1
|
Perez SM, Augustineli HS, Marcello MR. Utilizing C. elegans Spermatogenesis and Fertilization Mutants as a Model for Human Disease. J Dev Biol 2025; 13:4. [PMID: 39982357 PMCID: PMC11843878 DOI: 10.3390/jdb13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
The nematode C. elegans is a proven model for identifying genes involved in human disease, and the study of C. elegans reproduction, specifically spermatogenesis and fertilization, has led to significant contributions to our understanding of cellular function. Approximately 70 genes have been identified in C. elegans that control spermatogenesis and fertilization (spe and fer mutants). This review focuses on eight genes that have human orthologs with known pathogenic phenotypes. Using C. elegans to study these genes has led to critical developments in our understanding of protein domain function and human disease, including understanding the role of OTOF (the ortholog of C. elegans fer-1) in hearing loss, the contribution of the spe-39 ortholog VIPAS39 in vacuolar protein sorting, and the overlapping functions of spe-26 and KLHL10 in spermatogenesis. We discuss the cellular function of both the C. elegans genes and their human orthologs and the impact that C. elegans mutants and human variants have on cellular function and physiology. Utilizing C. elegans to understand the function of the genes reviewed here, and additional understudied and undiscovered genes, represents a unique opportunity to understand the function of variants that could lead to better disease diagnosis and clinical decision making.
Collapse
|
2
|
Okuno T, Takeuchi M, Shimizu S, Hiragi N, Ohshima Y. ARC syndrome accompanied with glaucoma in one of two affected siblings. Pediatr Int 2025; 67:e15875. [PMID: 40071532 PMCID: PMC11897928 DOI: 10.1111/ped.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 03/15/2025]
Affiliation(s)
- Takashi Okuno
- Department of Pediatrics, Faculty of Medical SciencesUniversity of FukuiYoshida‐gunJapan
| | - Motohiro Takeuchi
- Department of PediatricsNational Hospital Organization Tsuruga Medical CenterTsurugaJapan
| | - Sachi Shimizu
- Department of PediatricsNational Hospital Organization Tsuruga Medical CenterTsurugaJapan
| | - Naoko Hiragi
- Department of PediatricsNational Hospital Organization Tsuruga Medical CenterTsurugaJapan
| | - Yusei Ohshima
- Department of Pediatrics, Faculty of Medical SciencesUniversity of FukuiYoshida‐gunJapan
| |
Collapse
|
3
|
Kafol J, Gnidovec Strazisar B, Drole Torkar A, Homan M, Bertok S, Mlinaric M, Sikonja J, Kovač J, Perkovic Benedik M, Kersnik Levart T, Zerjav Tansek M, Praprotnik M, Battelino T, Debeljak M, Groselj U. VIPAS39 related arthrogryposis-renal dysfunction-cholestasis syndrome-case report and systematic review. Orphanet J Rare Dis 2024; 19:496. [PMID: 39736737 PMCID: PMC11684101 DOI: 10.1186/s13023-024-03486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome, a rare autosomal recessive disorder, exhibits genetic heterogeneity with the VIPAS39 gene pathological variants being a distinct contributor. RESULTS We present two related patients from Kosovo, describing the clinical, genetic, and therapeutic aspects of the syndrome. The identified novel VIPAS39 pathological variants (c.762G > A; c.1064_1082delinsAGTG) emphasize the complex phenotypic expression of ARC syndrome. A systematic literature review identified 8 VIPAS39-related ARC cases with notable variability in clinical features. Prognostically, patients fell into severe and milder groups, with some reaching adolescence. Our report aligns with others noting milder ARC courses and emphasizes the value of genetic testing, especially in atypical presentations. Challenges included incomplete literature data, early mortality affecting diagnostic workup, and limited VIPAS39-related ARC cases. Comparisons with the more prevalent VPS33B pathological variants revealed no distinct clinical differences. CONCLUSION Our study expands understanding of ARC syndrome, highlighting its genetic diversity and clinical variability. Milder presentations underscore diagnostic challenges and the potential prevalence of undiagnosed cases. Increased awareness and comprehensive genetic testing are crucial for early and accurate diagnosis.
Collapse
Affiliation(s)
- Jan Kafol
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Gnidovec Strazisar
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Pediatrics, General Hospital Celje, Celje, Slovenia
| | - Ana Drole Torkar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000, Ljubljana, Slovenia
| | - Matjaz Homan
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Gastroenterology, Hepatology and Nutrition, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Sara Bertok
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000, Ljubljana, Slovenia
| | - Matej Mlinaric
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000, Ljubljana, Slovenia
| | - Jaka Sikonja
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000, Ljubljana, Slovenia
| | - Jernej Kovač
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mirjana Perkovic Benedik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Child, Adolescent and Developmental Neurology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tanja Kersnik Levart
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Nephrology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Zerjav Tansek
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000, Ljubljana, Slovenia
| | - Marina Praprotnik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department for Pulmonary Diseases, University Children's Hospital Ljubljana, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000, Ljubljana, Slovenia
| | - Maruša Debeljak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Yokoyama T, O’Brien KJ, Franklin TM, Zuo BLG, Zuo MXG, Merideth MA, Introne WJ, Gochuico BR. Impairment of Renal Function in Hermansky-Pudlak Syndrome. Am J Nephrol 2024; 56:25-34. [PMID: 39383848 PMCID: PMC11810587 DOI: 10.1159/000541835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by defective biogenesis of lysosome-related organelles. The genetic types of HPS are associated with a spectrum of multisystemic clinical manifestations. Phenotypic features of HPS type 1 (HPS-1) or HPS-4, which are associated with defects in biogenesis of lysosome-related organelles complex-3 (BLOC-3), are generally more severe than those of HPS-3, HPS-5, or HPS-6, which are associated with defects in BLOC-2. A paucity of information is available about renal impairment in HPS. The objective of this study is to expand the understanding of kidney disease in HPS. METHODS Medical records and clinical data of patients with HPS evaluated at the National Institutes of Health Clinical Center from 1995 to 2020 were retrospectively reviewed. For patients with more than one visit, the most recent renal function and urinalysis tests were analyzed. Estimated glomerular filtration rate (eGFR) was calculated using standard equations (i.e., Chronic Kidney Disease Epidemiology Collaboration, Modification of Diet in Renal Disease). Kidney tissue sections from 5 patients with HPS-1 and 1 patient with HPS-6 were examined. RESULTS Records from 205 adults and 52 children with HPS were reviewed. Calculated eGFR of adult patients with different HPS types differed significantly, and calculated eGFR of pediatric and adult patients with BLOC-3 disorders was significantly lower than that of patients with BLOC-2 disorders. Linear regression analysis showed that renal function progressively decreases with age in patients with BLOC-3 or BLOC-2 disorders, but the rate of decline was more rapid in patients with BLOC-3 disorders compared to patients with BLOC-2 disorders. In adult patients with HPS-1, glucosuria was found in 4%, proteinuria in 12%, hematuria in 15%, high levels of urinary β2MG in 24%, and elevated urinary albumin to creatinine ratios in 9%. Histological examination of kidney tissue showed accumulation of intracellular deposits of ceroid lipofuscin in proximal renal tubular epithelial cells in patients with HPS-1. There was no evidence of fibrosis, and glomeruli, distal renal tubular epithelial cells, and interstitial regions appeared histologically normal. CONCLUSION Mild impairment of renal function is a feature of HPS. Kidneys of patients with HPS-1 contain proximal renal tubular intracellular deposits and no histologic evidence of fibrosis. Consistent with other manifestations of HPS, the phenotype of renal impairment is relatively more pronounced in patients with BLOC-3 disorders than in patients with BLOC-2 disorders. Strategies to avoid nephrotoxicity or renal tubular injury and to protect renal function should be considered for patients with HPS irrespective of age.
Collapse
Affiliation(s)
- Tadafumi Yokoyama
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin J. O’Brien
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tesiya M. Franklin
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ben Long G. Zuo
- Section of Fibrosis, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Mei Xing G. Zuo
- Section of Fibrosis, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Melissa A. Merideth
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J. Introne
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette R. Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Overlapping Machinery in Lysosome-Related Organelle Trafficking: A Lesson from Rare Multisystem Disorders. Cells 2022; 11:cells11223702. [PMID: 36429129 PMCID: PMC9688865 DOI: 10.3390/cells11223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosome-related organelles (LROs) are a group of functionally diverse, cell type-specific compartments. LROs include melanosomes, alpha and dense granules, lytic granules, lamellar bodies and other compartments with distinct morphologies and functions allowing specialised and unique functions of their host cells. The formation, maturation and secretion of specific LROs are compromised in a number of hereditary rare multisystem disorders, including Hermansky-Pudlak syndromes, Griscelli syndrome and the Arthrogryposis, Renal dysfunction and Cholestasis syndrome. Each of these disorders impacts the function of several LROs, resulting in a variety of clinical features affecting systems such as immunity, neurophysiology and pigmentation. This has demonstrated the close relationship between LROs and led to the identification of conserved components required for LRO biogenesis and function. Here, we discuss aspects of this conserved machinery among LROs in relation to the heritable multisystem disorders they associate with, and present our current understanding of how dysfunctions in the proteins affected in the disease impact the formation, motility and ultimate secretion of LROs. Moreover, we have analysed the expression of the members of the CHEVI complex affected in Arthrogryposis, Renal dysfunction and Cholestasis syndrome, in different cell types, by collecting single cell RNA expression data from the human protein atlas. We propose a hypothesis describing how transcriptional regulation could constitute a mechanism that regulates the pleiotropic functions of proteins and their interacting partners in different LROs.
