Jonnalagadda
- Symbiosis School for Liberal Arts (SSLA), Symbiosis International University (SIU), Pune, 411014, India
| | - Neeraj Bharti
- HPC-MBA Group, Centre for Development of Advanced Computing, Pune, 411007, India
| | - Yatish Patil
- HPC-MBA Group, Centre for Development of Advanced Computing, Pune, 411007, India
| | - Shantanu Ozarkar
- Department of Anthropology, Savitribai Phule Pune University, Pune, 411007, India
| | - Sunitha Manjari K
- HPC-MBA Group, Centre for Development of Advanced Computing, Pune, 411007, India
| | - Rajendra Joshi
- HPC-MBA Group, Centre for Development of Advanced Computing, Pune, 411007, India
| | - Heather Norton
- Department of Anthropology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
12
|
Lin BD, Mbarek H, Willemsen G, Dolan CV, Fedko IO, Abdellaoui A, de Geus EJ, Boomsma DI, Hottenga JJ. Heritability and Genome-Wide Association Studies for Hair Color in a Dutch Twin Family Based Sample. Genes (Basel) 2015; 6:559-76. [PMID: 26184321 PMCID: PMC4584317 DOI: 10.3390/genes6030559] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 01/19/2023] Open
Abstract
Hair color is one of the most visible and heritable traits in humans. Here, we estimated heritability by structural equation modeling (N = 20,142), and performed a genome wide association (GWA) analysis (N = 7091) and a GCTA study (N = 3340) on hair color within a large cohort of twins, their parents and siblings from the Netherlands Twin Register (NTR). Self-reported hair color was analyzed as five binary phenotypes, namely “blond versus non-blond”, “red versus non-red”, “brown versus non-brown”, “black versus non-black”, and “light versus dark”. The broad-sense heritability of hair color was estimated between 73% and 99% and the genetic component included non-additive genetic variance. Assortative mating for hair color was significant, except for red and black hair color. From GCTA analyses, at most 24.6% of the additive genetic variance in hair color was explained by 1000G well-imputed SNPs. Genome-wide association analysis for each hair color showed that SNPs in the MC1R region were significantly associated with red, brown and black hair, and also with light versus dark hair color. Five other known genes (HERC2, TPCN2, SLC24A4, IRF4, and KITLG) gave genome-wide significant hits for blond, brown and light versus dark hair color. We did not find and replicate any new loci for hair color.
Collapse
Affiliation(s)
- Bochao Danae Lin
- Department of Biological Psychology, VU University, Amsterdam 1081 BT, The Netherlands.
| | - Hamdi Mbarek
- Department of Biological Psychology, VU University, Amsterdam 1081 BT, The Netherlands.
| | - Gonneke Willemsen
- Department of Biological Psychology, VU University, Amsterdam 1081 BT, The Netherlands.
| | - Conor V Dolan
- Department of Biological Psychology, VU University, Amsterdam 1081 BT, The Netherlands.
| | - Iryna O Fedko
- Department of Biological Psychology, VU University, Amsterdam 1081 BT, The Netherlands.
| | - Abdel Abdellaoui
- Department of Biological Psychology, VU University, Amsterdam 1081 BT, The Netherlands.
| | - Eco J de Geus
- Department of Biological Psychology, VU University, Amsterdam 1081 BT, The Netherlands.
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University, Amsterdam 1081 BT, The Netherlands.
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University, Amsterdam 1081 BT, The Netherlands.
| |
Collapse
|
13
|
Hepp D, Gonçalves GL, de Freitas TRO. Prediction of the damage-associated non-synonymous single nucleotide polymorphisms in the human MC1R gene. PLoS One 2015; 10:e0121812. [PMID: 25794181 PMCID: PMC4368538 DOI: 10.1371/journal.pone.0121812] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/04/2015] [Indexed: 12/13/2022] Open
Abstract
The melanocortin 1 receptor (MC1R) is involved in the control of melanogenesis. Polymorphisms in this gene have been associated with variation in skin and hair color and with elevated risk for the development of melanoma. Here we used 11 computational tools based on different approaches to predict the damage-associated non-synonymous single nucleotide polymorphisms (nsSNPs) in the coding region of the human MC1R gene. Among the 92 nsSNPs arranged according to the predictions 62% were classified as damaging in more than five tools. The classification was significantly correlated with the scores of two consensus programs. Alleles associated with the red hair color (RHC) phenotype and with the risk of melanoma were examined. The R variants D84E, R142H, R151C, I155T, R160W and D294H were classified as damaging by the majority of the tools while the r variants V60L, V92M and R163Q have been predicted as neutral in most of the programs The combination of the prediction tools results in 14 nsSNPs indicated as the most damaging mutations in MC1R (L48P, R67W, H70Y, P72L, S83P, R151H, S172I, L206P, T242I, G255R, P256S, C273Y, C289R and R306H); C273Y showed to be highly damaging in SIFT, Polyphen-2, MutPred, PANTHER and PROVEAN scores. The computational analysis proved capable of identifying the potentially damaging nsSNPs in MC1R, which are candidates for further laboratory studies of the functional and pharmacological significance of the alterations in the receptor and the phenotypic outcomes.
