1
|
Dou Y, Zhang M. Longitudinal reciprocal relationship between media violence exposure and aggression among junior high school students in China: a cross-lagged analysis. Front Psychol 2025; 15:1441738. [PMID: 39839937 PMCID: PMC11747719 DOI: 10.3389/fpsyg.2024.1441738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Increasing evidence has shown that media violence exposure can influence individual aggression. However, the question of whether there is a causal relationship between media violence exposure and aggression remains complex and contentious. This study aims to examine the dynamic reciprocal relations between media violence exposure and aggression among junior high school students in China. Methods Using the Exposure to Violent Media Questionnaire (ETVMQ) and the Buss-Warren Aggression questionnaire (BWAQ), 259 junior high school students were tracked three times over a period of 1 year. A cross-lagged panel model was constructed to analyze the reciprocal relationship between media violence exposure and aggression over time. Results (1) Media violence exposure and aggression were significantly and positively correlated in all three assessments. (2) Cross-lagged analysis revealed that media violence exposure at Time 1(T1) significantly positively predicted aggression at Time 2(T2), and subsequently significantly positively predicted media violence exposure at Time 3(T3). Additionally, media violence exposure at T2 significantly positively predicted aggression at T3. (3) Multi-group analysis revealed that gender, family economic status, and family location had no significant moderating effects on the cross-lagged effects between media violence exposure and aggression. The cross-lagged effects did not differ by gender, family economic status, or family location. Conclusion There is a positive reciprocal relationship between media violence exposure and aggression among Chinese junior high school students, and this reciprocal relationship demonstrates stability across gender and family environments. Media violence exposure is not only a risk factor for increasing aggression among Chinese junior high school students but also a negative outcome of high aggression.
Collapse
Affiliation(s)
| | - Meng Zhang
- School of Criminology, People’s Public Security University of China, Beijing, China
| |
Collapse
|
2
|
Zhang M, Jiang Z, Zhao K, Zhang Y, Xu M, Xu X. Effects of polygenes, parent-child relationship and frustration on junior high school students' aggressive behaviors. Psych J 2024; 13:265-275. [PMID: 38151799 PMCID: PMC10990803 DOI: 10.1002/pchj.717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/24/2023] [Indexed: 12/29/2023]
Abstract
The effects of the interaction between polygenes and the parent-child relationship on junior high school students' aggressive behaviors were explored through the frameworks of gene-endophenotype-behavior and neurophysiological basis. A total of 892 junior high school students participated in this study. They were asked to complete self-reported questionnaires, and saliva samples were collected. Results showed that 5-HTTLPR, MAOA-uVNTR, COMT (rs4680), and Taq1 (rs1800497) of the DRD2 gene affected students' aggressive behaviors in an accumulative way. The polygenic risk score explained 3.4% of boys' aggression and 1.1% of girls' aggression. The interactions between polygenic risk score and parent-child conflict significantly affected the aggressive behaviors of male students, but did not show any significant effect on those of female students. The interactional effect of polygenic risk score and parent-child conflict on junior high school students' aggressive behaviors was completely mediated by frustration. However, the interaction effect of polygenic risk score and parent-child affinity on aggression was not affected by frustration. This study helps us better understand junior high school students' aggressive behaviors and promotes the prevention and correction of adolescents' problem behaviors.
Collapse
Affiliation(s)
- Minghao Zhang
- School of Educational ScienceLudong UniversityYantaiChina
- Collaborative Innovation Center for the Mental Health of Youth from the Era of Conversion of New and Old Kinetic Energy along the Yellow River Basin, Ludong UniversityYantaiChina
| | - Zhenli Jiang
- College of Safety and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina
| | - Kedi Zhao
- Factor‐Inwentash Faculty of Social WorkUniversity of TorontoTorontoOntarioCanada
| | - Yaohua Zhang
- School of Educational ScienceLudong UniversityYantaiChina
- Collaborative Innovation Center for the Mental Health of Youth from the Era of Conversion of New and Old Kinetic Energy along the Yellow River Basin, Ludong UniversityYantaiChina
| | - Min Xu
- School of Educational ScienceLudong UniversityYantaiChina
- Collaborative Innovation Center for the Mental Health of Youth from the Era of Conversion of New and Old Kinetic Energy along the Yellow River Basin, Ludong UniversityYantaiChina
| | - Xiaohui Xu
- School of Educational ScienceLudong UniversityYantaiChina
- Collaborative Innovation Center for the Mental Health of Youth from the Era of Conversion of New and Old Kinetic Energy along the Yellow River Basin, Ludong UniversityYantaiChina
| |
Collapse
|
3
|
Harman AR, Contreras-Correa ZE, Messman RD, Swanson RM, Lemley CO. Maternal nutrient restriction and dietary melatonin alter neurotransmitter pathways in placental and fetal tissues. Placenta 2023; 131:13-22. [PMID: 36469958 DOI: 10.1016/j.placenta.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Recent research indicates an important role in the placental fetal brain axis, with a paucity of information reported in large animals. Melatonin supplementation has been investigated as a potential therapeutic to negate fetal growth restriction. We hypothesized that maternal nutrient restriction and melatonin supplementation would alter neurotransmitter pathways in fetal blood, cotyledonary and hypothalamus tissue. METHODS On day 160 of gestation, Brangus heifers (n = 29 in fall study; n = 25 in summer study) were assigned to one of four treatments: adequately fed (ADQ-CON; 100% NRC recommendation), nutrient restricted (RES-CON; 60% NRC recommendation), and ADQ or RES supplemented with 20 mg/d of melatonin (ADQ-MEL; RES-MEL). Placentomes, fetal blood, and hypothalamic tissue were collected at day 240 of gestation. Neurotransmitters were analyzed in fetal blood and fetal and placental tissues. Transcript abundance of genes in the serotonin pathway and catecholamine pathway were determined in fetal hypothalamus and placental cotyledon. RESULTS Serotonin was increased (P < 0.05) by 12.5-fold in the blood of fetuses from RES dams versus ADQ in the fall study. Additionally, melatonin supplementation increased (P < 0.05) neurotransmitter metabolites and transcript abundance of the monoamine oxidase A (MAOA) enzyme in the cotyledon. In the summer study, plasma dopamine and placental dopamine receptors were decreased (P < 0.05) in RES dams versus ADQ. DISCUSSION In conclusion, these data indicate novel evidence of the presence of neurotransmitters and their synthesis and metabolism in the bovine conceptus, which could have greater implications in establishing postnatal behavior.
Collapse
Affiliation(s)
- Allison R Harman
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Zully E Contreras-Correa
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Riley D Messman
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Rebecca M Swanson
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
4
|
Odintsova VV, Hagenbeek FA, van der Laan CM, van de Weijer S, Boomsma DI. Genetics and epigenetics of human aggression. HANDBOOK OF CLINICAL NEUROLOGY 2023; 197:13-44. [PMID: 37633706 DOI: 10.1016/b978-0-12-821375-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
There is substantial variation between humans in aggressive behavior, with its biological etiology and molecular genetic basis mostly unknown. This review chapter offers an overview of genomic and omics studies revealing the genetic contribution to aggression and first insights into associations with epigenetic and other omics (e.g., metabolomics) profiles. We allowed for a broad phenotype definition including studies on "aggression," "aggressive behavior," or "aggression-related traits," "antisocial behavior," "conduct disorder," and "oppositional defiant disorder." Heritability estimates based on family and twin studies in children and adults of this broadly defined phenotype of aggression are around 50%, with relatively small fluctuations around this estimate. Next, we review the genome-wide association studies (GWAS) which search for associations with alleles and also allow for gene-based tests and epigenome-wide association studies (EWAS) which seek to identify associations with differently methylated regions across the genome. Both GWAS and EWAS allow for construction of Polygenic and DNA methylation scores at an individual level. Currently, these predict a small percentage of variance in aggression. We expect that increases in sample size will lead to additional discoveries in GWAS and EWAS, and that multiomics approaches will lead to a more comprehensive understanding of the molecular underpinnings of aggression.
Collapse
Affiliation(s)
- Veronika V Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands; Mental Health Division, Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Mental Health Division, Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Camiel M van der Laan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Amsterdam, The Netherlands
| | - Steve van de Weijer
- Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Klimova NV, Chadaeva IV, Shichevich SG, Kozhemyakina RV. Differential expression of 10 genes in the hypothalamus of two generations of rats selected for a reaction to humans. Vavilovskii Zhurnal Genet Selektsii 2022; 25:208-215. [PMID: 35083397 PMCID: PMC8698098 DOI: 10.18699/vj21.50-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022] Open
Abstract
Individual behavioral differences are due to an interaction of the genotype and the environment. Phenotypic manifestation of aggressive behavior depends on the coordinated expression of gene ensembles. Nonetheless,
the identification of these genes and of combinations of their mutual influence on expression remains a difficult
task. Using animal models of aggressive behavior (gray rats that were selected for a reaction to humans; tame and
aggressive rat strains), we evaluated the expression of 10 genes potentially associated with aggressiveness according
to the literature: Cacna1b, Cacna2d3, Drd2, Egr1, Gad2, Gria2, Mapk1, Nos1, Pomc, and Syn1. To identify the genes most
important for the manifestation of aggressiveness, we analyzed the expression of these genes in two generations of
rats: 88th and 90th. Assessment of gene expression levels was carried out by real-time PCR in the hypothalamus of
tame and aggressive rats. This analysis confirmed that 4 out of the 10 genes differ in expression levels between aggressive rats and tame rats in both generations. Specifically, it was shown that the expression of the Cacna1b, Drd2,
Egr1, and Gad2 genes does not differ between the two generations (88th vs 90th) within each strain, but significantly
differs between the strains: in the tame rats of both generations, the expression levels of these genes are significantly
lower as compared to those in the aggressive rats. Therefore, these genes hold promise for further studies on behavioral characteristics. Thus, we confirmed polygenic causes of phenotypic manifestation of aggressive reactions.