Collapse
|
7
|
Yang H, Lin SZ, Guan SH, Wang WQ, Li JY, Yang GD, Zhang SL. Two novel mutations in the VPS33B gene in a Chinese patient with arthrogryposis, renal dysfunction and cholestasis syndrome 1: A case report. World J Clin Cases 2022; 10:11016-11022. [PMID: 36338198 PMCID: PMC9631127 DOI: 10.12998/wjcc.v10.i30.11016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/27/2022] [Accepted: 09/14/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The VPS33B (OMIM: 608552) gene is located on chromosome 15q26.1. We found a female infant with autosomal recessive arthrogryposis, renal dysfunction and cholestasis syndrome 1 (ARCS1) caused by mutation in VPS33B. The child was diagnosed with ARCS1 (OMIM: 208085) after the whole exome sequencing revealed two heterozygous mutations (c.96+1G>C, c.242delT) in the VPS33B gene.
CASE SUMMARY We report a Chinese female infant with neonatal cholestasis disorder, who was eventually diagnosed with ARCS1 by genetic analysis. Genetic testing revealed two new mutations (c.96+1G>C and c.242delT) in VPS33B, which is the causal gene. The patient was compound heterozygous, and her parents were both heterozygous.
CONCLUSION This study extends the mutational spectrum of the VPS33B gene to provide a molecular basis for the etiological diagnosis of ARCS1 and for genetic counseling of the family.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neonatology, Hainan Women and Children's Medical Center, Haikou 570100, Hainan Province, China
| | - Shuang-Zhu Lin
- Diagnosis and Treatment Center for Children, The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Shi-Hui Guan
- Diagnosis and Treatment Center for Children, The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Wan-Qi Wang
- Changchun University of Chinese Medicine, Changchun 130000, Jilin Province, China
| | - Jia-Yi Li
- Changchun University of Chinese Medicine, Changchun 130000, Jilin Province, China
| | - Gui-Dan Yang
- Department of Neonatology, Hainan Women and Children's Medical Center, Haikou 570100, Hainan Province, China
| | - Su-Li Zhang
- Department of Neonatology, Hainan Women and Children's Medical Center, Haikou 570100, Hainan Province, China
| |
Collapse
|
8
|
Penon-Portmann M, Westbury SK, Li L, Pluthero FG, Liu RJY, Yao HHY, Geng RSQ, Warner N, Muise AM, Lotz-Esquivel S, Howell-Ramirez M, Saborío-Chacon P, Fernández-Rojas S, Saborio-Rocafort M, Jiménez-Hernández M, Wang-Zuniga C, Cartín-Sánchez W, Shieh JT, Badilla-Porras R, Kahr WHA. Platelet VPS16B is dependent on VPS33B expression, as determined in two siblings with arthrogryposis, renal dysfunction, and cholestasis syndrome. J Thromb Haemost 2022; 20:1712-1719. [PMID: 35325493 DOI: 10.1111/jth.15711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Platelet α-granule biogenesis in precursor megakaryocytes is critically dependent on VPS33B and VPS16B, as demonstrated by the platelet α-granule deficiency seen in the rare multisystem disorder arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome associated with biallelic pathogenic variants in VPS33B and VIPAS39 (encoding VPS16B). VPS33B and VPS16B are ubiquitously expressed proteins that are known to interact and play key roles in protein sorting and trafficking between subcellular locations. However, there remain significant gaps in our knowledge of the nature of these interactions in primary cells from patients with ARC syndrome. OBJECTIVES To use primary cells from patients with ARC syndrome to better understand the interactions and roles of VPS33B and VPS16B in platelets and precursor megakaryocytes. PATIENTS/METHODS The proband and his male sibling were clinically suspected to have ARC syndrome. Confirmatory genetic testing and platelet phenotyping, including electron microscopy and protein expression analysis, was performed with consent in a research setting. RESULTS We describe the first case of ARC syndrome identified in Costa Rica, associated with a novel homozygous nonsense VPS33B variant that is linked with loss of expression of both VPS33B and VPS16B in platelets. CONCLUSION These results indicate that stable expression of VPS16B in platelets, their precursor megakaryocytes, and other cells is dependent on VPS33B. We suggest that systematic evaluation of primary cells from patients with a range of VPS33B and VIPAS39 variants would help to elucidate the interactions and functions of these proteins.
Collapse
Affiliation(s)
- Monica Penon-Portmann
- Servicio de Genética Médica y Metabolismo, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social (CCSS) & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
- Department of Pediatrics & Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Sarah K Westbury
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ling Li
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fred G Pluthero
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard J Y Liu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Helen H Y Yao
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ryan S Q Geng
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
- Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| | - Stephanie Lotz-Esquivel
- Servicio de Genética Médica y Metabolismo, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social (CCSS) & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
- Clínica Multidisciplinaria de Enfermedades Raras y Huérfanas, Departamento de Medicina Interna, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Marianela Howell-Ramirez
- Servicio de Nefrología, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
| | - Pablo Saborío-Chacon
- Servicio de Nefrología, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
| | - Sara Fernández-Rojas
- Servicio de Nefrología, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
| | - Manuel Saborio-Rocafort
- Servicio de Genética Médica y Metabolismo, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social (CCSS) & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
- Programa Nacional de Tamizaje Neonatal, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Mildred Jiménez-Hernández
- Programa Nacional de Tamizaje Neonatal, Caja Costarricense de Seguro Social, San José, Costa Rica
- Laboratorio Nacional de Tamizaje Neonatal y Alto Riesgo, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Carolina Wang-Zuniga
- Servicio de Dermatología, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
| | - Walter Cartín-Sánchez
- Laboratorio de Estudios Especializados e Investigación, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Joseph T Shieh
- Department of Pediatrics & Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Ramses Badilla-Porras
- Servicio de Genética Médica y Metabolismo, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social (CCSS) & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
- Laboratorio Nacional de Tamizaje Neonatal y Alto Riesgo, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Walter H A Kahr
- Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Yu L, Li D, Zhang T, Xiao Y, Wang Y, Ge T. One case of arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome featuring an incomplete and mild phenotype. BMC Nephrol 2022; 23:228. [PMID: 35761207 PMCID: PMC9235188 DOI: 10.1186/s12882-022-02851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome is a rare disease with a high mortality rate caused by VPS33B or VIPAS39 mutations. ARC syndrome typically presents with arthrogryposis, renal tubular leak and neonatal cholestatic jaundice, and most patients with this disease do not survive beyond one year.
Case presentation
Here, we report the case of a 13-year-old girl with ARC featuring an incomplete and mild phenotype with novel compound heterozygous mutations of VPS33B. The patient presented with arthrogryposis (claw-shaped limbs), ichthyosis, jaundice, and pruritus. Laboratory tests revealed highly evaluated levels of total bilirubin (TB), direct bilirubin (DB), and total bile acid (TBA) as well as normal levels of gamma-glutamyltransferase (GGT). However, signs of renal dysfunction, as well as other manifestations of ARC syndrome, including nervous system abnormalities, deafness, and failure to thrive, were not observed. The patient’s clinical symptoms of jaundice and pruritus were significantly alleviated by administration of ursodeoxycholic acid. Whole-exome sequencing (WES) revealed novel compound heterozygous mutations of VPS33B, c.1081 C > T (p.Q361X,257)/c.244 T > C (p.C82R). Both variants were predicted to be pathogenic in silico and have never been reported previously. To date, the patients’ cholestatic jaundice has been well controlled with continuous treatment of ursodeoxycholic acid.
Conclusions
We report the case of a Chinese female with ARC including novel compound heterozygous mutations of VPS33B and an incomplete and mild phenotype. Early diagnosis and suitable symptomatic therapies are critical for the management of ARC patients with mild manifestations and prolonged lifespan.
Collapse
|
10
|
Hepatic Vps33b deficiency aggravates cholic acid-induced cholestatic liver injury in male mice. Acta Pharmacol Sin 2022; 43:933-940. [PMID: 34253877 DOI: 10.1038/s41401-021-00723-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Vacuolar protein sorting 33B (VPS33B) is important for intracellular vesicular trafficking process and protein interactions, which is closely associated with the arthrogryposis, renal dysfunction, and cholestasis syndrome. Our previous study has shown a crucial role of Vps33b in regulating metabolisms of bile acids and lipids in hepatic Vps33b deficiency mice with normal chow, but it remains unknown whether VPS33B could contribute to cholestatic liver injury. In this study we investigated the effects of hepatic Vps33b deficiency on bile acid metabolism and liver function in intrahepatic cholestatic mice. Cholestasis was induced in Vps33b hepatic knockout and wild-type male mice by feeding 1% CA chow diet for 5 consecutive days. We showed that compared with the wild-type mice, hepatic Vps33b deficiency greatly exacerbated CA-induced cholestatic liver injury as shown in markedly increased serum ALT, AST, and ALP activities, serum levels of total bilirubin, and total bile acid, as well as severe hepatocytes necrosis and inflammatory infiltration. Target metabolomics analysis revealed that hepatic Vps33b deficiency caused abnormal profiles of bile acids in cholestasis mice, evidenced by the upregulation of conjugated bile acids in serum, liver, and bile. We further demonstrated that the metabolomics alternation was accompanied by gene expression changes in bile acid metabolizing enzymes and transporters including Cyp3a11, Ugt1a1, Ntcp, Oatp1b1, Bsep, and Mrp2. Overall, these results suggest a crucial role of hepatic Vps33b deficiency in exacerbating cholestasis and liver injury, which is associated with the altered metabolism of bile acids.