Collapse
Affiliation(s)
- Diego Hepp
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul—Câmpus Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Gislene Lopes Gonçalves
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Instituto de Alta Investigación, Universidad de Tarapacá, Antofagasta, 1520 Arica, Chile
| | | |
Collapse
|
14
|
Guida S, Bartolomeo N, Zanna PT, Grieco C, Maida I, De Summa S, Tommasi S, Guida M, Azzariti A, Foti C, Filotico R, Guida G. Sporadic melanoma in South-Eastern Italy: the impact of melanocortin 1 receptor (MC1R) polymorphism analysis in low-risk people and report of three novel variants. Arch Dermatol Res 2015; 307:495-503. [PMID: 25736238 DOI: 10.1007/s00403-015-1552-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 02/04/2015] [Accepted: 02/12/2015] [Indexed: 12/18/2022]
Abstract
Environmental and genetic risk factors are involved in the development of melanoma. The role of the melanocortin 1 receptor (MC1R) gene has been investigated and differences according to geographic areas have been described. To evaluate the role of some clinical and genetic risk factors in melanoma development, we performed a case-control study involving 101 melanoma patients and 103 controls coming from South-Eastern Italy (Puglia), after achieving informed consent. We confirmed the role of known clinical risk factors for melanoma. Furthermore, 42 MC1R polymorphisms were observed. Three of these variants (L26V, H232L, D294Y) were not previously reported in the literature. Their predicted impact on receptor function was evaluated using bioinformatic tools. We report an overall frequency of MC1R variants in our population higher than in Northern or Central Italy. The most common polymorphism found was V60L, that has been recently reported to spread among South Mediterranean population. This variant influenced phenotypic characteristics of our population while it did not impinge on melanoma risk. An increased risk of melanoma was associated with two or more MC1R variants, when at least one was RHC, compared to people carrying the MC1R consensus sequence or a single MC1R polymorphism. Interestingly, we observed an increased risk of melanoma in subjects with darker skin and lower nevus count, usually considered at low risk, when carrying MC1R polymorphisms.
Collapse
Affiliation(s)
- S Guida
- Dermatology Unit, Department of Biomedical Science and Human Oncology, University of Bari 'A. Moro', Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pasquali E, García-Borrón JC, Fargnoli MC, Gandini S, Maisonneuve P, Bagnardi V, Specchia C, Liu F, Kayser M, Nijsten T, Nagore E, Kumar R, Hansson J, Kanetsky PA, Ghiorzo P, Debniak T, Branicki W, Gruis NA, Han J, Dwyer T, Blizzard L, Landi MT, Palmieri G, Ribas G, Stratigos A, Council M, Autier P, Little J, Newton-Bishop J, Sera F, Raimondi S. MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: a pooled-analysis from the M-SKIP project. Int J Cancer 2015; 136:618-631. [PMID: 24917043 PMCID: PMC4378685 DOI: 10.1002/ijc.29018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 12/20/2022]
Abstract
The MC1R gene is a key regulator of skin pigmentation. We aimed to evaluate the association between MC1R variants and the risk of sporadic cutaneous melanoma (CM) within the M-SKIP project, an international pooled-analysis on MC1R, skin cancer and phenotypic characteristics. Data included 5,160 cases and 12,119 controls from 17 studies. We calculated a summary odds ratio (SOR) for the association of each of the nine most studied MC1R variants and of variants combined with CM by using random-effects models. Stratified analysis by phenotypic characteristics were also performed. Melanoma risk increased with presence of any of the main MC1R variants: the SOR for each variant ranged from 1.47 (95%CI: 1.17-1.84) for V60L to 2.74 (1.53-4.89) for D84E. Carriers of any MC1R variant had a 66% higher risk of developing melanoma compared with wild-type subjects (SOR; 95%CI: 1.66; 1.41-1.96) and the risk attributable to MC1R variants was 28%. When taking into account phenotypic characteristics, we found that MC1R-associated melanoma risk increased only for darker-pigmented Caucasians: SOR (95%CI) was 3.14 (2.06-4.80) for subjects with no freckles, no red hair and skin Type III/IV. Our study documents the important role of all the main MC1R variants in sporadic CM and suggests that they have a direct effect on melanoma risk, independently on the phenotypic characteristics of carriers. This is of particular importance for assessing preventive strategies, which may be directed to darker-pigmented Caucasians with MC1R variants as well as to lightly pigmented, fair-skinned subjects.