Collapse
Affiliation(s)
- N V Klimova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I V Chadaeva
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S G Shichevich
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - R V Kozhemyakina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Borinskaya SA, Rubanovich AV, Larin AK, Kazantseva AV, Davydova YD, Generozov EV, Khusnutdinova EK, Yankovsky NK. Epigenome-Wide Association Study of CpG Methylation in Aggressive Behavior. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421120048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
The serotonin transporter gene and female personality variation in a free-living passerine. Sci Rep 2021; 11:8577. [PMID: 33883685 PMCID: PMC8060275 DOI: 10.1038/s41598-021-88225-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
Quantifying variation in behaviour-related genes provides insight into the evolutionary potential of repeatable among-individual variation in behaviour (i.e. personality). Yet, individuals typically also plastically adjust their behaviour in response to environmental conditions and/or age, thereby complicating the detection of genotype-phenotype associations. Here, using a population of free-living great tits (Parus major), we assessed the association between single nucleotide polymorphisms (SNPs) in the serotonin transporter gene (SERT) and two repeatable behavioural traits, i.e. female-female aggression and female hissing behaviour. For female-female aggression, a trait showing age-related plasticity, we found no evidence for associations with SERT SNPs, even when assessing potential age-dependent effects of SERT genotype on aggression. We also found no strong support for associations between SERT SNPs and hissing behaviour, yet we identified two synonymous polymorphisms (exon 13 SNP66 and exon 12 SNP144) of particular interest, each explaining about 1.3% of the total variation in hissing behaviour. Overall, our results contribute to the general understanding of the biological underpinning of complex behavioural traits and will facilitate further (meta-analytic) research on behaviour-related genes. Moreover, we emphasize that future molecular genetic studies should consider age-dependent genotype-phenotype associations for behavioural trait (co)variation, as this will vastly improve our understanding of the proximate causes and ultimate consequences of personality variation in natural populations.
Collapse
|
8
|
Eusebi PG, Sevane N, O'Rourke T, Pizarro M, Boeckx C, Dunner S. Gene expression profiles underlying aggressive behavior in the prefrontal cortex of cattle. BMC Genomics 2021; 22:245. [PMID: 33827428 PMCID: PMC8028707 DOI: 10.1186/s12864-021-07505-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Aggressive behavior is an ancient and conserved trait, habitual for most animals in order to eat, protect themselves, compete for mating and defend their territories. Genetic factors have been shown to play an important role in the development of aggression both in animals and humans, displaying moderate to high heritability estimates. Although such types of behaviors have been studied in different animal models, the molecular architecture of aggressiveness remains poorly understood. This study compared gene expression profiles of 16 prefrontal cortex (PFC) samples from aggressive and non-aggressive cattle breeds: Lidia, selected for agonistic responses, and Wagyu, selected for tameness. RESULTS A total of 918 up-regulated and 278 down-regulated differentially expressed genes (DEG) were identified, representing above-chance overlap with genes previously identified in studies of aggression across species, as well as those implicated in recent human evolution. The functional interpretation of the up-regulated genes in the aggressive cohort revealed enrichment of pathways such as Alzheimer disease-presenilin, integrins and the ERK/MAPK signaling cascade, all implicated in the development of abnormal aggressive behaviors and neurophysiological disorders. Moreover, gonadotropins, are up-regulated as natural mechanisms enhancing aggression. Concomitantly, heterotrimeric G-protein pathways, associated with low reactivity mental states, and the GAD2 gene, a repressor of agonistic reactions associated with PFC activity, are down-regulated, promoting the development of the aggressive responses selected for in Lidia cattle. We also identified six upstream regulators, whose functional activity fits with the etiology of abnormal behavioral responses associated with aggression. CONCLUSIONS These transcriptional correlates of aggression, resulting, at least in part, from controlled artificial selection, can provide valuable insights into the complex architecture that underlies naturally developed agonistic behaviors. This analysis constitutes a first important step towards the identification of the genes and metabolic pathways that promote aggression in cattle and, providing a novel model species to disentangle the mechanisms underlying variability in aggressive behavior.
Collapse
Affiliation(s)
- Paulina G Eusebi
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Natalia Sevane
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Thomas O'Rourke
- Universitat de Barcelona, Gran Vía de les Corts Catalanes 585, 08007, Barcelona, Spain.,UBICS, Carrer Martí Franqués 1, 08028, Barcelona, Spain
| | - Manuel Pizarro
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Cedric Boeckx
- Universitat de Barcelona, Gran Vía de les Corts Catalanes 585, 08007, Barcelona, Spain.,UBICS, Carrer Martí Franqués 1, 08028, Barcelona, Spain.,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Susana Dunner
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| |
Collapse
|
9
|
Vaht M. Variation rs6971 in the Translocator Protein Gene ( TSPO) is Associated with Aggressiveness and Impulsivity but Not with Anxiety in a Population-Representative Sample of Young Adults. The Journal of Genetic Psychology 2021; 182:149-162. [PMID: 33769215 DOI: 10.1080/00221325.2021.1896470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression of the 18-kDa translocator protein (TSPO), originally identified as a peripheral benzodiazepine receptor, has been found to be altered in several psychiatric disorders. A common single nucleotide polymorphism (rs6971) in the TSPO gene leads to an amino acid substitution, Ala147Thr, which dramatically alters the affinity with which TSPO binds drug ligands. As cholesterol also binds TSPO in the same transmembrane domain, it is suggested that this substitution may impair the ability of TSPO to bind or import cholesterol, and hence may affect steroid synthesis and hypothalamic-pituitary-adrenal function. The analysis was carried out on older birth cohort (n = 655) of the longitudinal Estonian Children Personality, Behavior and Health Study sample. Anxiety, aggressive behavior, impulsiveness, and history of stressful life events were self-reported in various data collection waves. Psychiatric assessment of lifetime prevalence of anxiety disorders was carried out at 25 years of age by experienced clinical psychologists. TSPO rs6971 was genotyped in all participants. TSPO rs6971 was not associated with self-reported levels of anxiety or lifetime prevalence of anxiety disorders. However, participants homozygous for the minor A allele displayed the highest aggressiveness and dysfunctional impulsivity scores. The positive, adaptive aspect of impulsivity was sensitive to stressful life events, as the AA genotype was associated with functional impulsivity only when the participants had experienced a low number of stressful life events during childhood. TSPO rs6971 polymorphism may be related to development of aggressiveness and impulsivity by adulthood, regardless of the participants' gender.
Collapse
Affiliation(s)
- Mariliis Vaht
- Institute of Psychology, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
10
|
Kolla NJ, Bortolato M. The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: A tale of mice and men. Prog Neurobiol 2020; 194:101875. [PMID: 32574581 PMCID: PMC7609507 DOI: 10.1016/j.pneurobio.2020.101875] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Over the past two decades, research has revealed that genetic factors shape the propensity for aggressive, antisocial, and violent behavior. The best-documented gene implicated in aggression is MAOA (Monoamine oxidase A), which encodes the key enzyme for the degradation of serotonin and catecholamines. Congenital MAOA deficiency, as well as low-activity MAOA variants, has been associated with a higher risk for antisocial behavior (ASB) and violence, particularly in males with a history of child maltreatment. Indeed, the interplay between low MAOA genetic variants and early-life adversity is the best-documented gene × environment (G × E) interaction in the pathophysiology of aggression and ASB. Additional evidence indicates that low MAOA activity in the brain is strongly associated with a higher propensity for aggression; furthermore, MAOA inhibition may be one of the primary mechanisms whereby prenatal smoke exposure increases the risk of ASB. Complementary to these lines of evidence, mouse models of Maoa deficiency and G × E interactions exhibit striking similarities with clinical phenotypes, proving to be valuable tools to investigate the neurobiological mechanisms underlying antisocial and aggressive behavior. Here, we provide a comprehensive overview of the current state of the knowledge on the involvement of MAOA in aggression, as defined by preclinical and clinical evidence. In particular, we show how the convergence of human and animal research is proving helpful to our understanding of how MAOA influences antisocial and violent behavior and how it may assist in the development of preventative and therapeutic strategies for aggressive manifestations.