Collapse
|
11
|
Linhares ND, Fagundes EDT, Ferreira AR, Queiroz TCN, da Silva LR, Pena SDJ. Mild Phenotype of Arthrogryposis, Renal Dysfunction, and Cholestasis Syndrome 1 Caused by a Novel VPS33B Variant. Front Genet 2022; 13:796759. [PMID: 35281816 PMCID: PMC8913578 DOI: 10.3389/fgene.2022.796759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The arthrogryposis, renal dysfunction, and cholestasis syndrome (ARCS) is an autosomal recessive multisystem disease caused by variants in VPS33B or VIPAS39. The classical presentation includes congenital joint contractures, renal tubular dysfunction, cholestasis, and early death. Additional features include ichthyosis, central nervous system malformations, platelet dysfunction, and severe failure to thrive. We studied three patients with cholestasis, increased aminotransferases, normal gamma-glutamyl transferase, and developmental and language delay. Whole exome sequencing analysis identified VPS33B variants in all patients: patients 1 and 2 presented a novel homozygous variant at position c.1148T>A. p.(Ile383Asn), and patient 3 was compound heterozygous for the same c.1148T>A. variant, in addition to the c.940-2A>G. variant. ARCS is compatible with the symptomatology presented by the studied patients. However, most patients that have been described in the literature with ARCS had severe failure to thrive and died in the first 6 months of life. The three patients studied here have a mild ARCS phenotype with prolonged survival. Consequently, we believe that the molecular analysis of the VPS33B and VIPAS39 should be considered in patients with normal gamma-glutamyl transferase cholestasis.
Collapse
Affiliation(s)
- Natália Duarte Linhares
- Laboratório de Genômica Clínica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eleonora Druve Tavares Fagundes
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre Rodrigues Ferreira
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Sergio D. J. Pena
- Laboratório de Genômica Clínica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório Gene—Núcleo de Genética Médica, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Satomura Y, Bessho K, Nawa N, Kondo H, Ito S, Togawa T, Yano M, Yamano Y, Inoue T, Fukui M, Onuma S, Fukuoka T, Yasuda K, Kimura T, Tachibana M, Kitaoka T, Nabatame S, Ozono K. Novel gene mutations in three Japanese patients with ARC syndrome associated mild phenotypes: a case series. J Med Case Rep 2022; 16:60. [PMID: 35151346 PMCID: PMC8841066 DOI: 10.1186/s13256-022-03279-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Arthrogryposis, renal dysfunction, and cholestasis syndrome (ARCS) is a rare autosomal recessive disorder caused by mutations in VPS33B (ARCS1) and VIPAS39 (ARCS2). As per literature, most patients with ARCS died of persistent infections and bleeding by the age of 1 year. We report the first Japanese cases with ARCS1 and ARCS2 who presented with mild phenotypes and were diagnosed via genetic testing. Case presentation Case 1: A 6-year-old boy born to nonconsanguineous Japanese parents presented with jaundice and normal serum gamma-glutamyl transferase (GGT) levels, proteinuria, bilateral nerve deafness, motor delay, failure to thrive, and persistent pruritus. After cochlear implantation for deafness at the age of 2 years, despite a normal platelet count and prothrombin time-international normalized ratio, the patient presented with persistent bleeding that required hematoma removal. Although he did not show any obvious signs of arthrogryposis, he was suspected to have ARCS based on other symptoms. Compound heterozygous mutations in VPS33B were identified using targeted next-generation sequencing (NGS), which resulted in no protein expression. Case 2: A 7-month-old boy, the younger brother of case 1, presented with bilateral deafness, renal tubular dysfunction, failure to thrive, and mild cholestasis. He had the same mutations that were identified in his brother’s VPS33B. Case 3: A 24-year-old man born to nonconsanguineous Japanese parents was suspected to have progressive familial intrahepatic cholestasis 1 (PFIC1) in his childhood on the basis of low GGT cholestasis, renal tubular dysfunction, sensory deafness, mental retardation, and persistent itching. A liver biopsy performed at the age of 16 years showed findings that were consistent with PFIC1. He developed anemia owing to intraperitoneal hemorrhage from a peripheral intrahepatic artery the day after the biopsy, and transcatheter arterial embolization was required. ARCS2 was diagnosed using targeted NGS, which identified novel compound heterozygous mutations in VIPAS39. Conclusions The first Japanese cases of ARCS1 and ARCS2 diagnosed using genetic tests were reported in this study. These cases are milder than those previously reported. For patients with ARCS, invasive procedures should be performed with meticulous care to prevent bleeding.
Collapse
|
13
|
Zhu Y, Chen D. Two novel mutations in VPS33B gene cause a milder ARC syndrome with prolonged survival in a 12-year-old patient: Case report. Front Pediatr 2022; 10:1041080. [PMID: 36568436 PMCID: PMC9768213 DOI: 10.3389/fped.2022.1041080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome is a rare autosomal recessive disease caused by VPS33B and VIPAR gene mutations. The main clinical manifestations are congenital joint contracture, renal dysfunction mainly characterized by distal renal tubular dysfunction, and low glutamyltransferase cholestasis. Most patients with ARC die within 2 years of birth. Here, we report the case of a 12-year-old girl with an ARC phenotype who experienced long-term survival with only mild clinical symptoms. We detected two new heterozygous mutation sites of the VPS33B gene in this child, c.1081C > T (p.GLN361X, 257) and c.244T > C (p.Cys82Arg), through the gene detection technique; the tertiary structure of the protein was predicted by using the SWISS-model. We further reviewed the literature and summarized the clinical manifestations and gene loci of 19 ARC syndrome patients with long-term survival reported so far.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Emergency/Critical Care Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Dongmei Chen
- Department of Emergency/Critical Care Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Mbiandjeu S, Balduini A, Malara A. Megakaryocyte Cytoskeletal Proteins in Platelet Biogenesis and Diseases. Thromb Haemost 2021; 122:666-678. [PMID: 34218430 DOI: 10.1055/s-0041-1731717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Thrombopoiesis governs the formation of blood platelets in bone marrow by converting megakaryocytes into long, branched proplatelets on which individual platelets are assembled. The megakaryocyte cytoskeleton responds to multiple microenvironmental cues, including chemical and mechanical stimuli, sustaining the platelet shedding. During the megakaryocyte's life cycle, cytoskeletal networks organize cell shape and content, connect them physically and biochemically to the bone marrow vascular niche, and enable the release of platelets into the bloodstream. While the basic building blocks of the cytoskeleton have been studied extensively, new sets of cytoskeleton regulators have emerged as critical components of the dynamic protein network that supports platelet production. Understanding how the interaction of individual molecules of the cytoskeleton governs megakaryocyte behavior is essential to improve knowledge of platelet biogenesis and develop new therapeutic strategies for inherited thrombocytopenias caused by alterations in the cytoskeletal genes.
Collapse
Affiliation(s)
- Serge Mbiandjeu
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
15
|
A Link between Intrahepatic Cholestasis and Genetic Variations in Intracellular Trafficking Regulators. BIOLOGY 2021; 10:biology10020119. [PMID: 33557414 PMCID: PMC7914782 DOI: 10.3390/biology10020119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Cholestasis refers to a medical condition in which the liver is not capable of secreting bile. The consequent accumulation of toxic bile components in the liver leads to liver failure. Cholestasis can be caused by mutations in genes that code for proteins involved in bile secretion. Recently mutations in other genes have been discovered in patients with cholestasis of unknown origin. Interestingly, many of these newly discovered genes code for proteins that regulate the intracellular distribution of other proteins, including those involved in bile secretion. This group of genes thus suggests the deregulated intracellular distribution of bile-secreting proteins as an important but still poorly understood mechanism that underlies cholestasis. To expedite a better understanding of this mechanism, we have reviewed these genes and their mutations and we discuss these in the context of cholestasis. Abstract Intrahepatic cholestasis is characterized by the accumulation of compounds in the serum that are normally secreted by hepatocytes into the bile. Genes associated with familial intrahepatic cholestasis (FIC) include ATP8B1 (FIC1), ABCB11 (FIC2), ABCB4 (FIC3), TJP2 (FIC4), NR1H4 (FIC5) and MYO5B (FIC6). With advanced genome sequencing methodologies, additional mutated genes are rapidly identified in patients presenting with idiopathic FIC. Notably, several of these genes, VPS33B, VIPAS39, SCYL1, and AP1S1, together with MYO5B, are functionally associated with recycling endosomes and/or the Golgi apparatus. These are components of a complex process that controls the sorting and trafficking of proteins, including those involved in bile secretion. These gene variants therefore suggest that defects in intracellular trafficking take a prominent place in FIC. Here we review these FIC-associated trafficking genes and their variants, their contribution to biliary transporter and canalicular protein trafficking, and, when perturbed, to cholestatic liver disease. Published variants for each of these genes have been summarized in table format, providing a convenient reference for those who work in the intrahepatic cholestasis field.