Collapse
Affiliation(s)
- Elena Pasquali
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - José C. García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, Murcia, Spain
| | | | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Vincenzo Bagnardi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
- Department of Statistics and Quantitative Methods, University of Milan Bicocca, Milan, Italy
| | - Claudia Specchia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fan Liu
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
- Universidad Católica de Valencia, Valencia, Spain
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Johan Hansson
- Department of Oncology and Pathology, Cancer Center, Karolinska Institutet, Stockholm, Sweden
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Genetics of Rare Hereditary Cancers, IRCCS AOU San Martino –IST, Genoa
| | - Tadeusz Debniak
- Department of Genetic and Pathology, Pomeranian Medical University, Polabska, Poland
| | | | - Nelleke A. Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jiali Han
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Terry Dwyer
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Leigh Blizzard
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Istituto di Chimica Biomolecolare, CNR, Sassari, Italy
| | - Gloria Ribas
- Dptd. Oncologia medica y hematologia, Fundación Investigación Clínico de Valencia Instituto de Investigación Sanitaria- INCLIVA, Valencia, Spain
| | - Alexander Stratigos
- Department of Dermatology, University of Athens, Andreas Sygros Hospital, Athens, Greece
| | - M.Laurin Council
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Julian Little
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Canada
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - Sara Raimondi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | | |
Collapse
|
16
|
Ding Q, Hu Y, Xu S, Wang CC, Li H, Zhang R, Yan S, Wang J, Jin L. Neanderthal origin of the haplotypes carrying the functional variant Val92Met in the MC1R in modern humans. Mol Biol Evol 2014; 31:1994-2003. [PMID: 24916031 DOI: 10.1093/molbev/msu180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Skin color is one of the most visible and important phenotypes of modern humans. Melanocyte-stimulating hormone and its receptor played an important role in regulating skin color. In this article, we present evidence of Neanderthal introgression encompassing the melanocyte-stimulating hormone receptor gene MC1R. The haplotypes from Neanderthal introgression diverged with the Altai Neanderthal 103.3 ka, which postdates the anatomically modern human-Neanderthal divergence. We further discovered that all of the putative Neanderthal introgressive haplotypes carry the Val92Met variant, a loss-of-function variant in MC1R that is associated with multiple dermatological traits including skin color and photoaging. Frequency of this Neanderthal introgression is low in Europeans (∼5%), moderate in continental East Asians (∼30%), and high in Taiwanese aborigines (60-70%). As the putative Neanderthal introgressive haplotypes carry a loss-of-function variant that could alter the function of MC1R and is associated with multiple traits related to skin color, we speculate that the Neanderthal introgression may have played an important role in the local adaptation of Eurasians to sunlight intensity.
Collapse
Affiliation(s)
- Qiliang Ding
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ya Hu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuhua Xu
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chuan-Chao Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruyue Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shi Yan
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, ChinaCAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
17
|
García-Borrón JC, Abdel-Malek Z, Jiménez-Cervantes C. MC1R, the cAMP pathway, and the response to solar UV: extending the horizon beyond pigmentation. Pigment Cell Melanoma Res 2014; 27:699-720. [PMID: 24807163 DOI: 10.1111/pcmr.12257] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
Abstract
The melanocortin 1 receptor (MC1R) is a G protein-coupled receptor crucial for the regulation of melanocyte proliferation and function. Upon binding melanocortins, MC1R activates several signaling cascades, notably the cAMP pathway leading to synthesis of photoprotective eumelanin. Polymorphisms in the MC1R gene are a major source of normal variation of human hair color and skin pigmentation, response to ultraviolet radiation (UVR), and skin cancer susceptibility. The identification of a surprisingly high number of MC1R natural variants strongly associated with pigmentary phenotypes and increased skin cancer risk has prompted research on the functional properties of the wild-type receptor and frequent mutant alleles. We summarize current knowledge on MC1R structural and functional properties, as well as on its intracellular trafficking and signaling. We also review the current knowledge about the function of MC1R as a skin cancer, particularly melanoma, susceptibility gene and how it modulates the response of melanocytes to UVR.
Collapse
Affiliation(s)
- Jose C García-Borrón
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain; Instituto Murciano de Investigación Biomédica (IMIB), El Palmar, Murcia, Spain
| | | | | |
Collapse
|
18
|
A large French case-control study emphasizes the role of rare Mc1R variants in melanoma risk. BIOMED RESEARCH INTERNATIONAL 2014; 2014:925716. [PMID: 24982914 PMCID: PMC4003837 DOI: 10.1155/2014/925716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/12/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND The MC1R gene implicated in melanogenesis and skin pigmentation is highly polymorphic. Several alleles are associated with red hair and fair skin phenotypes and contribute to melanoma risk. OBJECTIVE This work aims to assess the effect of different classes of MC1R variants, notably rare variants, on melanoma risk. Methods. MC1R coding region was sequenced in 1131 melanoma patients and 869 healthy controls. MC1R variants were classified as RHC (R) and non-RHC (r). Rare variants (frequency < 1%) were subdivided into two subgroups, predicted to be damaging (D) or not (nD). RESULTS Both R and r alleles were associated with melanoma (OR = 2.66 [2.20-3.23] and 1.51 [1.32-1.73]) and had similar population attributable risks (15.8% and 16.6%). We also identified 69 rare variants, of which 25 were novel. D variants were strongly associated with melanoma (OR = 2.38 [1.38-4.15]) and clustered in the same MC1R domains as R alleles (intracellular 2, transmembrane 2 and 7). CONCLUSION This work confirms the role of R and r alleles in melanoma risk in the French population and proposes a novel class of rare D variants as important melanoma risk factors. These findings may improve the definition of high-risk subjects that could be targeted for melanoma prevention and screening.