Collapse
Affiliation(s)
- Nathan J Kolla
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH) Research Imaging Centre, Toronto, ON, Canada; Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| |
Collapse
|
11
|
Lazebny OE, Kulikov AM, Butovskaya PR, Proshakov PA, Fokin AV, Butovskaya ML. Analysis of Aggressive Behavior in Young Russian Males Using 250 SNP Markers. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420080098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Bani-Fatemi A, Roy A, Dai N, Dada O, Adanty C, Kiruparajah L, Kolla N, Strauss J, Zai C, Graff A, Gerretsen P, De Luca V. Genome-wide association study of aggression and violence in schizophrenia. Neurosci Lett 2020; 732:135061. [DOI: 10.1016/j.neulet.2020.135061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
|
13
|
Mueller JC, Carrete M, Boerno S, Kuhl H, Tella JL, Kempenaers B. Genes acting in synapses and neuron projections are early targets of selection during urban colonization. Mol Ecol 2020; 29:3403-3412. [DOI: 10.1111/mec.15451] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Jakob C. Mueller
- Department of Behavioural Ecology & Evolutionary Genetics Max Planck Institute for Ornithology Seewiesen Germany
| | - Martina Carrete
- Department of Conservation Biology Estación Biológica de Doñana – CSIC Sevilla Spain
- Department of Physical, Chemical and Natural Systems University Pablo de Olavide Sevilla Spain
| | - Stefan Boerno
- Sequencing Core Facility Max Planck Institute for Molecular Genetics Berlin Germany
| | - Heiner Kuhl
- Sequencing Core Facility Max Planck Institute for Molecular Genetics Berlin Germany
- Department of Ecophysiology and Aquaculture Leibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - José L. Tella
- Department of Conservation Biology Estación Biológica de Doñana – CSIC Sevilla Spain
| | - Bart Kempenaers
- Department of Behavioural Ecology & Evolutionary Genetics Max Planck Institute for Ornithology Seewiesen Germany
| |
Collapse
|
14
|
Baran NM, Streelman JT. Ecotype differences in aggression, neural activity and behaviorally relevant gene expression in cichlid fish. GENES BRAIN AND BEHAVIOR 2020; 19:e12657. [PMID: 32323443 DOI: 10.1111/gbb.12657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
In Lake Malawi, two ecologically distinct lineages of cichlid fishes (rock- vs sand-dwelling ecotypes, each comprised of over 200 species) evolved within the last million years. The rock-dwelling species (Mbuna) are aggressively territorial year-round and males court and spawn with females over rocky substrate. In contrast, males of sand-dwelling species are not territorial and instead aggregate on seasonal breeding leks in which males construct courtship "bowers" in the sand. However, little is known about how phenotypic variation in aggression is produced by the genome. In this study, we first quantify and compare behavior in seven cichlid species, demonstrating substantial ecotype and species differences in unconditioned mirror-elicited aggression. Second, we compare neural activity in mirror-elicited aggression in two representative species, Mchenga conophoros (sand-dwelling) and Petrotilapia chitimba (rock-dwelling). Finally, we compare gene expression patterns between these two species, specifically within neurons activated during mirror aggression. We identified a large number of genes showing differential expression in mirror-elicited aggression, as well as many genes that differ between ecotypes. These genes, which may underly species differences in behavior, include several neuropeptides, genes involved in the synthesis of steroid hormones and neurotransmitter activity. This work lays the foundation for future experiments using this emerging genetic model system to investigate the genomic basis of evolved species differences in both brain and behavior.
Collapse
Affiliation(s)
- Nicole M Baran
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,Department of Psychology, Emory University, Atlanta, Georgia, USA
| | - J Todd Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Lamb SD, Chia JHZ, Johnson SL. Paternal exposure to a common herbicide alters the behavior and serotonergic system of zebrafish offspring. PLoS One 2020; 15:e0228357. [PMID: 32275662 PMCID: PMC7147785 DOI: 10.1371/journal.pone.0228357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Increasingly, studies are revealing that endocrine disrupting chemicals (EDCs) can alter animal behavior. Early life exposure to EDCs may permanently alter phenotypes through to adulthood. In addition, the effects of EDCs may not be isolated to a single generation − offspring may indirectly be impacted, via non-genetic processes. Here, we analyzed the effects of paternal atrazine exposure on behavioral traits (distance moved, exploration, bottom-dwelling time, latency to enter the top zone, and interaction with a mirror) and whole-brain mRNA of genes involved in the serotonergic system regulation (slc6a4a, slc6a4b, htr1Aa, htr1B, htr2B) of zebrafish (Danio rerio). F0 male zebraFIsh were exposed to atrazine at 0.3, 3 or 30 part per billion (ppb) during early juvenile development, the behavior of F1 progeny was tested at adulthood, and the effect of 0.3 ppb atrazine treatment on mRNA transcription was quantified. Paternal exposure to atrazine significantly reduced interactions with a mirror (a proxy for aggression) and altered the latency to enter the top zone of a tank in unexposed F1 offspring. Bottom-dwelling time (a proxy for anxiety) also appeared to be somewhat affected, and activity (distance moved) was reduced in the context of aggression. slc6a4a and htr1Aa mRNA transcript levels were found to correlate positively with anxiety levels in controls, but we found that this relationship was disrupted in the 0.3 ppb atrazine treatment group. Overall, paternal atrazine exposure resulted in alterations across a variety of behavioral traits and showed signs of serotonergic system dysregulation, demonstrating intergenerational effects. Further research is needed to explore transgenerational effects on behavior and possible mechanisms underpinning behavioral effects.
Collapse
Affiliation(s)
- Simon D. Lamb
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (SDL); (SLJ)
| | - Jolyn H. Z. Chia
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
| | - Sheri L. Johnson
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (SDL); (SLJ)
| |
Collapse
|
16
|
Genomics of human aggression: current state of genome-wide studies and an automated systematic review tool. Psychiatr Genet 2020; 29:170-190. [PMID: 31464998 DOI: 10.1097/ypg.0000000000000239] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There are substantial differences, or variation, between humans in aggression, with its molecular genetic basis mostly unknown. This review summarizes knowledge on the genetic contribution to variation in aggression with the following three foci: (1) a comprehensive overview of reviews on the genetics of human aggression, (2) a systematic review of genome-wide association studies (GWASs), and (3) an automated tool for the selection of literature based on supervised machine learning. The phenotype definition 'aggression' (or 'aggressive behaviour', or 'aggression-related traits') included anger, antisocial behaviour, conduct disorder, and oppositional defiant disorder. The literature search was performed in multiple databases, manually and using a novel automated selection tool, resulting in 18 reviews and 17 GWASs of aggression. Heritability estimates of aggression in children and adults are around 50%, with relatively small fluctuations around this estimate. In 17 GWASs, 817 variants were reported as suggestive (P ≤ 1.0E), including 10 significant associations (P ≤ 5.0E). Nominal associations (P ≤ 1E) were found in gene-based tests for genes involved in immune, endocrine, and nervous systems. Associations were not replicated across GWASs. A complete list of variants and their position in genes and chromosomes are available online. The automated literature search tool produced literature not found by regular search strategies. Aggression in humans is heritable, but its genetic basis remains to be uncovered. No sufficiently large GWASs have been carried out yet. With increases in sample size, we expect aggression to behave like other complex human traits for which GWAS has been successful.
Collapse
|
17
|
Sherer LM, Catudio Garrett E, Morgan HR, Brewer ED, Sirrs LA, Shearin HK, Williams JL, McCabe BD, Stowers RS, Certel SJ. Octopamine neuron dependent aggression requires dVGLUT from dual-transmitting neurons. PLoS Genet 2020; 16:e1008609. [PMID: 32097408 PMCID: PMC7059954 DOI: 10.1371/journal.pgen.1008609] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/06/2020] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Neuromodulators such as monoamines are often expressed in neurons that also release at least one fast-acting neurotransmitter. The release of a combination of transmitters provides both "classical" and "modulatory" signals that could produce diverse and/or complementary effects in associated circuits. Here, we establish that the majority of Drosophila octopamine (OA) neurons are also glutamatergic and identify the individual contributions of each neurotransmitter on sex-specific behaviors. Males without OA display low levels of aggression and high levels of inter-male courtship. Males deficient for dVGLUT solely in OA-glutamate neurons (OGNs) also exhibit a reduction in aggression, but without a concurrent increase in inter-male courtship. Within OGNs, a portion of VMAT and dVGLUT puncta differ in localization suggesting spatial differences in OA signaling. Our findings establish a previously undetermined role for dVGLUT in OA neurons and suggests that glutamate uncouples aggression from OA-dependent courtship-related behavior. These results indicate that dual neurotransmission can increase the efficacy of individual neurotransmitters while maintaining unique functions within a multi-functional social behavior neuronal network.