Collapse
|
16
|
Distal Arthrogryposis: A Clue to the Etiology of Neonatal Cholestasis. Indian J Pediatr 2020; 87:869-870. [PMID: 32239418 DOI: 10.1007/s12098-020-03248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
|
17
|
A Novel Mutation of VPS33 B Gene Associated with Incomplete Arthrogryposis-Renal Dysfunction-Cholestasis Phenotype. Case Rep Genet 2020; 2020:8872294. [PMID: 33029437 PMCID: PMC7532373 DOI: 10.1155/2020/8872294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/28/2020] [Accepted: 09/12/2020] [Indexed: 02/05/2023] Open
Abstract
Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome is an autosomal recessive disorder caused by mutations of the VPS33B encoding the vacuolar protein sorting 33B (VPS33B), which is involved in the intracellular protein sorting and vesicular trafficking. We report a rare case of ARC syndrome without arthrogryposis caused by a novel mutation of VPS33B. A female patient of Greek origin presented on the 14th day of life with renal tubular acidosis, Fanconi syndrome, nephrogenic diabetes insipidus, and cholestasis with normal gamma-glutamyl transpeptidase, without arthrogryposis and dysmorphic features. She was born to apparently healthy, nonconsanguineous parents. Additional features included dry and scaling skin, generalized hypotonia, hypoplastic corpus callosum, neurodevelopmental delay, failure to thrive, short stature, recurrent febrile episodes with and without infections, and gastrointestinal bleeding. DNA testing revealed that the patient was homozygous for the novel c.1098_1099delTG (p.Glu367Alafs∗17) mutation of exon 14 of VPS33B gene (NM_018668) on chromosome 15q26.1, leading to a nonsense frameshift variant of VPS33B with premature termination of translation. Her parents were heterozygous for the same VPS33B mutation. The prognosis was predictably poor in the context of the intractable polyuria necessitating long-term parenteral fluid administration via indwelling central catheter leading to catheter-related sepsis, to which she eventually succumbed at the age of 7 months. This is the first published VPS33B mutation in an ARC patient of Greek origin. The current case adds to the spectrum of ARC-associated VPS33B mutations and provides evidence supporting the existence of incomplete ARC phenotype. Increased awareness and early genetic testing for ARC are suggested in cases with isolated cholestasis and/or renal tubular dysfunction, even in the absence of arthrogryposis.
Collapse
|
18
|
Zhang J, Tracy C, Pasare C, Zeng J, Krämer H. Hypersensitivity of Vps33B mutant flies to non-pathogenic infections is dictated by aberrant activation of p38b MAP kinase. Traffic 2020; 21:578-589. [PMID: 32677257 DOI: 10.1111/tra.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/29/2022]
Abstract
Loss of the arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-linked Vps33B protein results in exaggerated inflammatory responses upon activation of receptors of the innate immune system in both vertebrates and flies. However, little is known about the signaling elements downstream of these receptors that are critical for the hypersensitivity of Vps33B mutants. Here, we show that p38b MAP kinase contributes to the enhanced inflammatory responses in flies lacking Vps33B. Loss of p38b mitogen-activated protein kinase (MAPK) reduces enhanced inflammatory responses and prolongs the survival of infected Vps33B deficient flies. The function of p38 MAPK is not limited to its proinflammatory effects downstream of the PGRP-LC receptor as p38 also modulates endosomal trafficking of PGRP-LC and phagocytosis of bacteria. Expression of constitutively active p38b MAPK, but not dominant negative p38b MAPK enhances accumulation of endocytosed PGRP-LC receptors or phagocytosed bacteria within cells. Moreover, p38 MAPK is required for induction of macropinocytosis, an alternate pathway for the downregulation of immune receptors. Together, our data indicate that p38 MAPK activates multiple pathways that can contribute to the dysregulation of innate immune signaling in ARC syndrome.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Charles Tracy
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Helmut Krämer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Duong MD, Rose CM, Reidy KJ, Del Rio M. An uncommon case of arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome and review of the renal involvement: Answers. Pediatr Nephrol 2020; 35:249-251. [PMID: 31463586 DOI: 10.1007/s00467-019-04338-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Minh Dien Duong
- Albert Einstein College of Medicine, Department of Pediatrics, Divisions of Nephrology and Genetics Bronx, Children's Hospital at Montefiore, Bronx, NY, 10467, USA.
| | - Chelsi M Rose
- Albert Einstein College of Medicine, Department of Pediatrics, Divisions of Nephrology and Genetics Bronx, Children's Hospital at Montefiore, Bronx, NY, 10467, USA.,West Virginia School of Osteopathic Medicine, Lewisburg, WV, 24901, USA
| | - Kimberly J Reidy
- Albert Einstein College of Medicine, Department of Pediatrics, Divisions of Nephrology and Genetics Bronx, Children's Hospital at Montefiore, Bronx, NY, 10467, USA
| | - Marcela Del Rio
- Albert Einstein College of Medicine, Department of Pediatrics, Divisions of Nephrology and Genetics Bronx, Children's Hospital at Montefiore, Bronx, NY, 10467, USA
| |
Collapse
|
21
|
Lee MJ, Suh CR, Shin JH, Lee JH, Lee Y, Eun BL, Yoo KH, Shim JO. A Novel VPS33B Variant Identified by Exome Sequencing in a Patient with Arthrogryposis-Renal Dysfunction-Cholestasis Syndrome. Pediatr Gastroenterol Hepatol Nutr 2019; 22:581-587. [PMID: 31777725 PMCID: PMC6856508 DOI: 10.5223/pghn.2019.22.6.581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/31/2019] [Indexed: 11/15/2022] Open
Abstract
Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome is a rare autosomal recessive multisystemic disease that is associated with the liver, kidney, skin, and central nervous and musculoskeletal systems. ARC occurs as a result of mutations in the VPS33B (Vacuolar protein sorting 33 homolog B) or VIPAR (VPS33B interacting protein, apical-basolateral polarity regulator) genes. A female infant presented with neonatal cholestasis with a severe clinical outcome. She was diagnosed with ARC syndrome using targeted exome sequencing (TES). Exome sequencing revealed compound heterozygous mutations, c.707A>T and c.239+5G>A, in VPS33B, where c.707A>T was a novel variant; the resultant functional protein defects were predicted via in silico analysis. c.239+5G>A, a pathogenic mutation that affects splicing, is found in less than 0.1% of the general population. Invasive techniques, such as liver biopsies, did not contribute to a differential diagnosis of ARC syndrome; thus, early TES together with clinical presentations constituted an apparently accurate diagnostic procedure.
Collapse
Affiliation(s)
- Min Ju Lee
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Chae Ri Suh
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Jeong Hee Shin
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Jee Hyun Lee
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Yoon Lee
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Baik-Lin Eun
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Kee Hwan Yoo
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Jung Ok Shim
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Qiu YL, Liu T, Abuduxikuer K, Hao CZ, Gong JY, Zhang MH, Li LT, Yan YY, Li JQ, Wang JS. Novel missense mutation in VPS33B is associated with isolated low gamma-glutamyltransferase cholestasis: Attenuated, incomplete phenotype of arthrogryposis, renal dysfunction, and cholestasis syndrome. Hum Mutat 2019; 40:2247-2257. [PMID: 31479177 DOI: 10.1002/humu.23770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 01/04/2023]
Abstract
The typical phenotype of arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome involves three cardinal symptoms as the name describes, harboring biallelic mutations on VPS33B or VIPAS39. Except for ARC syndrome, low gamma-glutamyltransferase (GGT) cholestasis often implies hereditary hepatopathy of different severity; however, some remain undiagnosed. Several monogenic defects typically with multiorgan manifestations may only present liver dysfunction at times, such as DGUOK defect and AGL defect. Previously, four VPS33B mutated cases were reported without arthrogryposis, or with less severe symptoms and longer lifespan, indicating the possibility of incomplete ARC phenotype of isolated hepatopathy. So we retrospectively reviewed all patients with confirmed VPS33B/VIPARS39 defect in our center and identified three presenting isolated low-GGT cholestasis with intractable pruritus. Distinguished from others with typical ARC phenotype, these patients did not suffer the other two typical characteristics, survived much longer, and shared a novel missense VPS33B variation c.1726T>C, p.Cys576Arg, causing declined protein expression and abolished interaction with VIPAS39 in-vitro. Serum bile acid profiles of our VPS33B/VIPAS39 mutated patients revealed similar changes to primary defect of bile salt export pump, among which those with isolated cholestasis phenotype had a higher level of total secondary bile acids than that with typical ARC phenotype, indicating the partial residual function of VPS33B.
Collapse
Affiliation(s)
- Yi-Ling Qiu
- The Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China.,The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Teng Liu
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | | | - Chen-Zhi Hao
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing-Yu Gong
- The Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Mei-Hong Zhang
- The Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Li-Ting Li
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Yan-Yan Yan
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jia-Qi Li
- The Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jian-She Wang
- The Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China.,The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
23
|
A Novel VPS33B Mutation Causing a Mild Phenotype of Arthrogryposis, Renal dysfunction, and Cholestasis Syndrome. J Pediatr Gastroenterol Nutr 2019; 69:e55-e56. [PMID: 31343487 DOI: 10.1097/mpg.0000000000002306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
24
|
Nicastro E, Di Giorgio A, Marchetti D, Barboni C, Cereda A, Iascone M, D'Antiga L. Diagnostic Yield of an Algorithm for Neonatal and Infantile Cholestasis Integrating Next-Generation Sequencing. J Pediatr 2019; 211:54-62.e4. [PMID: 31160058 DOI: 10.1016/j.jpeds.2019.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/15/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the performance of a diagnostic protocol for neonatal/infantile cholestasis in which the main clinical patterns steered the early use of different genetic testing strategies. STUDY DESIGN An observational study was conducted between 2012 and 2017 in a tertiary care setting on a prospective cohort of children with cholestasis occurring at ≤1 year of age and persisting ≥6 weeks, to measure the detection rate of underlying monogenic diseases. After the exclusion of biliary atresia, a clinically driven genetic testing was performed, entailing 3 different approaches with different wideness: confirmatory single-gene testing; focused virtual panels; and wide search through trio whole-exome sequencing. RESULTS We enrolled 125 children (66 female, median age 2 months); 96 (77%) patients had hypocholic stools and were evaluated rapidly to exclude biliary atresia, which was the final diagnosis in 74 (59%). Overall, 50 patients underwent genetic testing, 6 with single confirmatory gene testing, 38 through panels, and 6 with trio whole-exome sequencing because of complex phenotype. The genetic testing detection rate was 60%: the final diagnosis was Alagille syndrome in 11, progressive familial intrahepatic cholestasis type 2 in 6, alpha-1-antitrypsin deficiency in 3, and progressive familial intrahepatic cholestasis type 3 in 2; a further 7 genetic conditions were identified in 1 child each. Overall, only 18 of 125 (14%) remained with an indeterminate etiology. CONCLUSIONS This protocol combining clinical and genetic assessment proved to be an effective diagnostic tool for neonatal/infantile cholestasis, identifying inherited disorders with a high detection rate. It also could allow a noninvasive diagnosis in children presenting with colored stools.