Collapse
|
19
|
Hider JL, Gittelman RM, Shah T, Edwards M, Rosenbloom A, Akey JM, Parra EJ. Exploring signatures of positive selection in pigmentation candidate genes in populations of East Asian ancestry. BMC Evol Biol 2013; 13:150. [PMID: 23848512 PMCID: PMC3727976 DOI: 10.1186/1471-2148-13-150] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/05/2013] [Indexed: 11/17/2022] Open
Abstract
Background Currently, there is very limited knowledge about the genes involved in normal pigmentation variation in East Asian populations. We carried out a genome-wide scan of signatures of positive selection using the 1000 Genomes Phase I dataset, in order to identify pigmentation genes showing putative signatures of selective sweeps in East Asia. We applied a broad range of methods to detect signatures of selection including: 1) Tests designed to identify deviations of the Site Frequency Spectrum (SFS) from neutral expectations (Tajima’s D, Fay and Wu’s H and Fu and Li’s D* and F*), 2) Tests focused on the identification of high-frequency haplotypes with extended linkage disequilibrium (iHS and Rsb) and 3) Tests based on genetic differentiation between populations (LSBL). Based on the results obtained from a genome wide analysis of 25 kb windows, we constructed an empirical distribution for each statistic across all windows, and identified pigmentation genes that are outliers in the distribution. Results Our tests identified twenty genes that are relevant for pigmentation biology. Of these, eight genes (ATRN, EDAR, KLHL7, MITF, OCA2, TH, TMEM33 and TRPM1,) were extreme outliers (top 0.1% of the empirical distribution) for at least one statistic, and twelve genes (ADAM17, BNC2, CTSD, DCT, EGFR, LYST, MC1R, MLPH, OPRM1, PDIA6, PMEL (SILV) and TYRP1) were in the top 1% of the empirical distribution for at least one statistic. Additionally, eight of these genes (BNC2, EGFR, LYST, MC1R, OCA2, OPRM1, PMEL (SILV) and TYRP1) have been associated with pigmentary traits in association studies. Conclusions We identified a number of putative pigmentation genes showing extremely unusual patterns of genetic variation in East Asia. Most of these genes are outliers for different tests and/or different populations, and have already been described in previous scans for positive selection, providing strong support to the hypothesis that recent selective sweeps left a signature in these regions. However, it will be necessary to carry out association and functional studies to demonstrate the implication of these genes in normal pigmentation variation.
Collapse
Affiliation(s)
- Jessica L Hider
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Liu F, Wen B, Kayser M. Colorful DNA polymorphisms in humans. Semin Cell Dev Biol 2013; 24:562-75. [PMID: 23587773 DOI: 10.1016/j.semcdb.2013.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/26/2013] [Indexed: 10/26/2022]
Abstract
In this review article we summarize current knowledge on how variation on the DNA level influences human pigmentation including color variation of iris, hair, and skin. We review recent progress in the field of human pigmentation genetics by focusing on the genes and DNA polymorphisms discovered to be involved in determining human pigmentation traits, their association with diseases particularly skin cancers, and their power to predict human eye, hair, and skin colors with potential utilization in forensic investigations.
Collapse
Affiliation(s)
- Fan Liu
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
21
|
Ozola A, Azarjana K, Doniņa S, Proboka G, Mandrika I, Petrovska R, Cēma I, Heisele O, Eņģele L, Streinerte B, Pjanova D. Melanoma risk associated with MC1R gene variants in Latvia and the functional analysis of rare variants. Cancer Genet 2013; 206:81-91. [PMID: 23522749 DOI: 10.1016/j.cancergen.2013.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/11/2013] [Accepted: 01/22/2013] [Indexed: 12/30/2022]
Abstract
To evaluate the association of melanocortin 1 receptor gene (MC1R) variants with melanoma risk in a Latvian population, the MC1R gene was sequenced in 200 melanoma patients and 200 control persons. A functional study of previously uncharacterized, rare MC1R variants was also performed. In total, 26 different MC1R variants, including two novel variants Val165Ile and Val188Ile, were detected. The highest risk of melanoma was associated with the Arg151Cys variant (odds ratio (OR) 4.47, 95% confidence interval (CI) 2.19-9.14, P<0.001). A gene dosage effect was observed, with melanoma risk for carriers of two variants being twice (OR 3.98, 95% CI 2.15-7.38, P<0.001) that of carriers of one variant (OR 1.98, 95% CI 1.26-3.11, P=0.003). After stratification according to the pigmentation phenotype, the risk of melanoma remained in groups with otherwise protective phenotypes. Functional analyses of eight previously uncharacterized MC1R variants revealed that a subset of them is functionally relevant. Our results support the contribution of MC1R variants to a genetic predisposition to melanoma in Latvia.