Collapse
Affiliation(s)
- Lewis M. Sherer
- Cellular, Molecular and Microbial Biology Graduate Program, University of Montana, Missoula, Montana, United States of America
| | - Elizabeth Catudio Garrett
- Cellular, Molecular and Microbial Biology Graduate Program, University of Montana, Missoula, Montana, United States of America
| | - Hannah R. Morgan
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Edmond D. Brewer
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Lucy A. Sirrs
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Harold K. Shearin
- Cell Biology and Neuroscience Department, Montana State University, Bozeman, Montana, United States of America
| | - Jessica L. Williams
- Cell Biology and Neuroscience Department, Montana State University, Bozeman, Montana, United States of America
| | - Brian D. McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - R. Steven Stowers
- Cell Biology and Neuroscience Department, Montana State University, Bozeman, Montana, United States of America
| | - Sarah J. Certel
- Cellular, Molecular and Microbial Biology Graduate Program, University of Montana, Missoula, Montana, United States of America
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
18
|
Chen R, Chu Q, Shen C, Tong X, Gao S, Liu X, Zhou B, Schinckel AP. Identification of Single Nucleotide Polymorphisms in Porcine MAOA Gene Associated with Aggressive Behavior of Weaned Pigs after Group Mixing. Animals (Basel) 2019; 9:ani9110952. [PMID: 31718052 PMCID: PMC6912834 DOI: 10.3390/ani9110952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Monoamine Oxidase A (MAOA) gene had been reported as a candidate gene of aggressive behavior in several species. In the present study, the most aggressive and docile weaned pigs in each pen after group mixing were selected to identify single nucleotide polymorphisms in porcine MAOA gene associated with aggressive behavior. Constructs containing variable lengths of truncated porcine MAOA promoter were used to determine the promoter activity by a dual luciferase reporter system. The core promoter region of porcine MAOA was located at −679 bp to −400 bp. A total of nine single nucleotide polymorphisms (SNPs) in the MAOA gene were genotyped, of which six SNPs had significant differences in allele frequency between the aggressive and docile pigs. Four linked SNPs in porcine MAOA gene were associated with aggressive behavior in weaned pigs after mixing, which can be used as candidate molecular markers for aggressive behavior in pigs. Abstract Understanding the genetic background underlying the expression of behavioral traits has the potential to fasten the genetic progress for reduced aggressive behavior of pigs. The monoamine oxidase A (MAOA) gene is known as the “warrior” gene, as it has been previously linked to aggressive behavior in humans and livestock animals. To identify single nucleotide polymorphisms in porcine MAOA gene associated with aggressive behavior of pigs, a total of 500 weaned pigs were selected and mixed in 51 pens. In each pen, two aggressive and two docile pigs (a total of 204 pigs) were selected based on their composite aggressive score (CAS). Ear tissue was sampled to extract genomic DNA. Constructs containing variable lengths of truncated porcine MAOA promoter were used to determine the promoter activity by a dual luciferase reporter system. The core promoter region was located at −679 bp to −400 bp. A total of nine single nucleotide polymorphisms (SNPs) in MAOA gene were genotyped, of which six SNPs had significant differences (p < 0.05) in allele frequency between the aggressive and docile pigs. Linkage disequilibrium and association analyses showed that the pigs inherited the wild genotypes showed more aggressive behavior (p < 0.05) than pigs with the mutant genotypes of the four linked SNPs, rs321936011, rs331624976, rs346245147, and rs346324437. In addition, pigs of GCAA haplotype were more (p < 0.05) aggressive than the pigs with GCGA or ATGG haplotype. The construct containing the wild genotype GG of rs321936011 had lower (p = 0.031) promoter activity compared to the mutant genotype AA. These results suggest that the four linked SNPs in MAOA gene could be considered as a molecular marker for behavioral trait selection in pigs.
Collapse
Affiliation(s)
- Ruonan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Qingpo Chu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Chunyan Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Xian Tong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Siyuan Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Xinpeng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
- Correspondence:
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| |
Collapse
|
19
|
Eusebi PG, Sevane N, Cortés O, Contreras E, Cañon J, Dunner S. Aggressive behavior in cattle is associated with a polymorphism in the MAOA gene promoter. Anim Genet 2019; 51:14-21. [PMID: 31633208 DOI: 10.1111/age.12867] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
Abstract
Molecular mechanisms underlying aggressive behavior are primitive and similar among the subphylum Vertebrata. In humans, a primary goal in the study of aggression is to determine the neurobehavioral molecular factors triggering violence. Although several species have been used to study agonistic responses, researchers are limited by the difficulty of artificially inducing aggression in animals not selected for it. Conversely, the Lidia cattle breed has been selected since the eighteenth century to display agonistic responses based on traits such as aggressiveness, ferocity and mobility, all of them showing significant heritability values. This intensive selection may have driven shifts in specific allele frequencies. In a previous analysis across the autosomes, we revealed long-term selection regions including genes involved in behavioral development. In the present study, we focus on mapping recent signatures of selection associated with aggressiveness at chromosome X, by comparing Lidia cattle samples with two non-specialized Spanish breeds showing tamed behavior. The most significant markers peaked around the monoamine oxidase A (MAOA) gene, and thus the associations of three functionally important regions located near the promoter of this gene were further investigated. A polymorphism consisting of a variable number of tandem repeats of the nucleotide 'C' (BTX:105,462,494) and displaying lower number of repetitions in the Lidia breed when compared with the tamed breeds was detected. In silico analyses predicted that the g.105,462,494delsinsC variant may code for the Sp1 binding motif, one of the major transcription factors controlling the core promoter and expression of the MAOA gene in humans.
Collapse
Affiliation(s)
- P G Eusebi
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.,VELOGEN.SL., Servicio de Genética, Facultad de Veterinaria, Universidad Complutense, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - N Sevane
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - O Cortés
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - E Contreras
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - J Cañon
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - S Dunner
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| |
Collapse
|
20
|
Konar A, Rastogi M, Bhambri A. Brain region specific methylation and Sirt1 binding changes in MAOA promoter is associated with sexual dimorphism in early life stress induced aggressive behavior. Neurochem Int 2019; 129:104510. [DOI: 10.1016/j.neuint.2019.104510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 02/04/2023]
|
21
|
Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: The zebrafish model. Pharmacol Res 2019; 141:602-608. [DOI: 10.1016/j.phrs.2019.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
|
22
|
Vevera J, Zarrei M, Hartmannová H, Jedličková I, Mušálková D, Přistoupilová A, Oliveriusová P, Trešlová H, Nosková L, Hodaňová K, Stránecký V, Jiřička V, Preiss M, Příhodová K, Šaligová J, Wei J, Woodbury-Smith M, Bleyer AJ, Scherer SW, Kmoch S. Rare copy number variation in extremely impulsively violent males. GENES BRAIN AND BEHAVIOR 2018; 18:e12536. [DOI: 10.1111/gbb.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Vevera
- Department of Psychiatry; Faculty of Medicine and University Hospital in Pilsen, Charles University; Prague Czech Republic
- Department of Psychiatry, First Faculty of Medicine; Charles University and General University Hospital in Prague; Prague Czech Republic
- Institute for Postgraduate Medical Education; Prague Czech Republic
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Anna Přistoupilová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Petra Oliveriusová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Helena Trešlová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Václav Jiřička
- Prison Service of the Czech Republic, Directorate General; Department of Psychology; Prague Czech Republic
| | - Marek Preiss
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
- Psychology Department; University of New York in Prague; Prague Czech Republic
| | - Kateřina Příhodová
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
| | - Jana Šaligová
- Children's Faculty Hospital; Department of Pediatrics and Adolescent Medicine; Kosice Slovakia
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine of Pavel Jozef Šafárik University Kosice; Kosice Slovakia
| | - John Wei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Institute of Neuroscience, Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary; Newcastle upon Tyne UK
| | - Anthony J. Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
- Section on Nephrology, Wake Forest School of Medicine; Medical Center Blvd.; Winston-Salem North Carolina USA
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Department of Molecular Genetics and McLaughlin Centre; University of Toronto; Toronto Ontario Canada
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| |
Collapse
|
23
|
Gutleb DR, Ostner J, Schülke O, Wajjwalku W, Sukmak M, Roos C, Noll A. Non-invasive genotyping with a massively parallel sequencing panel for the detection of SNPs in HPA-axis genes. Sci Rep 2018; 8:15944. [PMID: 30374157 PMCID: PMC6206064 DOI: 10.1038/s41598-018-34223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/08/2018] [Indexed: 11/09/2022] Open
Abstract
We designed a genotyping panel for the investigation of the genetic underpinnings of inter-individual differences in aggression and the physiological stress response. The panel builds on single nucleotide polymorphisms (SNPs) in genes involved in the three subsystems of the hypothalamic-pituitary-adrenal (HPA)-axis: the catecholamine, serotonin and corticoid metabolism. To promote the pipeline for use with wild animal populations, we used non-invasively collected faecal samples from a wild population of Assamese macaques (Macaca assamensis). We targeted loci of 46 previously reported SNPs in 21 candidate genes coding for elements of the HPA-axis and amplified and sequenced them using next-generation Illumina sequencing technology. We compared multiple bioinformatics pipelines for variant calling and variant effect prediction. Based on this strategy and the application of different quality thresholds, we identified up to 159 SNPs with different types of predicted functional effects among our natural study population. This study provides a massively parallel sequencing panel that will facilitate integrating large-scale SNP data into behavioural and physiological studies. Such a multi-faceted approach will promote understanding of flexibility and constraints of animal behaviour and hormone physiology.