Collapse
Affiliation(s)
- Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy.
| | - Angelo Di Giorgio
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Daniela Marchetti
- Medical Genetics Laboratory, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Barboni
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Cereda
- Clinical Genetics, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Iascone
- Medical Genetics Laboratory, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Lorenzo D'Antiga
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
25
|
van der Beek J, Jonker C, van der Welle R, Liv N, Klumperman J. CORVET, CHEVI and HOPS – multisubunit tethers of the endo-lysosomal system in health and disease. J Cell Sci 2019; 132:132/10/jcs189134. [DOI: 10.1242/jcs.189134] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Multisubunit tethering complexes (MTCs) are multitasking hubs that form a link between membrane fusion, organelle motility and signaling. CORVET, CHEVI and HOPS are MTCs of the endo-lysosomal system. They regulate the major membrane flows required for endocytosis, lysosome biogenesis, autophagy and phagocytosis. In addition, individual subunits control complex-independent transport of specific cargoes and exert functions beyond tethering, such as attachment to microtubules and SNARE activation. Mutations in CHEVI subunits lead to arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, while defects in CORVET and, particularly, HOPS are associated with neurodegeneration, pigmentation disorders, liver malfunction and various forms of cancer. Diseases and phenotypes, however, vary per affected subunit and a concise overview of MTC protein function and associated human pathologies is currently lacking. Here, we provide an integrated overview on the cellular functions and pathological defects associated with CORVET, CHEVI or HOPS proteins, both with regard to their complexes and as individual subunits. The combination of these data provides novel insights into how mutations in endo-lysosomal proteins lead to human pathologies.
Collapse
Affiliation(s)
- Jan van der Beek
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Caspar Jonker
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Reini van der Welle
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
26
|
del Brío Castillo R, Squires JE, McKiernan PJ. A novel mutation in VPS33B gene causing a milder ARC syndrome phenotype with prolonged survival. JIMD Rep 2019; 47:4-8. [PMID: 31240160 PMCID: PMC6498830 DOI: 10.1002/jmd2.12027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/15/2019] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION ARC (arthrogryposis, renal dysfunction, and cholestasis) syndrome is an uncommon multisystem disorder that entails a very poor prognosis. It is caused by mutations in either VPS33B or VIPAS39 gene, both playing a key role in intracellular trafficking. We report two siblings born to first cousin parents with a novel mutation in VPS33B who have both shown prolonged survival. CASES PRESENTATION The index patient presented with bilateral hip dysplasia and arthrogryposis, failure to thrive, undernourishment, developmental delay, and low gamma-glutamyl transferase cholestasis. She at age 2 years underwent external biliary diversion with improvement in pruritus but liver disease continued to progress. She developed stomal bleeding at 7 years of age and liver biopsy displayed cirrhosis. Her 3-year-old sibling showed a similar trajectory as well as he had ichthyotic skin with excoriations. Their renal involvement was mild and stable. Genetic analysis in both patients revealed a novel homozygous mutation in NM_018668.4 (VPS33B):c.1157A > C (p.His386Pro). CONCLUSIONS ARC syndrome is a severe disorder with few patients reported to survive beyond 12 months of age. This report discloses a novel mutation in the VPS33B gene and describes a phenotype with prolonged survival, mild renal involvement, and progressive liver disease.
Collapse
Affiliation(s)
| | - James E. Squires
- Pediatric HepatologyChildren's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical CenterPittsburghPennsylvania
| | - Patrick J. McKiernan
- Pediatric HepatologyChildren's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical CenterPittsburghPennsylvania
| |
Collapse
|
27
|
Fu K, Wang C, Gao Y, Fan S, Zhang H, Sun J, Jiang Y, Liu C, Guan L, Liu J, Huang M, Bi H. Metabolomics and Lipidomics Reveal the Effect of Hepatic Vps33b Deficiency on Bile Acids and Lipids Metabolism. Front Pharmacol 2019; 10:276. [PMID: 30967781 PMCID: PMC6439481 DOI: 10.3389/fphar.2019.00276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular protein sorting-associated protein 33B (VPS33B) plays important roles in hepatic polarity, which directly maintains the functional structure of the liver. It has reported that VPS33B has close association with arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome. Unfortunately, no further studies were conducted to reveal the role of Vps33b in the homeostasis of bile acids. In the current study, hepatic Vps33b-depleted male mice were used to investigate the metabolomics and lipidomics profiles of hepatic Vps33b deficiency based on ultrahigh-performance liquid chromatography coupled with an electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS) system. Hepatic Vps33b-depleted male mice displayed cholestasis and slight liver damage with increased serum levels of ALT, AST, ALP and T-Bili compared to wild-type mice. Targeted metabolomics analysis of bile acids revealed that increased taurine-conjugated bile acids accumulated in the serum of hepatic Vps33b-depleted mice, while unconjugated bile acids were prone to decrease, accompanied by the regulation of bile acid homeostasis-related genes. In addition, lipid profiles were significantly altered with the lack of Vps33b in the liver. A variety of lipids, such as triglycerides and sphingomyelins, were significantly decreased in the liver and increased in the serum of hepatic Vps33b-depleted mice compared to those in wild-type mice. Our study demonstrated that Vps33b influences the progress of liver metabolism both in bile acid circulation and lipid metabolism, which is involved in the progression of liver cholestasis in mice.
Collapse
Affiliation(s)
- Kaili Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Conghui Wang
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shicheng Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huizhen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahong Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Conghui Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihuan Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junling Liu
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Sturm E, Hartleif S. Practical Approach to the Jaundiced Infant. PEDIATRIC HEPATOLOGY AND LIVER TRANSPLANTATION 2019:99-127. [DOI: 10.1007/978-3-319-96400-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Wang C, Cheng Y, Zhang X, Li N, Zhang L, Wang S, Tong X, Xu Y, Chen GQ, Cheng S, Fan X, Liu J. Vacuolar Protein Sorting 33B Is a Tumor Suppressor in Hepatocarcinogenesis. Hepatology 2018; 68:2239-2253. [PMID: 29729199 DOI: 10.1002/hep.30077] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022]
Abstract
Polarity defects are frequently involved in liver diseases, such as chronic hepatitis and hepatocellular carcinoma (HCC). It was reported that vacuolar protein sorting 33B (Vps33b) plays critical roles in the maintenance of hepatocyte polarity; however, the functional roles and mechanisms of Vps33b in HCC occurrence and progression remain unknown. First of all, we showed that Vps33b is down-regulated in human and mouse liver cancer samples, and the low expression levels of Vps33b correlate with the poor prognosis of many HCC patients. Liver-specific Vps33b deficiency induces liver damage, progressive hepatitis, fibrosis, and HCC in male mice, indicating that Vps33b is a crucial contributory factor to hepatocarcinogenesis. Vps33b deficiency-caused liver damage was primarily due to the disorders of structural and functional hepatocyte polarity, which were reflected by the decreased protein levels of E-cadherin because of inaccurate location to lysosomes and polarity defects at both apical and lateral plasma membrane proteins. The results of a mechanism study revealed that Vps33b interacts with VPS33B-interacting protein, which is involved in polarity and apical protein restriction; vesicle-trafficking protein Sec22b; and Flotillin-1 in hepatocytes and is in charge of the normal distribution of polarity-determined proteins. Expression levels of Vps33b negatively correlated with the degree of inflammatory cell infiltration in livers from diethylnitrosamine-induced or transgenic HCC mouse models, and the inflammatory stimuli suppressed the expression of Vps33b in vitro. Conclusion: Down-regulation of Vps33b expression is a critical step for inflammation-driven HCC, and Vps33b serves as an important tumor suppressor in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Conghui Wang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqiang Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiuping Zhang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Nan Li
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdian Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Abstract
Pediatric cholestasis often results from mechanical obstruction of the biliary tract or dysfunction in the processes of forming and excreting bile. Various genetic defects with resulting molecular inaccuracies are increasingly being recognized, often with specific clinical characteristics. Identifying of the molecular abnormality can enable implementation of timely, appropriate treatment in some affected individuals and provide prognostic indicators for both families and care teams.