Collapse
Affiliation(s)
- Aija Ozola
- Latvian Biomedical Research and Study Centre, Riga, Latvia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Saleha SB, Ajaml M, Jamil M, Nasir M, Hameed A. MC1R gene mutation and its association with oculocutaneous albinism type (OCA) phenotype in a consanguineous Pakistani family. J Dermatol Sci 2012; 70:68-70. [PMID: 23312576 DOI: 10.1016/j.jdermsci.2012.11.591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/08/2012] [Accepted: 11/29/2012] [Indexed: 01/10/2023]
|
23
|
Abstract
Genome-wide association studies and comparative genomics have established major loci and specific polymorphisms affecting human skin, hair and eye color. Environmental changes have had an impact on selected pigmentation genes as populations have expanded into different regions of the globe.
Collapse
Affiliation(s)
- Richard A Sturm
- Institute for Molecular Bioscience, Melanogenix Group, The University of Queensland, Brisbane, Qld 4072, Australia.
| | | |
Collapse
|
24
|
Association of melanocortin 1 receptor gene (MC1R) polymorphisms with skin reflectance and freckles in Japanese. J Hum Genet 2012; 57:700-8. [PMID: 22854540 DOI: 10.1038/jhg.2012.96] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most studies on the genetic basis of human skin pigmentation have focused on people of European ancestry and only a few studies have focused on Asian populations. We investigated the association of skin reflectance and freckling with genetic variants of melanocortin 1 receptor (MC1R) gene in Japanese. DNA samples were obtained from a total of 653 Japanese individuals (ages 19-40 years) residing in Okinawa; skin reflectance was measured using a spectrophotometer and freckling status was determined for each individual. Lightness index (L*) and freckling status were not correlated with age, body mass index or ancestry (Ryukyuan or Main Islanders of Japan). Among the 10 nonsynonymous variants that were identified by direct sequencing of the coding region of MC1R, two variants--R163Q and V92M--with the derived allele frequencies of 78.6 and 5.5%, respectively, were most common. Multiple regression analysis showed that the 163Q allele and the presence of nonsynonymous rare variants (allele frequencies <5%) were significantly associated with an increase in sex-standardized skin lightness (L* of CIELAB (CIE 1976 (L*a*b*) color space)) of the inner upper arm. Relative to the 92V allele, the 92M allele was significantly associated with increased odds of freckling. This is the first study to show an association between the 163Q allele and skin reflectance values; this association indicated that light-toned skin may have been subjected to positive selection in East Asian people.
Collapse
|
25
|
Horike N, Kumagai A, Shimono Y, Onishi T, Itoh Y, Sasaki T, Kitagawa K, Hatano O, Takagi H, Susumu T, Teraoka H, Kusano KI, Nagaoka Y, Kawahara H, Takemori H. Downregulation of SIK2 expression promotes the melanogenic program in mice. Pigment Cell Melanoma Res 2010; 23:809-19. [PMID: 20819186 DOI: 10.1111/j.1755-148x.2010.00760.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
cAMP response element-binding protein (CREB) promotes melanogenesis by inducing microphthalmia-associated transcription factor (Mitf ) gene expression. We report here that the CREB-specific coactivator TORC and its repressor, salt-inducible kinase 2 (SIK2), are fundamental determinants of the melanogenic program in mice. Exposure of B16 melanoma cells to ultraviolet (UV) light results in the immediate nuclear translocation of TORC1, which is inhibited by SIK2. Overexpression of dominant-negative TORC1 also inhibits UV-induced Mitf gene expression and melanogenesis. α-MSH signaling regulates hair pigmentation, and the decrease in α-MSH activity in hair follicle melanocytes switches the melanin synthesis from eumelanin (black) to pheomelanin (yellow). Mice with the lethal yellow allele of agouti (A(y)) have yellow hair because of impaired activation of the α-MSH receptor. To examine the involvement of SIK2 in the regulation of the melanogenesis switch in vivo, we prepared SIK2-knockout mice, and the Sik2(-/-) genotype was introduced into A(y)/a mice. The resultant Sik2(-/-); A(y)/a mice had brown hair, indicating that SIK2 represses eumelanogenesis in mice.