Collapse
Affiliation(s)
- D R Gutleb
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Goettingen, Göttingen, Germany. .,Research Group Social Evolution in Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany. .,Leibniz Science Campus Primate Cognition, Göttingen, Germany.
| | - J Ostner
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Goettingen, Göttingen, Germany.,Research Group Social Evolution in Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - O Schülke
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Goettingen, Göttingen, Germany.,Research Group Social Evolution in Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - W Wajjwalku
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - M Sukmak
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - C Roos
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - A Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
24
|
Wang M, Li H, Deater-Deckard K, Zhang W. Interacting Effect of Catechol- O-Methyltransferase ( COMT) and Monoamine Oxidase A ( MAOA) Gene Polymorphisms, and Stressful Life Events on Aggressive Behavior in Chinese Male Adolescents. Front Psychol 2018; 9:1079. [PMID: 30018578 PMCID: PMC6037980 DOI: 10.3389/fpsyg.2018.01079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/07/2018] [Indexed: 11/18/2022] Open
Abstract
Numerous studies have demonstrated that both catechol-O-methyltransferase (COMT) gene and monoamine oxidase A (MAOA) gene have been involved in aggressive behavior, as have stressful life events (SLEs). However, most of available evidence was based upon single gene or single gene–environment design, which is limited in accounting for the variance of aggressive behavior, a complex phenotype. This study examined the possible gene × gene × environment interactions between SLE (interpersonal problems and academic pressure) and two genetic polymorphisms (MAOA T941G and COMT Ala22/72Ser) correlated with aggressive behaviors in a sample of 658 Chinese male adolescents. Mothers and teachers reported on adolescents’ aggressive behavior using Achenbach’s Child Behavior Checklist and Teacher Report Form, respectively. Adolescents completed Self-Rating Life Events Checklist. Saliva samples were collected for DNA analysis. The results revealed no main effects of MAOA T941G and COMT Ala22/72Ser polymorphisms on male adolescents’ aggressive behaviors. However, a two-way interactive effect of interpersonal problems and MAOA T941G genotype on teacher-reported aggressive behavior was observed: adolescents with lower activity of MAOA T allele, but not those with MAOA G allele, exhibited greater aggressive behavior with an increase in interpersonal problems. A three-way interaction among COMT Ala22/72Ser and MAOA T941G polymorphisms, and SLE in the academic pressure on aggressive behavior was also identified. Among adolescents with lower activity of COMT GT/TT genotype and MAOA T allele, the higher level of academic pressure was significantly linked with an amplification of aggressive behavior, whereas this association didn’t exist among those with other genotypes. The present study presents the first evidence of COMT × MAOA × SLE interaction effect on male adolescents’ aggressive behavior, highlights the importance of considering distinct domains of stressful events and information bias when examining the effect of MAOA and COMT on aggressive behavior, and thereby contributes to MAOA gene-aggression and COMT gene-aggression literature.
Collapse
Affiliation(s)
- Meiping Wang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Hailei Li
- Department of Business, Shandong Normal University, Jinan, China
| | - Kirby Deater-Deckard
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, United States
| | - Wenxin Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
25
|
Yang C, Ba H, Zhang W, Zhang S, Zhao H, Yu H, Gao Z, Wang B. The association of 22 Y chromosome short tandem repeat loci with initiative-aggressive behavior. Gene 2018; 654:10-13. [PMID: 29452231 DOI: 10.1016/j.gene.2018.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 11/28/2022]
Abstract
Aggressive behavior represents an important public concern and a clinical challenge to behaviorists and psychiatrists. Aggression in humans is known to have an important genetic basis, so to investigate the association of Y chromosome short tandem repeat (Y-STR) loci with initiative-aggressive behavior, we compared allelic and haplotypic distributions of 22 Y-STRs in a group of Chinese males convicted of premeditated extremely violent crimes (n = 271) with a normal control group (n = 492). Allelic distributions of DYS533 and DYS437 loci differed significantly between the two groups (P < 0.05). The case group had higher frequencies of DYS533 allele 14, DYS437 allele 14, and haplotypes 11-14 of DYS533-DYS437 compared with the control group. Additionally, the DYS437 allele 15 frequency was significantly lower in cases than controls. No frequency differences were observed in the other 20 Y-STR loci between these two groups. Our results indicate a genetic role for Y-STR loci in the development of initiative aggression in non-psychiatric subjects.
Collapse
Affiliation(s)
- Chun Yang
- Department of Psychiatry, Psychiatry Center of Chinese People's Liberation Army, No. 102 Hospital of People's Liberation Army, Changzhou 213003, Jiangsu Province, China
| | - Huajie Ba
- DNA Laboratory, Public Security Bureau of Changzhou, Changzhou 213003, Jiangsu Province, China.
| | - Wei Zhang
- Center for Genetics, s, Beijing 100081, China; Department of Judicial Identification, National Research Institute for Family Planning, Beijing 100081, China
| | - Shuyou Zhang
- Department of Psychiatry, Psychiatry Center of Chinese People's Liberation Army, No. 102 Hospital of People's Liberation Army, Changzhou 213003, Jiangsu Province, China
| | - Hanqing Zhao
- Department of Psychiatry, Psychiatry Center of Chinese People's Liberation Army, No. 102 Hospital of People's Liberation Army, Changzhou 213003, Jiangsu Province, China
| | - Haiying Yu
- Department of Psychiatry, Psychiatry Center of Chinese People's Liberation Army, No. 102 Hospital of People's Liberation Army, Changzhou 213003, Jiangsu Province, China
| | - Zhiqin Gao
- Department of Psychiatry, Psychiatry Center of Chinese People's Liberation Army, No. 102 Hospital of People's Liberation Army, Changzhou 213003, Jiangsu Province, China
| | - Binbin Wang
- Center for Genetics, s, Beijing 100081, China; Department of Judicial Identification, National Research Institute for Family Planning, Beijing 100081, China; Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
26
|
Hemmings SMJ, Xulu K, Sommer J, Hinsberger M, Malan-Muller S, Tromp G, Elbert T, Weierstall R, Seedat S. Appetitive and reactive aggression are differentially associated with the STin2 genetic variant in the serotonin transporter gene. Sci Rep 2018; 8:6714. [PMID: 29712944 PMCID: PMC5928100 DOI: 10.1038/s41598-018-25066-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
Appetitive aggression is a sub-category of instrumental aggression, characterised by the primary intrinsic enjoyment of aggressive activity. Aggression is heritable, and serotonergic and monoaminergic neurotransmitter systems have been found to contribute to the underlying molecular mechanisms. The aim of this study was to investigate the role that genetic variants in the serotonin transporter (SLC6A4) and monoamine oxidase A (MAOA) genes play in the aetiology of appetitive aggression in South African Xhosa males (n = 290). SLC6A4 5-HTTLPR, rs25531, and STin2 variants, as well as MAOA-uVNTR were investigated for their association with levels of appetitive aggression using Poisson regression analysis. The STin2 VNTR12 allele was found to be associated with increased levels of appetitive aggression (p = 0.003), but with decreased levels of reactive aggression (p = 7 × 10-5). This study is the first to investigate genetic underpinnings of appetitive aggression in a South African population, with preliminary evidence suggesting that SCL6A4 STin2 variants play a role in its aetiology, and may also be important in differentiating between appetitive and reactive aggression. Although the results require replication, they shed some preliminary light on the molecular dichotomy that may underlie the two forms of aggression.
Collapse
Affiliation(s)
- Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Khethelo Xulu
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Jessica Sommer
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | | | - Stefanie Malan-Muller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Thomas Elbert
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Roland Weierstall
- Department of Psychology, University of Konstanz, Konstanz, Germany.,Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
27
|
Durand G. Influence of allelic variations in relation to norepinephrine and mineralocorticoid receptors on psychopathic traits: a pilot study. PeerJ 2018; 6:e4528. [PMID: 29576985 PMCID: PMC5863705 DOI: 10.7717/peerj.4528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/02/2018] [Indexed: 11/20/2022] Open
Abstract
Background
Past findings support a relationship between abnormalities in the amygdala and the presence of psychopathic traits. Among other genes and biomarkers relevant to the amygdala, norepinephrine and mineralocorticoid receptors might both play a role in psychopathy due to their association with traits peripheral to psychopathy. The purpose is to examine if allelic variations in single nucleotide polymorphisms related to norepinephrine and mineralocorticoid receptors play a role in the display of psychopathic traits and executive functions.
Methods
Fifty-seven healthy participants from the community provided a saliva sample for SNP sampling of rs5522 and rs5569. Participants then completed the Psychopathic Personality Inventory–Short Form (PPI-SF) and the Tower of Hanoi.
Results
Allelic variations of both rs5522 and rs5569 were significant when compared to PPI-SF total score and the fearless dominance component of the PPI-SF. A significant result was also obtained between rs5522 and the number of moves needed to complete the 5-disk Tower of Hanoi.
Conclusion
This pilot study offers preliminary results regarding the effect of allelic variations in SNPs related to norepinephrine and mineralocorticoid receptors on the presence of psychopathic traits. Suggestions are provided to enhance the reliability and validity of a larger-scale study.
Collapse
Affiliation(s)
- Guillaume Durand
- Department of Psychiatry & Neuropsychology, University of Maastricht, Netherlands
| |
Collapse
|
28
|
Genetic variants in oxytocin receptor gene (OXTR) and childhood physical abuse collaborate to modify the risk of aggression in chinese adolescents. J Affect Disord 2018; 229:105-110. [PMID: 29306689 DOI: 10.1016/j.jad.2017.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/01/2017] [Accepted: 12/19/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Accumulating evidence suggests that genetic and environmental factors may influence aggression susceptibility. However, the etiology of aggressive behavior remains unknown. Compared to some extensively studied candidate genes of aggression, very little is known about the OXTR gene. The objective of this study was to determine whether OXTR genetic variants were associated with aggression risk and whether these polymorphisms showed interactive effects with childhood maltreatment on aggression in Chinese adolescents. METHODS A total of 996 participants including 488 cases and 488 controls were selected in our study. Aggression, childhood maltreatment were measured by self-reported questionnaire. Buccal cells were collected. Genotyping was performed using SNPscan. Logistic regressions were used to estimate both main effects of OXTR polymorphisms and the interactive effects with childhood maltreatment on aggressive behavior. RESULTS Participants who carried the rs237885 TT genotypes in OXTR had a higher risk of aggression compared to those who carried GG or GT genotypes under the recessive model (OR=1.40, 95% CI, 1.04-1.89) after controlling for potential confounders. In addition, we also found that the polymorphism had a synergic additive interaction with childhood physical abuse on the aggression risk. LIMITATIONS The subjects in the present study were only males, thus our findings and conclusions could not be generalized to females. CONCLUSIONS The present study provides evidence that OXTR genetic variants may contribute to aggression susceptibility. Moreover, this is the first study reporting significant interactive effects of OXTR polymorphism and childhood physical abuse on aggressive behavior in Chinese adolescents.