Collapse
Affiliation(s)
- James E Squires
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, One Children's Hospital Drive, 6th Floor FP, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | - Patrick McKiernan
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, One Children's Hospital Drive, 6th Floor FP, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
31
|
Sacher M, Shahrzad N, Kamel H, Milev MP. TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic 2018; 20:5-26. [PMID: 30152084 DOI: 10.1111/tra.12615] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
Abstract
The movement of proteins between cellular compartments requires the orchestrated actions of many factors including Rab family GTPases, Soluble NSF Attachment protein REceptors (SNAREs) and so-called tethering factors. One such tethering factor is called TRAnsport Protein Particle (TRAPP), and in humans, TRAPP proteins are distributed into two related complexes called TRAPP II and III. Although thought to act as a single unit within the complex, in the past few years it has become evident that some TRAPP proteins function independently of the complex. Consistent with this, variations in the genes encoding these proteins result in a spectrum of human diseases with diverse, but partially overlapping, phenotypes. This contrasts with other tethering factors such as COG, where variations in the genes that encode its subunits all result in an identical phenotype. In this review, we present an up-to-date summary of all the known disease-related variations of genes encoding TRAPP-associated proteins and the disorders linked to these variations which we now call TRAPPopathies.
Collapse
Affiliation(s)
- Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nassim Shahrzad
- Department of Medicine, University of California, San Francisco, California
| | - Hiba Kamel
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Miroslav P Milev
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Gupta V, Pandita A, Panghal A, Kallem V. Arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome: a rare association with high GGT level and absent kidney. BMJ Case Rep 2018; 2018:bcr-2017-223715. [DOI: 10.1136/bcr-2017-223715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
33
|
Chai M, Su L, Hao X, Zhang M, Zheng L, Bi J, Han X, Yu B. Identification of genes and signaling pathways associated with arthrogryposis‑renal dysfunction‑cholestasis syndrome using weighted correlation network analysis. Int J Mol Med 2018; 42:2238-2246. [PMID: 30015832 DOI: 10.3892/ijmm.2018.3768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to identify the molecular basis of the arthrogryposis‑renal dysfunction‑cholestasis (ARC) syndrome, which is caused by mutations in the vacuolar protein sorting 33 homolog B (VPS33B) gene. The microarray dataset GSE83192, which contained six liver tissue samples from VPS33B knockout mice and four liver tissue samples from control mice, was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were screened by the Limma package in R software. The DEGs most relevant to ARC were selected via weighted gene co‑expression network analysis to construct a protein‑protein interaction (PPI) network. In addition, module analysis was performed for the PPI network using the Molecular Complex Detection function. Functional and pathway enrichment analyses were also performed for DEGs in the PPI network. Potential drugs for ARC treatment were predicted using the Connectivity Map database. In total, 768 upregulated and 379 downregulated DEGs were detected in the VPS33B knockout mice, while three modules were identified from the PPI network constructed. The DEGs in module 1 (CD83, IL1B and TLR2) were mainly involved in the positive regulation of cytokine production and the Toll‑like receptor (TLR) signaling pathway. The DEGs in module 2 (COL1A1 and COL1A2) were significantly enriched with respect to cellular component organization, extracellular matrix‑receptor interactions and focal adhesion. The DEGs in module 3 (ABCG8 and ABCG3) were clearly associated with sterol absorption and transport. Furthermore, mercaptopurine was identified to be a potential drug (connectivity score=‑0.939) for ARC treatment. In conclusion, the results of the current study may help to further understand the pathology of ARC, and the DEGs identified in these modules may serve as therapeutic targets.
Collapse
Affiliation(s)
- Miao Chai
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Liju Su
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Xiaolei Hao
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Meng Zhang
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Lihui Zheng
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Jiabing Bi
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Xiao Han
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Bohai Yu
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| |
Collapse
|
34
|
Rosales A, Mhibik M, Gissen P, Segarra O, Redecillas S, Ariceta G. Severe renal Fanconi and management strategies in Arthrogryposis-Renal dysfunction-Cholestasis syndrome: a case report. BMC Nephrol 2018; 19:144. [PMID: 29907094 PMCID: PMC6003143 DOI: 10.1186/s12882-018-0926-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 05/23/2018] [Indexed: 11/22/2022] Open
Abstract
Background Arthrogryposis-Renal dysfunction-Cholestasis syndrome (ARC, MIM#208085) is a rare multisystem disease due to mutations in the VPS33B and VIPAR genes, both involved in maintaining apical-basolateral cell polarity. The correlation between mutations and phenotype in the ARC Syndrome is not well described. We report on a 6 year old patient who presented with severe renal Fanconi as first manifestation of ARC related to a combined de novo mutation in the VPS33B gene. Case presentation A 6 year old girl presented during the first year of life with severe renal Fanconi as the first manifestation of ARC-Syndrome. This case presents all defining features of ARC syndrome (including liver, skin and articular manifestations) with predominantly renal impairment at presentation. This novel mutation may be associated with a pronounced renal phenotype in ARC. Furthermore, we report on the successful use of LDL-Apheresis and biliodigestive derivation for treatment of cholestatic pruritus with encouraging results. Conclusion ARC is a heterogeneous disorder with early mortality. This case report contributes to a better understanding of this rare disorder, describes a novel mutation in the VPS33B gene and presents an innovative rescue treatment approach.
Collapse
Affiliation(s)
- Alejandra Rosales
- Pediatric Nephrology, Hospital Universitario Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.,Department of Pediatrics 1, Medical University of Innsbruck, Innsbruck, Austria
| | - Maissa Mhibik
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Oscar Segarra
- Pediatric Gastroenterology, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Susana Redecillas
- Pediatric Gastroenterology, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Gema Ariceta
- Pediatric Nephrology, Hospital Universitario Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
35
|
Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1609-1621. [PMID: 29409756 PMCID: PMC5906731 DOI: 10.1016/j.bbadis.2018.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Mutations in VPS33B and VIPAS39 cause the severe multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis (ARC) syndrome. Amongst other symptoms, patients with ARC syndrome suffer from severe ichthyosis. Roles for VPS33B and VIPAR have been reported in lysosome-related organelle biogenesis, integrin recycling, collagen homeostasis and maintenance of cell polarity. Mouse knockouts of Vps33b or Vipas39 are good models of ARC syndrome and develop an ichthyotic phenotype. We demonstrate that the skin manifestations in Vps33b and Vipar deficient mice are histologically similar to those of patients with ARC syndrome. Histological, immunofluorescent and electron microscopic analysis of Vps33b and Vipar deficient mouse skin biopsies and isolated primary cells showed that epidermal lamellar bodies, which are essential for skin barrier function, had abnormal morphology and the localisation of lamellar body cargo was disrupted. Stratum corneum formation was affected, with increased corneocyte thickness, decreased thickness of the cornified envelope and reduced deposition of lipids. These defects impact epidermal homeostasis and lead to abnormal barrier formation causing the skin phenotype in Vps33b and Vipar deficient mice and patients with ARC syndrome.
Collapse
Affiliation(s)
- Clare Rogerson
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute of Child Health, University College London, London WC1N 1EH, UK.
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute of Child Health, University College London, London WC1N 1EH, UK; Inherited Metabolic Diseases Unit, Great Ormond Street Hospital, London WC1N 3JH, UK.
| |
Collapse
|
36
|
Jonker CTH, Galmes R, Veenendaal T, Ten Brink C, van der Welle REN, Liv N, de Rooij J, Peden AA, van der Sluijs P, Margadant C, Klumperman J. Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. Nat Commun 2018; 9:792. [PMID: 29476049 PMCID: PMC5824891 DOI: 10.1038/s41467-018-03226-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/30/2018] [Indexed: 01/09/2023] Open
Abstract
Recycling endosomes maintain plasma membrane homeostasis and are important for cell polarity, migration, and cytokinesis. Yet, the molecular machineries that drive endocytic recycling remain largely unclear. The CORVET complex is a multi-subunit tether required for fusion between early endosomes. Here we show that the CORVET-specific subunits Vps3 and Vps8 also regulate vesicular transport from early to recycling endosomes. Vps3 and Vps8 localise to Rab4-positive recycling vesicles and co-localise with the CHEVI complex on Rab11-positive recycling endosomes. Depletion of Vps3 or Vps8 does not affect transferrin recycling, but delays the delivery of internalised integrins to recycling endosomes and their subsequent return to the plasma membrane. Consequently, Vps3/8 depletion results in defects in integrin-dependent cell adhesion and spreading, focal adhesion formation, and cell migration. These data reveal a role for Vps3 and Vps8 in a specialised recycling pathway important for integrin trafficking.
Collapse
Affiliation(s)
- C T H Jonker
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Department of Ophthalmology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - R Galmes
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - T Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - C Ten Brink
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - R E N van der Welle
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - N Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - J de Rooij
- Section Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht Universty, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - A A Peden
- Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - P van der Sluijs
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH Utrecht, The Netherlands
| | - C Margadant
- Department of Molecular Cell Biology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - J Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
38
|
|
39
|
Huang DG, Liu JJ, Guo L, Song YZ. [Clinical features and VPS33B mutations in a family affected by arthrogryposis, renal dysfunction, and cholestasis syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1077-1082. [PMID: 29046204 PMCID: PMC7389287 DOI: 10.7499/j.issn.1008-8830.2017.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
Arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome is an autosomal recessive disorder caused by mutations in the VPS33B or VIPAS39 gene. The aim of this study was to investigate the clinical features and VPS33B gene mutations of an infant with ARC syndrome. A 47-day-old female infant was referred to the hospital with the complaint of jaundiced skin and sclera for 45 days and abnormal liver function for 39 days. The patient had been managed in different hospitals, but the therapeutic effects were unsatisfactory due to undetermined diagnosis. Physical examination showed jaundice of the skin and sclera. Systemic skin was dry with desquamation in the limbs and trunk. There were no positive signs on cardiopulmonary examination. The liver was palpable 2.0 cm under the right subcostal margin. The hips and knees were flexed, and the extension was limited, with low muscular tone in the four limbs. Biochemical analysis demonstrated raised serum total bile acids, bilirubin (predominantly conjugated bilirubin) and transaminases, but the γ-glutamyl transpeptidase level was normal. Routine urine test revealed increased glucose as well as red and white blood cells. On genetic analysis, the infant was proved to be homologous for a VPS33B mutation c.1594C>T(p.R532X). She was definitely diagnosed to have ARC syndrome. Symptomatic and supportive therapy was given, but no improvement was observed, and the infant finally died at 3 months and 29 days of life.