Collapse
Affiliation(s)
- Nanao Horike
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Saito, Ibaraki, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Beaumont KA, Liu YY, Sturm RA. The melanocortin-1 receptor gene polymorphism and association with human skin cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:85-153. [PMID: 20374726 DOI: 10.1016/s1877-1173(09)88004-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a key gene involved in the regulation of melanin synthesis and encodes a G-protein coupled receptor expressed on the surface of the melanocyte in the skin and hair follicles. MC1R activation after ultraviolet radiation exposure results in the production of the dark eumelanin pigment and the tanning process in humans, providing physical protection against DNA damage. The MC1R gene is highly polymorphic in Caucasian populations with a number of MC1R variant alleles associated with red hair, fair skin, freckling, poor tanning, and increased risk of melanoma and nonmelanoma skin cancer. Variant receptors have shown alterations in biochemical function, largely due to intracellular retention or impaired G-protein coupling, but retain some signaling ability. The association of MC1R variant alleles with skin cancer risk remains after correction for pigmentation phenotype, indicating regulation of nonpigmentary pathways. Notably, MC1R activation has been linked to DNA repair and may also contribute to the regulation of immune responses.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
27
|
Pérez Oliva AB, Fernéndez LP, Detorre C, Herráiz C, Martínez-Escribano JA, Benítez J, Lozano Teruel JA, García-Borrón JC, Jiménez-Cervantes C, Ribas G. Identification and functional analysis of novel variants of the human melanocortin 1 receptor found in melanoma patients. Hum Mutat 2009; 30:811-22. [PMID: 19338054 DOI: 10.1002/humu.20971] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The melanocortin 1 receptor, a Gs protein-coupled receptor expressed in epidermal melanocytes, is a major determinant of skin pigmentation and phototype and an important contributor to melanoma risk. MC1R activation stimulates synthesis of black, strongly photoprotective eumelanin pigments. Several MC1R alleles are associated with red hair, fair skin, increased sensitivity to ultraviolet radiation, and increased skin cancer risk. The MC1R gene is highly polymorphic, but only a few naturally occurring alleles have been functionally characterized, which complicates the establishment of accurate correlations between the signaling properties of mutant alleles and defined cutaneous phenotypes. We report the functional characterization of six MC1R alleles found in Spanish melanoma patients. Two variants (c.152T>C, p.Val51Ala and c.865T>C, p.Cys289Arg) have never been described, and the others (c.112G>A, p.Val38Met; c.122C>T, p.Ser41Phe; c.383T>C, p.Met128Thr; and c.842A>G, p.Asn281Ser) have not been analyzed for function. p.Asn281Ser corresponds to a functionally silent polymorphism. The other mutations are associated with varying degrees of loss of function (LOF), from moderate decreases in coupling to the cAMP pathway (p.Val38Met and p.Val51Ala) to nearly complete absence of functional coupling (p.Ser41Phe, p.Met128Thr, and p.Cys289Arg). The LOF p.Met128Thr and p.Cys289Arg mutants are trafficked to the cell surface, but are unable to bind agonists efficiently. Conversely, LOF of p.Val38Met, p.Ser41Phe, and p.Val51Ala is due to reduced cell surface expression as a consequence of retention in the endoplasmic reticulum (ER). Therefore, LOF of MC1R alleles is frequently associated with aberrant forward trafficking and accumulation within the ER or with inability to bind properly the activatory ligand.
Collapse
Affiliation(s)
- Ana B Pérez Oliva
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Oiso N, Kishida K, Fukai K, Motokawa T, Hosomi N, Suzuki T, Mitsuhashi Y, Tsuboi R, Kawada A. A Japanese piebald patient with auburn hair colour associated with a novel mutation p.P832L in the KIT gene and a homozygous variant p.I120T in the MC1R gene. Br J Dermatol 2009; 161:468-9. [PMID: 19416250 DOI: 10.1111/j.1365-2133.2009.09138.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N Oiso
- Department of Dermatology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mengel-From J, Børsting C, Sanchez JJ, Eiberg H, Morling N. Determination of cis/trans phase of variations in the MC1R gene with allele-specific PCR and single base extension. Electrophoresis 2009; 29:4780-7. [PMID: 19016241 DOI: 10.1002/elps.200800107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The MC1R gene encodes a protein with key regulatory functions in the melanin synthesis. A multiplex PCR and a multiplex single base extension protocol were established for genotyping six exonic MC1R variations highly penetrant for red hair (R), four exonic MC1R variations weakly penetrant for red hair (r), two frameshift variations highly penetrant for red hair (R) and three variations in the promoter region. We genotyped 600 individuals from Denmark using either CE or MALDI-TOF MS as the detection platform. A total of 62 individuals were genotyped R/R and among the 62 individuals, 57 had red hair and five had blond hair colour. Two different R alleles may be located in cis (RR/-) position or trans (R/R) position, and the phenotype associated with RR/- and R/R may be different. Two allele-specific PCRs were established with primers targeting the -G445A variation in the MC1R promoter and the allele-specific PCR products were used in the multiplex single base extension assay. In all 62 individuals, the MC1R variants were situated in trans position. Another 18 individuals with red hair colour were either genotyped R/- or R/r, suggesting that other genes influence hair colour.