Collapse
|
29
|
A sex-specific dose-response curve for testosterone: could excessive testosterone limit sexual interaction in women? Menopause 2018; 24:462-470. [PMID: 28291031 DOI: 10.1097/gme.0000000000000863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Testosterone treatment increases sexual desire and well-being in women with hypoactive sexual desire disorder; however, many studies have shown only modest benefits limited to moderate doses. Unlike men, available data indicate women show a bell-shaped dose-response curve for testosterone, wherein a threshold dosage of testosterone leads to desirable sexual function effects, but exceeding this threshold results in a lack of further positive sexual effects or may have a negative impact. Emotional and physical side-effects of excess testosterone, including aggression and virilization, may counteract the modest benefits on sexual interaction, providing a possible explanation for a threshold dose of testosterone in women. In this commentary, we will review and critically analyze data supporting a curvilinear dose-response relationship between testosterone treatment and sexual activity in women with low libido, and also explore possible explanations for this observed relationship. Understanding optimal dosing of testosterone unique to women may bring us one step closer to overcoming regulatory barriers in treating female sexual dysfunction.
Collapse
|
30
|
Hira S, Saleem U, Anwar F, Ahmad B. Antioxidants Attenuate Isolation- and L-DOPA-Induced Aggression in Mice. Front Pharmacol 2018; 8:945. [PMID: 29379435 PMCID: PMC5775506 DOI: 10.3389/fphar.2017.00945] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
Aggression is a major hallmark worldwide attributing negative traits in personality. Wide variety of antioxidants is used for the treatment of many ailments. The present study was conducted to evaluate the role of antioxidants such as ascorbic acid (15.42 and 30.84 mg/kg), beta carotene (1.02 and 2.05 mg/kg), vitamin E (2.5 and 5.0 mg/kg), and N-acetyl cysteine (102.85 and 205.70 mg/kg) in the treatment of aggression. Two aggression models (isolation induced aggression model and L-DOPA induced aggression model) were used in the study. Male albino mice (n = 330) were used in the study which were further subdivided into 11 groups (Group I-control, group II-diseased, group III-standard group, group IV–V treated with ascorbic, group VI–VII treated with beta carotene, group VIII–IX treated with vitamin E, group X–XI treated with N-acetyl cysteine for 14 consecutive days). Different biochemical markers (glutathione, superoxide dismutase, and catalase) were determined to evaluate the antioxidant potential in oxidative stress. High dose of vitamin E (5.0 mg/kg) was more effective to reduce the aggression in isolated animals while all other antioxidants produced dose-dependent anti-aggressive effect except N-acetyl cysteine which had marked anti-aggressive effect at low dose (102.75 mg/kg). Low doses of vitamin E (2.5 mg/kg) and N-acetyl cysteine (102.75 mg/kg) and high dose of beta carotene (2.05 mg/kg) were effective to prevent all aggression parameters in acute anti-aggressive activity against L-DOPA induced aggression. However, all test antioxidants were equally effective in chronic anti-aggressive studies against L-DOPA induced aggression. It may be concluded that selected antioxidants can reverse the aggression which is a key symptom of many neurological disorder.
Collapse
Affiliation(s)
- Sundas Hira
- Department of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Uzma Saleem
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Fareeha Anwar
- Department of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Bashir Ahmad
- Department of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| |
Collapse
|
31
|
Abstract
Two major types of aggression, proactive and reactive, are associated with contrasting expression, eliciting factors, neural pathways, development, and function. The distinction is useful for understanding the nature and evolution of human aggression. Compared with many primates, humans have a high propensity for proactive aggression, a trait shared with chimpanzees but not bonobos. By contrast, humans have a low propensity for reactive aggression compared with chimpanzees, and in this respect humans are more bonobo-like. The bimodal classification of human aggression helps solve two important puzzles. First, a long-standing debate about the significance of aggression in human nature is misconceived, because both positions are partly correct. The Hobbes-Huxley position rightly recognizes the high potential for proactive violence, while the Rousseau-Kropotkin position correctly notes the low frequency of reactive aggression. Second, the occurrence of two major types of human aggression solves the execution paradox, concerned with the hypothesized effects of capital punishment on self-domestication in the Pleistocene. The puzzle is that the propensity for aggressive behavior was supposedly reduced as a result of being selected against by capital punishment, but capital punishment is itself an aggressive behavior. Since the aggression used by executioners is proactive, the execution paradox is solved to the extent that the aggressive behavior of which victims were accused was frequently reactive, as has been reported. Both types of killing are important in humans, although proactive killing appears to be typically more frequent in war. The biology of proactive aggression is less well known and merits increased attention.
Collapse
Affiliation(s)
- Richard W Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
32
|
Christ CC, Watkins LE, DiLillo D, Stoltenberg S. Alcohol Intoxication Moderates the Association between a Polygenic Risk Score and Unprovoked Intimate Partner Aggression. JOURNAL OF FAMILY VIOLENCE 2018; 33:83-94. [PMID: 34054209 PMCID: PMC8157497 DOI: 10.1007/s10896-017-9908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite evidence that genetic variation contributes to aggression, few studies have examined how genetic variation contributes to IPA specifically. In the current study, 69 couples from a Midwestern university completed self-report measures of IPA, childhood trauma exposure, and hazardous alcohol use, and were randomly assigned to consume either a placebo or alcohol beverage before participating in an analogue aggression task against their partner. Genetic risk (i.e., association with lower transcriptional efficiency) for aggression was measured with a polygenic risk score (PRS) created from four polymorphisms (HTR1B rs13212041, HTR2B rs6437000, 5-HTTLPR, and MAOA uVNTR). Among individuals with a low PRS, individuals who consumed alcohol (BrAC = 0.07%) showed greater unprovoked IPA than individuals who consumed a placebo. Findings contribute to our limited understanding regarding the etiology of IPA and suggest that individuals who have increased transcriptional activity in certain serotonin system genes may be at higher risk of IPA when intoxicated.
Collapse
Affiliation(s)
| | - Laura E Watkins
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division and Yale School of Medicine
| | | | | |
Collapse
|
33
|
Yang C, Ba H, Cao Y, Dong G, Zhang S, Gao Z, Zhao H, Zhou X. Linking Y-chromosomal short tandem repeat loci to human male impulsive aggression. Brain Behav 2017; 7:e00855. [PMID: 29201554 PMCID: PMC5698871 DOI: 10.1002/brb3.855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 04/13/2017] [Accepted: 09/17/2017] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Men are more susceptible to impulsive behavior than women. Epidemiological studies revealed that the impulsive aggressive behavior is affected by genetic factors, and the male-specific Y chromosome plays an important role in this behavior. In this study, we investigated the association between the impulsive aggressive behavior and Y-chromosomal short tandem repeats (Y-STRs) loci. METHODS The collected biologic samples from 271 offenders with impulsive aggressive behavior and 492 healthy individuals without impulsive aggressive behavior were amplified by PowerPlexRY23 PCR System and the resultant products were separated by electrophoresis and further genotyped. Then, comparisons in allele and haplotype frequencies of the selected 22 Y-STRs were made in the two groups. RESULTS Our results showed that there were significant differences in allele frequencies at DYS448 and DYS456 between offenders and controls (p < .05). Univariate analysis further revealed significant frequency differences for alleles 18 and 22 at DYS448 (0.18 vs 0.27, compared to the controls, p = .003, OR=0.57,95% CI=0.39-0.82; 0.03 vs 0.01, compared to the controls, p = .003, OR=7.45, 95% CI=1.57-35.35, respectively) and for allele 17 at DYS456 (0.07 vs 0.14, compared to the controls, p = .006, OR=0.48, 95% CI =0.28-0.82) between two groups. Interestingly, the frequency of haploid haplotype 22-15 on the DYS448-DYS456 (DYS448-DYS456-22-15) was significantly higher in offenders than in controls (0.033 vs 0.004, compared to the control, p = .001, OR = 8.42, 95%CI =1.81-39.24). Moreover, there were no significant differences in allele frequencies of other Y-STRs loci between two groups. Furthermore, the unconditional logistic regression analysis confirmed that alleles 18 and 22 at DYS448 and allele 17 at DYS456 are associated with male impulsive aggression. However, the DYS448-DYS456-22-15 is less related to impulsive aggression. CONCLUSION Our results suggest a link between Y-chromosomal allele types and male impulsive aggression.