Collapse
Affiliation(s)
- Da-Gui Huang
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | | | | | |
Collapse
|
40
|
Hanley J, Dhar DK, Mazzacuva F, Fiadeiro R, Burden JJ, Lyne AM, Smith H, Straatman-Iwanowska A, Banushi B, Virasami A, Mills K, Lemaigre FP, Knisely AS, Howe S, Sebire N, Waddington SN, Paulusma CC, Clayton P, Gissen P. Vps33b is crucial for structural and functional hepatocyte polarity. J Hepatol 2017; 66:1001-1011. [PMID: 28082148 PMCID: PMC5387182 DOI: 10.1016/j.jhep.2017.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS In the normal liver, hepatocytes form a uniquely polarised cell layer that enables movement of solutes from sinusoidal blood to canalicular bile. Whilst several cholestatic liver diseases with defects of hepatocyte polarity have been identified, the molecular mechanisms of pathogenesis are not well defined. One example is arthrogryposis, renal dysfunction and cholestasis syndrome, which in most patients is caused by VPS33B mutations. VPS33B is a protein involved in membrane trafficking that interacts with RAB11A at recycling endosomes. To understand the pathways that regulate hepatocyte polarity better, we investigated VPS33B deficiency using a novel mouse model with a liver-specific Vps33b deletion. METHODS To assess functional polarity, plasma and bile samples were collected from Vps33b liver knockout (Vps33bfl/fl-AlfpCre) and control (Vps33bfl/fl) mice; bile components or injected substrates were quantitated by mass spectrometry or fluorometry. For structural analysis, livers underwent light and transmission electron microscopy. Apical membrane and tight junction protein localisation was assessed by immunostaining. Adeno-associated virus vectors were used for in vivo gene rescue experiments. RESULTS Like patients, Vps33bfl/fl-AlfpCre mice showed mislocalisation of ATP-binding cassette proteins that are specifically trafficked to the apical membrane via Rab11a-positive recycling endosomes. This was associated with retention of bile components in blood. Loss of functional tight junction integrity and depletion of apical microvilli were seen in knockout animals. Gene transfer partially rescued these defects. CONCLUSIONS Vps33b has a key role in establishing structural and functional aspects of hepatocyte polarity and may be a target for gene replacement therapy. LAY SUMMARY Hepatocytes are liver cells with tops and bottoms; that is, they are polarised. At their bottoms they absorb substances from blood. They then, at their tops, secrete these substances and their metabolites into bile. When polarity is lost, this directional flow of substances from blood to bile is disrupted and liver disease follows. In this study, using a new mouse model with a liver-specific mutation of Vps33b, the mouse version of a gene that is mutated in most patients with arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, we investigated how the Vps33b gene product contributes to establishing hepatocyte polarity. We identified in these mice abnormalities similar to those in children with ARC syndrome. Gene transfer could partly reverse the mouse abnormalities. Our work contributes to the understanding of VPS33B disease and hepatocyte polarity in general, and may point towards gene transfer mediated treatment of ARC liver disease.
Collapse
Affiliation(s)
- Joanna Hanley
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dipok Kumar Dhar
- Organ Transplantation Centre and Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Francesca Mazzacuva
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Rebeca Fiadeiro
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J Burden
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Anne-Marie Lyne
- UCL Department of Statistical Science, University College London, London WC1E 6BT, UK
| | - Holly Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Blerida Banushi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alex Virasami
- Histopathology Department, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
| | - Kevin Mills
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | | | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, 8036 Graz, Austria
| | - Steven Howe
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Neil Sebire
- Histopathology Department, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
| | - Simon N Waddington
- UCL Institute for Women's Health, University College London, London WC1E 6AU, UK; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg 2193, South Africa
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, 1105 BK Amsterdam, Netherlands
| | - Peter Clayton
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK; MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Inherited Metabolic Disease Unit, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK.
| |
Collapse
|
41
|
Gruber R, Rogerson C, Windpassinger C, Banushi B, Straatman-Iwanowska A, Hanley J, Forneris F, Strohal R, Ulz P, Crumrine D, Menon GK, Blunder S, Schmuth M, Müller T, Smith H, Mills K, Kroisel P, Janecke AR, Gissen P. Autosomal Recessive Keratoderma-Ichthyosis-Deafness (ARKID) Syndrome Is Caused by VPS33B Mutations Affecting Rab Protein Interaction and Collagen Modification. J Invest Dermatol 2017; 137:845-854. [PMID: 28017832 PMCID: PMC5358661 DOI: 10.1016/j.jid.2016.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
Abstract
In this paper, we report three patients with severe palmoplantar keratoderma associated with ichthyosis and sensorineural deafness. Biallelic mutations were found in VPS33B, encoding VPS33B, a Sec1/Munc18 family protein that interacts with Rab11a and Rab25 proteins and is involved in trafficking of the collagen-modifying enzyme LH3. Two patients were homozygous for the missense variant p.Gly131Glu, whereas one patient was compound heterozygous for p.Gly131Glu and the splice site mutation c.240-1G>C, previously reported in patients with arthrogryposis renal dysfunction and cholestasis syndrome. We demonstrated the pathogenicity of variant p.Gly131Glu by assessing the interactions of the mutant VPS33B construct and its ability to traffic LH3. Compared with wild-type VPS33B, the p.Gly131Glu mutant VPS33B had reduced coimmunoprecipitation and colocalization with Rab11a and Rab25 and did not rescue LH3 trafficking. Confirming the cell-based experiments, we found deficient LH3-specific collagen lysine modifications in patients' urine and skin fibroblasts. Additionally, the epidermal ultrastructure of the p.Gly131Glu patients mirrored defects in tamoxifen-inducible VPS33B-deficient Vps33bfl/fl-ERT2 mice. Both patients and murine models revealed an impaired epidermal structure, ascribed to aberrant secretion of lamellar bodies, which are essential for epidermal barrier formation. Our results demonstrate that p.Gly131Glu mutant VPS33B causes an autosomal recessive keratoderma-ichthyosis-deafness syndrome.
Collapse
Key Words
- arc, arthrogryposis renal dysfunction and cholestasis
- arkid, autosomal recessive keratoderma-ichthyosis-deafness
- co-ip, co-immunoprecipitation
- corvet, core vacuole/endosome tethering
- hops, homotypic fusion and vacuole protein sorting
- lb, lamellar body
- mimcd3, murine inner medullary collecting duct 3
- ppk, palmoplantar keratoderma
- snp, single nucleotide polymorphism
- vws, vohwinkel syndrome
- wt, wild type
Collapse
Affiliation(s)
- Robert Gruber
- Department of Dermatology, Medical University of Innsbruck, Innsbruck, Austria; Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Clare Rogerson
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Institute of Child Health, University College London, London, UK
| | | | - Blerida Banushi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Institute of Child Health, University College London, London, UK
| | - Anna Straatman-Iwanowska
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Institute of Child Health, University College London, London, UK
| | - Joanna Hanley
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Institute of Child Health, University College London, London, UK
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Robert Strohal
- Department of Dermatology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Peter Ulz
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Debra Crumrine
- Department of Dermatology, Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | | | - Stefan Blunder
- Department of Dermatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Schmuth
- Department of Dermatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Holly Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Kevin Mills
- Institute of Child Health, University College London, London, UK
| | - Peter Kroisel
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Andreas R Janecke
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria; Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Institute of Child Health, University College London, London, UK; Inherited Metabolic Diseases Unit, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
42
|
Chen CH, Lo RW, Urban D, Pluthero FG, Kahr WHA. α-granule biogenesis: from disease to discovery. Platelets 2017; 28:147-154. [DOI: 10.1080/09537104.2017.1280599] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chang Hua Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Richard W. Lo
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Denisa Urban
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Fred G. Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Walter H. A. Kahr
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
43
|
Giraud A, Ramond F, Cremillieux C, Touraine R, Patural H, Stephan JL. Le phénotype complexe du syndrome ARC : une nouvelle observation. Arch Pediatr 2017; 24:131-134. [DOI: 10.1016/j.arcped.2016.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 09/12/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
|
44
|
Gengyo-Ando K, Kage-Nakadai E, Yoshina S, Otori M, Kagawa-Nagamura Y, Nakai J, Mitani S. Distinct roles of the two VPS33 proteins in the endolysosomal system in Caenorhabditis elegans. Traffic 2016; 17:1197-1213. [PMID: 27558849 DOI: 10.1111/tra.12430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 02/02/2023]
Abstract
Sec1/Munc-18 (SM) family proteins are essential regulators in intracellular transport in eukaryotic cells. The SM protein Vps33 functions as a core subunit of two tethering complexes, class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) in the endocytic pathway in yeast. Metazoan cells possess two Vps33 proteins, VPS33A and VPS33B, but their precise roles remain unknown. Here, we present a comparative analysis of Caenorhabditis elegans null mutants for these proteins. We found that the vps-33.1 (VPS33A) mutants exhibited severe defects in both endocytic function and endolysosomal biogenesis in scavenger cells. Furthermore, vps-33.1 mutations caused endocytosis defects in other tissues, and the loss of maternal and zygotic VPS-33.1 resulted in embryonic lethality. By contrast, vps-33.2 mutants were viable but sterile, with terminally arrested spermatocytes. The spermatogenesis phenotype suggests that VPS33.2 is involved in the formation of a sperm-specific organelle. The endocytosis defect in the vps-33.1 mutant was not restored by the expression of VPS-33.2, which indicates that these proteins have nonredundant functions. Together, our data suggest that VPS-33.1 shares most of the general functions of yeast Vps33 in terms of tethering complexes in the endolysosomal system, whereas VPS-33.2 has tissue/organelle specific functions in C. elegans.