Collapse
Affiliation(s)
- Jonas Mengel-From
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
30
|
Nakayama K, Shotake T, Takeneka O, Ishida T. Variation of the melanocortin 1 receptor gene in the macaques. Am J Primatol 2008; 70:778-85. [PMID: 18454455 DOI: 10.1002/ajp.20547] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Melanocortin 1 receptor (MC1R), a G-coupled seven-transmembrane receptor protein, plays a key role in the regulation of melanin synthesis in mammals. Sequence variation of the MC1R gene (MC1R) has been associated with pigmentation phenotypes in humans and in several animal species. The macaques (genus Macaca) are known to show a marked inter-specific variation in coat color although the causative genetic variation remains unclear. We investigated nucleotide sequences of the MC1R in 67 individuals of 18 macaque species with different coat color phenotypes including black and agouti. Twenty-eight amino acid replacements were identified in the macaques, but none of these amino acid replacements could explain the black coat color of Macaca silenus and the Sulawesi macaque species. Our molecular evolutionary analysis has revealed that nonsynonymous substitution/synonymous substitution (dN/dS) ratio of the MC1R has not been uniform in the macaque groups and, moreover, their coat color and dN/dS ratio were not related. These results suggest that the MC1R is unlikely to be responsible for the coat color variation of the macaques and functions of MC1R other than pigmentation might be associated with the different selective pressures on the MC1R in macaques.
Collapse
Affiliation(s)
- Kazuhiro Nakayama
- Unit of Human Biology and Genetics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
31
|
Laimer M, Önder K, Schlager P, Lanschuetzer C, Emberger M, Selhofer S, Hintner H, Bauer J. Nonsense-associated altered splicing of the Patched gene fails to suppress carcinogenesis in Gorlin syndrome. Br J Dermatol 2008; 159:222-7. [DOI: 10.1111/j.1365-2133.2008.08617.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Savage SA, Gerstenblith MR, Goldstein AM, Mirabello L, Fargnoli MC, Peris K, Landi MT. Nucleotide diversity and population differentiation of the melanocortin 1 receptor gene, MC1R. BMC Genet 2008; 9:31. [PMID: 18402696 PMCID: PMC2324112 DOI: 10.1186/1471-2156-9-31] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/10/2008] [Indexed: 01/27/2023] Open
Abstract
Background The melanocortin 1 receptor gene (MC1R) is responsible for normal pigment variation in humans and is highly polymorphic with numerous population-specific alleles. Some MC1R variants have been associated with skin cancer risk. Results Allele frequency data were compiled on 55 single nucleotide polymorphisms from seven geographically distinct human populations (n = 2306 individuals). MC1R nucleotide diversity, π, was much higher (10.1 × 10-4) than in other genes for all subjects. A large degree of population differentiation, determined by FST, was also present, particularly between Asia and all other populations, due to the p.R163Q (c.488 G>A) polymorphism. The least amount of differentiation was between the United States, Northern Europe, and Southern Europe. Tajima's D statistic suggested the presence of positive selection in individuals from Europe. Conclusion This study further quantifies the degree of population-specific genetic variation and suggests that positive selection may be present in European populations in MC1R.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Selz Y, Braasch I, Hoffmann C, Schmidt C, Schultheis C, Schartl M, Volff JN. Evolution of melanocortin receptors in teleost fish: The melanocortin type 1 receptor. Gene 2007; 401:114-22. [PMID: 17707598 DOI: 10.1016/j.gene.2007.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/04/2007] [Accepted: 07/04/2007] [Indexed: 11/17/2022]
Abstract
The melanocortin type 1 receptor (Mc1r) belongs to a family of G-protein-coupled receptors involved in various physiological processes in vertebrates. Melanocortins, the Mcr natural agonists, are pituitary peptide hormones including adrenocorticotropin and melanocyte-stimulating hormones. In mammals and birds, Mc1r is involved in pigmentation and expressed in melanocytes and melanoma. Activation of Mc1r leads to eumelanin production as well as to proliferation and survival of melanocytes in the epidermis. Here we report the molecular and evolutionary analysis of mc1r from three major fish models, the zebrafish Danio rerio, the medaka Oryzias latipes and the platyfish Xiphophorus maculatus. In contrast to some other melanocortin receptor genes, mc1r has been conserved as a single copy gene in divergent fish species. Its expression was detected in all organs tested in platyfish and medaka but was restricted to eyes, skin, brain and testis in zebrafish, this possibly reflecting differences in the distribution of extracutaneous melanophores. The mc1r gene was found to be expressed during embryogenesis, as well as in Xiphophorus hybrid melanoma, similar to human tumours. Protein sequence comparison between fish and mammalian Mc1r revealed a remarkable concordance between evolutionary and functional analyses for the identification of residues and regions critical for receptor function.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Cell Line
- Cloning, Molecular
- Cyprinodontiformes/genetics
- Evolution, Molecular
- Gene Dosage
- Melanocortins/agonists
- Melanocortins/genetics
- Melanocortins/metabolism
- Melanoma, Experimental
- Melanophores/metabolism
- Models, Genetic
- Molecular Sequence Data
- Oryzias/genetics
- Phylogeny
- Protein Structure, Tertiary
- Receptor, Melanocortin, Type 1/chemistry
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 1/metabolism
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Zebrafish/genetics
Collapse
Affiliation(s)
- Yvonne Selz
- University of Würzburg, Institute of Physiological Chemistry I, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Gerstenblith MR, Goldstein AM, Fargnoli MC, Peris K, Landi MT. Comprehensive evaluation of allele frequency differences of MC1R variants across populations. Hum Mutat 2007; 28:495-505. [PMID: 17279550 DOI: 10.1002/humu.20476] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The melanocortin 1 receptor (MC1R), a member of the G protein-coupled receptors superfamily, mediates the response to melanocortins and is currently the best-described contributor to normal pigment variation in humans. A remarkably large number of natural polymorphisms, or variants, of the MC1R gene have been identified in different populations. Some of these variants have been associated with specific hair and skin color phenotypes, the presence of freckling, and melanoma and nonmelanoma skin cancer risk. Interestingly, some MC1R variants have been associated with skin cancer beyond their effects on pigmentation. Although the red hair color variants (RHC variants) have been associated with skin cancer risk in the Celtic population, studies in darkly-pigmented Caucasian populations have demonstrated the importance of non-RHC MC1R variants on skin cancer risk as well. We have reviewed and compared allele frequency differences of MC1R variants across geographic regions. We observed large differences in the distribution of variants across populations, with a prominent difference between lightly and darkly-pigmented individuals. Moreover, among Caucasian groups, there were seven variants (p.V60L, p.V92M, p.D84E, p.R151C, p.R160W, p.R163Q, and p.D294H) with significantly different allele frequencies. Exploring differences in allele frequencies of MC1R variants across populations with varying pigmentation and differing skin cancer risk may improve our understanding of the complex relationship between MC1R, pigmentation, and carcinogenesis.