Collapse
Affiliation(s)
- Chun Yang
- Department of Psychiatry Psychiatry Center of Chinese People's Liberation Army No.102 Hospital of People's Liberation Army Changzhou China
| | - Huajie Ba
- DNA Laboratory Public Security Bureau of Changzhou Changzhou China
| | - Yin Cao
- Department of Neurology Laboratory of Neurological Diseases Changzhou No.2 People's Hospital The Affiliated Hospital of Nanjing Medical University Changzhou China
| | - Guoying Dong
- Department of Neurology Laboratory of Neurological Diseases Changzhou No.2 People's Hospital The Affiliated Hospital of Nanjing Medical University Changzhou China
| | - Shuyou Zhang
- Department of Psychiatry Psychiatry Center of Chinese People's Liberation Army No.102 Hospital of People's Liberation Army Changzhou China
| | - Zhiqin Gao
- Department of Psychiatry Psychiatry Center of Chinese People's Liberation Army No.102 Hospital of People's Liberation Army Changzhou China
| | - Hanqing Zhao
- Department of Psychiatry Psychiatry Center of Chinese People's Liberation Army No.102 Hospital of People's Liberation Army Changzhou China
| | - Xianju Zhou
- Department of Neurology Laboratory of Neurological Diseases Changzhou No.2 People's Hospital The Affiliated Hospital of Nanjing Medical University Changzhou China
| |
Collapse
|
34
|
Mueller JC, Edelaar P, Baños-Villalba A, Carrete M, Potti J, Blas J, Tella JL, Kempenaers B. Selection on a behaviour-related gene during the first stages of the biological invasion pathway. Mol Ecol 2017; 26:6110-6121. [PMID: 28926158 DOI: 10.1111/mec.14353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023]
Abstract
Human-induced biological invasions are common worldwide and often have negative impacts on wildlife and human societies. Several studies have shown evidence for selection on invaders after introduction to the new range. However, selective processes already acting prior to introduction have been largely neglected. Here, we tested whether such early selection acts on known behaviour-related gene variants in the yellow-crowned bishop (Euplectes afer), a pet-traded African songbird. We tested for nonrandom allele frequency changes after trapping, acclimation and survival in captivity. We also compared the native source population with two independent invasive populations. Allele frequencies of two SNPs in the dopamine receptor D4 (DRD4) gene-known to be linked to behavioural activity in response to novelty in this species-significantly changed over all early invasion stages. They also differed between the African native population and the two invading European populations. The two-locus genotype associated with reduced activity declined consistently, but strongest at the trapping stage. Overall genetic diversity did not substantially decrease, and there is little evidence for new alleles in the introduced populations, indicating that selection at the DRD4 gene predominantly worked on the standing genetic variation already present in the native population. Our study demonstrates selection on a behaviour-related gene during the first stages of a biological invasion. Thus, pre-establishment stages of a biological invasion do not only determine the number of propagules that are introduced (their quantity), but also their phenotypic and genetic characteristics (their quality).
Collapse
Affiliation(s)
- Jakob C Mueller
- Department of Behavioural Ecology & Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Sevilla, Spain
| | - Adrián Baños-Villalba
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Sevilla, Spain
| | - Martina Carrete
- Department of Conservation Biology, Estación Biológica de Doñana - CSIC, Sevilla, Spain.,Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Sevilla, Spain
| | - Jaime Potti
- Department of Evolutionary Ecology, Estación Biológica de Doñana - CSIC, Sevilla, Spain
| | - Julio Blas
- Department of Conservation Biology, Estación Biológica de Doñana - CSIC, Sevilla, Spain
| | - Jose Luis Tella
- Department of Conservation Biology, Estación Biológica de Doñana - CSIC, Sevilla, Spain
| | - Bart Kempenaers
- Department of Behavioural Ecology & Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
35
|
The interactive effect of the MAOA-VNTR genotype and childhood abuse on aggressive behaviors in Chinese male adolescents. Psychiatr Genet 2017; 26:117-23. [PMID: 26945458 DOI: 10.1097/ypg.0000000000000125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Gene-environment interactions that moderate aggressive behavior have been identified in association with the MAOA (monoamine oxidase A) gene. The present study examined the moderating effect of MAOA-VNTR (variable number of tandem repeats) on aggression behavior relating to child abuse among Chinese adolescents. MATERIALS AND METHODS A sample of 507 healthy Chinese male adolescents completed the Child Trauma Questionnaire-Short Form (CTQ-SF) and Youth Self-report of the Child Behavior Checklist. The participants' buccal cells were sampled and subjected to DNA analysis. The effects of childhood abuse (CTQ-SF scores), MAOA-VNTR [high-activity allele (H) versus low-activity allele (L)], and their interaction in aggressive behaviors were analyzed by linear regression. RESULTS Child maltreatment was found to be a significant independent factor in the manifestation of aggressive behavior, whereas MAOA activity was not. There was a significant interaction between MAOA-VNTR and childhood maltreatment in the exhibition of aggressive behaviors. In the context of physical or emotional abuse, boys in the MAOA-L group showed a greater tendency toward aggression than those in the MAOA-H group. CONCLUSION Aggressive behavior arising from childhood maltreatment is moderated by MAOA-VNTR, which may be differentially sensitive to the subtype of childhood maltreatment experienced, among Chinese adolescents.
Collapse
|
36
|
McDermott R, Hatemi PK. The relationship between physical aggression, foreign policy and moral choices: Phenotypic and genetic findings. Aggress Behav 2017; 43:37-46. [PMID: 27245759 DOI: 10.1002/ab.21660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 11/11/2022]
Abstract
Previous work has demonstrated that both leaders and other individuals vary in dispositional levels of physical aggression, which are genetically influenced. Yet the importance of individual differences in aggression for attitudes toward foreign policy or context-laden moral choices, such as sacrificing the lives of some for the greater good of many, has yet to be fully explored. Given the global importance of such decisions, we undertook this exploration in a sample of 586 Australians, including 250 complete twin pairs. We found that individuals who scored higher on Buss-Perry's physical aggression scale were more likely to support aggressive foreign policy interventions and displayed a more utilitarian moral calculus than those who scored lower on this scale. Furthermore, we found that the majority of variance in physical aggression lay in genetic factors for men, whereas the majority of the variance was in environmental factors for women. The source of covariation between aggression and political choices also differed between the sexes. A combination of genetic and environmental factors accounted for most of the cross-trait correlations among males, whereas common and unique environmental factors accounted for most of the cross-trait correlations among females. We consider the implications of our results for understanding how trait measures of aggression are associated with foreign policy and moral choices, providing evidence for why and how individuals differ in responding to complex social dilemmas. Aggr. Behav. 43:37-46, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
|
37
|
Qayyum A, Zai CC, Hirata Y, Tiwari AK, Cheema S, Nowrouzi B, Beitchman JH, Kennedy JL. The Role of the Catechol-o-Methyltransferase (COMT) GeneVal158Met in Aggressive Behavior, a Review of Genetic Studies. Curr Neuropharmacol 2016; 13:802-14. [PMID: 26630958 PMCID: PMC4759319 DOI: 10.2174/1570159x13666150612225836] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/04/2022] Open
Abstract
Aggressive behaviors have become a major public health problem, and early-onset aggression can lead to outcomes such as substance abuse, antisocial personality disorder among other issues. In recent years, there has been an increase in research in the molecular and genetic underpinnings of aggressive behavior, and one of the candidate genes codes for the catechol-O-methyltransferase (COMT). COMT is involved in catabolizing catecholamines such as dopamine. These neurotransmitters appear to be involved in regulating mood which can contribute to aggression. The most common gene variant studied in the COMT gene is the Valine (Val) to Methionine (Met) substitution at codon 158. We will be reviewing the current literature on this gene variant in aggressive behavior.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8 Canada.
| |
Collapse
|
38
|
Zapata I, Serpell JA, Alvarez CE. Genetic mapping of canine fear and aggression. BMC Genomics 2016; 17:572. [PMID: 27503363 PMCID: PMC4977763 DOI: 10.1186/s12864-016-2936-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Fear/anxiety and anger/aggression greatly influence health, quality of life and social interactions. They are a huge burden to wellbeing, and personal and public economics. However, while much is known about the physiology and neuroanatomy of such emotions, little is known about their genetics - most importantly, why some individuals are more susceptible to pathology under stress. RESULTS We conducted genomewide association (GWA) mapping of breed stereotypes for many fear and aggression traits across several hundred dogs from diverse breeds. We confirmed those findings using GWA in a second cohort of partially overlapping breeds. Lastly, we used the validated loci to create a model that effectively predicted fear and aggression stereotypes in a third group of dog breeds that were not involved in the mapping studies. We found that i) known IGF1 and HMGA2 loci variants for small body size are associated with separation anxiety, touch-sensitivity, owner directed aggression and dog rivalry; and ii) two loci, between GNAT3 and CD36 on chr18, and near IGSF1 on chrX, are associated with several traits, including touch-sensitivity, non-social fear, and fear and aggression that are directed toward unfamiliar dogs and humans. All four genome loci are among the most highly evolutionarily-selected in dogs, and each of those was previously shown to be associated with morphological traits. We propose that the IGF1 and HMGA2 loci are candidates for identical variation being associated with both behavior and morphology. In contrast, we show that the GNAT3-CD36 locus has distinct variants for behavior and morphology. The chrX region is a special case due to its extensive linkage disequilibrium (LD). Our evidence strongly suggests that sociability (which we propose is associated with HS6ST2) and fear/aggression are two distinct GWA loci within this LD block on chrX, but there is almost perfect LD between the peaks for fear/aggression and animal size. CONCLUSIONS We have mapped many canine fear and aggression traits to single haplotypes at the GNAT3-CD36 and IGSF1 loci. CD36 is widely expressed, but areas of the amygdala and hypothalamus are among the brain regions with highest enrichment; and CD36-knockout mice are known to have significantly increased anxiety and aggression. Both of the other genes have very high tissue-specificity and are very abundantly expressed in brain regions that comprise the core anatomy of fear and aggression - the amygdala to hypothalamic-pituitary-adrenal (HPA) axis. We propose that reduced-fear variants at these loci may have been involved in the domestication process.