Collapse
Affiliation(s)
- Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan. .,Brain and Body System Science Institute, Saitama University, Saitama, Japan. .,Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.,The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Muneyoshi Otori
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yuko Kagawa-Nagamura
- Brain and Body System Science Institute, Saitama University, Saitama, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Junichi Nakai
- Brain and Body System Science Institute, Saitama University, Saitama, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.
| |
Collapse
|
45
|
Saral S, Vural A, Wollenberg A, Ruzicka T. A practical approach to ichthyoses with systemic manifestations. Clin Genet 2016; 91:799-812. [DOI: 10.1111/cge.12828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/06/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Affiliation(s)
- S. Saral
- Department of Dermatology and Venereology; Ankara University; Ankara Turkey
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - A. Vural
- Department of Neurology; Hacettepe University; Ankara Turkey
| | - A. Wollenberg
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - T. Ruzicka
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| |
Collapse
|
46
|
Akbar MA, Mandraju R, Tracy C, Hu W, Pasare C, Krämer H. ARC Syndrome-Linked Vps33B Protein Is Required for Inflammatory Endosomal Maturation and Signal Termination. Immunity 2016; 45:267-79. [PMID: 27496733 DOI: 10.1016/j.immuni.2016.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 03/03/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) and other pattern-recognition receptors (PRRs) sense microbial ligands and initiate signaling to induce inflammatory responses. Although the quality of inflammatory responses is influenced by internalization of TLRs, the role of endosomal maturation in clearing receptors and terminating inflammatory responses is not well understood. Here, we report that Drosophila and mammalian Vps33B proteins play critical roles in the maturation of phagosomes and endosomes following microbial recognition. Vps33B was necessary for clearance of endosomes containing internalized PRRs, failure of which resulted in enhanced signaling and expression of inflammatory mediators. Lack of Vps33B had no effect on trafficking of endosomes containing non-microbial cargo. These findings indicate that Vps33B function is critical for determining the fate of signaling endosomes formed following PRR activation. Exaggerated inflammatory responses dictated by persistence of receptors in aberrant endosomal compartments could therefore contribute to symptoms of ARC syndrome, a disease linked to loss of Vps33B.
Collapse
Affiliation(s)
- Mohammed Ali Akbar
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajakumar Mandraju
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charles Tracy
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Hu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chandrashekhar Pasare
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Helmut Krämer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
47
|
Banushi B, Forneris F, Straatman-Iwanowska A, Strange A, Lyne AM, Rogerson C, Burden JJ, Heywood WE, Hanley J, Doykov I, Straatman KR, Smith H, Bem D, Kriston-Vizi J, Ariceta G, Risteli M, Wang C, Ardill RE, Zaniew M, Latka-Grot J, Waddington SN, Howe SJ, Ferraro F, Gjinovci A, Lawrence S, Marsh M, Girolami M, Bozec L, Mills K, Gissen P. Regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis. Nat Commun 2016; 7:12111. [PMID: 27435297 PMCID: PMC4961739 DOI: 10.1038/ncomms12111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 06/01/2016] [Indexed: 01/12/2023] Open
Abstract
Post-translational modifications are necessary for collagen precursor molecules (procollagens) to acquire final shape and function. However, the mechanism and contribution of collagen modifications that occur outside the endoplasmic reticulum and Golgi are not understood. We discovered that VIPAR, with its partner proteins, regulate sorting of lysyl hydroxylase 3 (LH3, also known as PLOD3) into newly identified post-Golgi collagen IV carriers and that VIPAR-dependent sorting is essential for modification of lysines in multiple collagen types. Identification of structural and functional collagen abnormalities in cells and tissues from patients and murine models of the autosomal recessive multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis syndrome caused by VIPAR and VPS33B deficiencies confirmed our findings. Thus, regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis and for the development and function of multiple organs and tissues.
Collapse
Affiliation(s)
- Blerida Banushi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Federico Forneris
- Department of Biology and Biotechnology, The Armenise-Harvard Laboratory of Structural Biology, University of Pavia, Via Ferrata 9/A – 27100, Pavia, Italy
- Division of Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Adam Strange
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Anne-Marie Lyne
- Department of Statistical Science, University College London, London WC1E 6BT, UK
| | - Clare Rogerson
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J. Burden
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Wendy E. Heywood
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Joanna Hanley
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ivan Doykov
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Kornelis R. Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester LE1 9HN, UK
| | - Holly Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Danai Bem
- Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Universitat Autonoma Barcelona, 119-129-08035 Barcelona, Spain
| | - Maija Risteli
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7B, 90220 Oulu, Finland
- Unit of Cancer Research and Translational Medicine, Faculty of Medicine, University of Oulu, Oulu 90014, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu 90029, Finland
| | - Chunguang Wang
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu 90029, Finland
- Medical Microbiology and Immunology, Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu 90014, Finland
| | | | | | - Julita Latka-Grot
- Children's Memorial Health Institute, 04-730 Warsaw, 20 Dzieci Polskich Avenue, Poland
| | - Simon N. Waddington
- Institute for Women's Health, University College London, London WC1E 6AU, UK
| | - S. J. Howe
- Institute for Women's Health, University College London, London WC1E 6AU, UK
| | - Francesco Ferraro
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Asllan Gjinovci
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Scott Lawrence
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Mark Girolami
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Laurent Bozec
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Kevin Mills
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Institute of Child Health, University College London, London WC1N 1EH, UK
- Inherited Metabolic Diseases Unit, Great Ormond Street Hospital, London WC1N 3JH, UK
| |
Collapse
|
48
|
Constipation as an Atypical Sign of ARC Syndrome - Case Report. CURRENT HEALTH SCIENCES JOURNAL 2016; 42:203-206. [PMID: 30568833 PMCID: PMC6256161 DOI: 10.12865/chsj.42.02.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022]
Abstract
ABSTRACT: Background: Arthrogryposis- renal tubular dysfunction - cholestasis (ARC) syndrome is a rare multisystem disorder originally described in 1973 and recently ascribed to mutation in VPS33 B whose product acts in intracellular trafficking. It exhibits wide clinical variability but the constipation isn’t a characteristic clinical sign. Case: This girl presented after birth severe contractures of legs. She was admitted at 30 days of age with poor feeding, cholestatic jaundice with normal GGT and failure to thrive . Also we have noted a severe acidosis (pH=7.2) associated with aminoaciduria and glucosuria. At second month of age the girl presented a severe ichtyosis, recurrent fever and constipation. Apart from treatment the constipation has persisted. The baby died of sepsis at 12 weeks of age. Conclusion: ARC syndrome exhibits notable clinical variability. Constipation has not been reported previously on the contrary diarrhea is a frequent clinical sign. Knowledge of this rare condition can benefit the practitioner as well as the patient.
Collapse
|
49
|
Weyand AC, Lombel RM, Pipe SW, Shavit JA. The Role of Platelets and ε-Aminocaproic Acid in Arthrogryposis, Renal Dysfunction, and Cholestasis (ARC) Syndrome Associated Hemorrhage. Pediatr Blood Cancer 2016; 63:561-3. [PMID: 26505894 PMCID: PMC4724310 DOI: 10.1002/pbc.25814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/29/2015] [Indexed: 11/10/2022]
Abstract
Arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome is a rare disorder associated with platelet abnormalities resembling gray platelet syndrome. Affected patients have normal platelet numbers but abnormal morphology and function. Bleeding symptomatology ranges from postprocedural to spontaneous life-threatening hemorrhage. We report a patient with ARC syndrome and compound heterozygous mutations in VPS33B (vacuolar protein sorting 33B) who presented with significant bleeding requiring numerous admissions and transfusions. She was treated with prophylactic platelet transfusions and ε-aminocaproic acid. This was well-tolerated and significantly decreased transfusion requirements and admissions for bleeding. Our experience provides support for consideration of prophylactic measures in these patients as well as the possibility of using prophylaxis in related disorders.
Collapse
Affiliation(s)
- Angela C. Weyand
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| | - Rebecca M. Lombel
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| | - Steven W. Pipe
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| | - Jordan A. Shavit
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| |
Collapse
|
50
|
Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37. [PMID: 26116792 PMCID: PMC4582071 DOI: 10.1016/j.jhep.2015.06.015] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases.
Collapse
Affiliation(s)
- Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Institute of Child Health, London, UK; Great Ormond Street Hospital, London, UK.
| | - Irwin M Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| |
Collapse
|