Collapse
Affiliation(s)
- Meg R Gerstenblith
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-7236, USA
| | | | | | | | | |
Collapse
|
35
|
Yuasa I, Umetsu K, Harihara S, Kido A, Miyoshi A, Saitou N, Dashnyam B, Jin F, Lucotte G, Chattopadhyay PK, Henke L, Henke J. Distribution of two Asian-related coding SNPs in the MC1R and OCA2 genes. Biochem Genet 2007; 45:535-42. [PMID: 17570052 DOI: 10.1007/s10528-007-9095-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 03/02/2007] [Indexed: 11/26/2022]
Abstract
Very little is known about the genes and mechanisms affecting skin lightening in Asian populations. In this study, two coding SNPs, c.G1129A (R163Q) at the MC1R (melanocortin 1 receptor) gene and c.A1962G (H615R) at the OCA2 (oculocutaneous albinism type II) gene, were investigated in a total of 1,809 individuals in 16 populations from various areas. The Q163 and R615 alleles prevailed almost exclusively in East and Southeast Asian populations. Wright's F (ST) was 0.445 for R163Q and 0.385 for H615R among the 16 populations. The frequency of the Q163 allele was higher in Northeast Asians than in Southeast Asians. The frequency of the R615 allele was highest in South China and unlikely to be associated with levels of ultraviolet radiation. This allele may be a good marker to study the genetic affinity among East Asians because of its restricted distribution and marked difference in allele frequency.
Collapse
Affiliation(s)
- I Yuasa
- Division of Legal Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Motokawa T, Kato T, Hashimoto Y, Katagiri T. Effect of Val92Met and Arg163Gln variants of the MC1R gene on freckles and solar lentigines in Japanese. ACTA ACUST UNITED AC 2007; 20:140-3. [PMID: 17371441 DOI: 10.1111/j.1600-0749.2007.00364.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melanocortin-1 receptor (MC1R) is a highly polymorphic gene. The variety of the variants is dependent on the ethnic background of the individual. In Caucasians, specific variants, such as Arg151Cys, Arg160Trp, and Asp294His, are strongly associated with red hair, skin cancer and pigmented lesions. In Asians, there is no report so far indicating an association such as that observed in Caucasians. Here, we performed an association study on melanogenic phenotypes in 245 Japanese individuals. We focused on freckles and solar lentigines as melanogenic phenotypes. The 92Met allele and the 163Arg allele were positively associated with freckles and severe solar lentigines; the 163Gln allele showed a negative association. Those subjects who were homozygous for both the 92Met and 163Arg alleles had a highly elevated risk of developing freckles (OR: 7.92; 95% CI: 1.52-39.6) and severe solar lentigines (OR: 4.08; 95% CI: 1.34-13.1). Our study is the first report to show a clear association of MC1R variants on melanogenic phenotypes in Asians and also indicates the importance of Arg163Gln. In vitro studies by other groups demonstrated that Val92Met impaired MC1R function but Arg163Gln did not. Based on these in vitro studies, we believe that the result we observed for Val92Met could be attributed to impaired MC1R function, while, for Arg163Gln, other factors, e.g. effect of other loci, need to be considered.
Collapse
Affiliation(s)
- Tomonori Motokawa
- Cutaneous Drug Research Laboratories, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama 244-0812, Japan.
| | | | | | | |
Collapse
|
37
|
Parra EJ. Human pigmentation variation: Evolution, genetic basis, and implications for public health. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2007; Suppl 45:85-105. [DOI: 10.1002/ajpa.20727] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|