Collapse
Affiliation(s)
- Isain Zapata
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - James A. Serpell
- Center for the Interaction of Animals and Society, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Carlos E. Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210 USA
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210 USA
| |
Collapse
|
39
|
Poverty and behavior problems trajectories from 1.5 to 8 years of age: Is the gap widening between poor and non-poor children? Soc Psychiatry Psychiatr Epidemiol 2016; 51:1083-92. [PMID: 27324139 DOI: 10.1007/s00127-016-1252-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Poverty has been associated with high levels of behavior problems across childhood, yet patterns of associations over time remain understudied. This study aims: (a) to examine whether poverty predicts changes in behavior problems between 1.5 and 8 years of age; (b) to estimate potential selection bias for the observed associations. METHODS We used the 1998-2006 waves of the Quebec Longitudinal Study of Child Development (N = 2120). Main outcomes were maternal ratings of hyperactivity, opposition and physical aggression from 1.5 to 8 years of age. Linear mixed-effects models were used to assess the longitudinal association between poverty and behavior problems. Models were re-estimated adjusting for wave nonresponse and using multiple imputation to account for attrition. RESULTS Poverty predicted higher levels of behavior problems between 1.5 and 8 years of age. Poverty predicted hyperactivity and opposition in a time dependent manner. Hyperactivity [Bpoverty*age = 0.052; CI 95 % (0.002; 0.101)] and opposition [Bpoverty*age = 0.049; CI 95 % (0.018; 0.079)] increased at a faster rate up to age 5 years, and then decreased at a slower rate for poor than non-poor children. Physical aggression decreased at a steady rate over time for all children [Bpoverty*age = -0.030; p = 0.064). Estimates remained similar when accounting for attrition. CONCLUSION Poverty predicted higher levels of behavior problems between 1.5 and 8 years of age. The difference between poor and non-poor children was stable over time for physical aggression, but increased with age for hyperactivity and opposition. Attrition among poor children did not compromise the validity of results.
Collapse
|
40
|
Atramentova LA, Luchko EN. Aggression and empathy as genetic differentiation factors of urban population. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416050021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Tuvblad C, Narusyte J, Comasco E, Andershed H, Andershed AK, Colins OF, Fanti KA, Nilsson KW. Physical and verbal aggressive behavior and COMT genotype: Sensitivity to the environment. Am J Med Genet B Neuropsychiatr Genet 2016; 171:708-18. [PMID: 26888414 DOI: 10.1002/ajmg.b.32430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 02/01/2016] [Indexed: 01/11/2023]
Abstract
Catechol-O-methyltransferase (COMT) genotype has been implicated as a vulnerability factor for several psychiatric diseases as well as aggressive behavior, either directly, or in interaction with an adverse environment. The present study aimed at investigating the susceptibility properties of COMT genotype to adverse and favorable environment in relation to physical and verbal aggressive behavior. The COMT Val158Met polymorphism was genotyped in a Swedish population-based cohort including 1,783 individuals, ages 20-24 years (47% males). A significant three-way interaction was found, after correction for multiple testing, between COMT genotype, exposure to violence, and parent-child relationship in association with physical but not verbal aggressive behavior. Homozygous for the Val allele reported lower levels of physical aggressive behavior when they were exposed to violence and at the same time experienced a positive parent-child relationship compared to Met carriers. Thus, susceptibility properties of COMT genotype were observed in relation to physical aggressive behavior supporting the hypothesis that COMT genotypes are modifying the sensitivity to environment that confers either risk or protection for aggressive behavior. As these are novel findings, they warrant further investigation and replication in independent samples. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Catherine Tuvblad
- School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden.,Department of Psychology, University of Southern California, Los Angeles, California
| | - Jurgita Narusyte
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Erika Comasco
- Department of Neuroscience, Uppsala University, BMC, Uppsala, Sweden
| | - Henrik Andershed
- School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | | | - Olivier F Colins
- School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden.,Department of Child and Adolescent Psychiatry, Curium-Leiden University Medical Center, Leiden, The Netherlands
| | - Kostas A Fanti
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Kent W Nilsson
- Center for Clinical Research, Uppsala University, County Hospital, Västerås, Sweden
| |
Collapse
|
42
|
Pappa I, St Pourcain B, Benke K, Cavadino A, Hakulinen C, Nivard MG, Nolte IM, Tiesler CMT, Bakermans-Kranenburg MJ, Davies GE, Evans DM, Geoffroy MC, Grallert H, Groen-Blokhuis MM, Hudziak JJ, Kemp JP, Keltikangas-Järvinen L, McMahon G, Mileva-Seitz VR, Motazedi E, Power C, Raitakari OT, Ring SM, Rivadeneira F, Rodriguez A, Scheet PA, Seppälä I, Snieder H, Standl M, Thiering E, Timpson NJ, Veenstra R, Velders FP, Whitehouse AJO, Smith GD, Heinrich J, Hypponen E, Lehtimäki T, Middeldorp CM, Oldehinkel AJ, Pennell CE, Boomsma DI, Tiemeier H. A genome-wide approach to children's aggressive behavior: The EAGLE consortium. Am J Med Genet B Neuropsychiatr Genet 2016; 171:562-72. [PMID: 26087016 DOI: 10.1002/ajmg.b.32333] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/28/2015] [Indexed: 12/23/2022]
Abstract
Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of aggressive behavior in children. We analyzed data from nine population-based studies and assessed aggressive behavior using well-validated parent-reported questionnaires. This is the largest sample exploring children's aggressive behavior to date (N = 18,988), with measures in two developmental stages (N = 15,668 early childhood and N = 16,311 middle childhood/early adolescence). First, we estimated the additive genetic variance of children's aggressive behavior based on genome-wide SNP information, using genome-wide complex trait analysis (GCTA). Second, genetic associations within each study were assessed using a quasi-Poisson regression approach, capturing the highly right-skewed distribution of aggressive behavior. Third, we performed meta-analyses of genome-wide associations for both the total age-mixed sample and the two developmental stages. Finally, we performed a gene-based test using the summary statistics of the total sample. GCTA quantified variance tagged by common SNPs (10-54%). The meta-analysis of the total sample identified one region in chromosome 2 (2p12) at near genome-wide significance (top SNP rs11126630, P = 5.30 × 10(-8) ). The separate meta-analyses of the two developmental stages revealed suggestive evidence of association at the same locus. The gene-based analysis indicated association of variation within AVPR1A with aggressive behavior. We conclude that common variants at 2p12 show suggestive evidence for association with childhood aggression. Replication of these initial findings is needed, and further studies should clarify its biological meaning. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Irene Pappa
- School of Pedagogical and Educational Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Beate St Pourcain
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
- School of Experimental Psychology, University of Bristol, Bristol, United Kingdom
| | - Kelly Benke
- Johns Hopkins Bloomberg School of Public Health, Mental Health Department, Baltimore, Maryland
| | - Alana Cavadino
- Population, Policy and Practice, UCL Institute of Child Health, University College London, London, United Kingdom
- Centre for Environmental and Preventive Medicine, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christian Hakulinen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Michel G Nivard
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carla M T Tiesler
- Institute of Epidemiology I, Helmholtz Zentrum Munich, German Research Centre for Environmental Health, Neuherberg, Germany
- Division of Metabolic Diseases and Nutritional Medicine, Dr von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Gareth E Davies
- Avera Institute for Human Genetics, Sioux Falls, South Dakota
| | - David M Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Marie-Claude Geoffroy
- Population, Policy and Practice, UCL Institute of Child Health, University College London, London, United Kingdom
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Munich, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Maria M Groen-Blokhuis
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
- EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - James J Hudziak
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, College of Medicine, Vermont
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia Children's Hospital, The Netherlands
| | - John P Kemp
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Brisbane, Australia
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | | | - George McMahon
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Brisbane, Australia
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Viara R Mileva-Seitz
- School of Pedagogical and Educational Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Ehsan Motazedi
- Department of Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Christine Power
- Population, Policy and Practice, UCL Institute of Child Health, University College London, London, United Kingdom
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Susan M Ring
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center-Sophia Children's Hospital, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center-Sophia Children's Hospital, The Netherlands
| | - Alina Rodriguez
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Paul A Scheet
- Department of Epidemiology, University of Texas/MD Anderson Cancer Center, Houston, Texas
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, University of Tampere School of Medicine, Tampere, Finland
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum Munich, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum Munich, German Research Centre for Environmental Health, Neuherberg, Germany
- Division of Metabolic Diseases and Nutritional Medicine, Dr von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicholas J Timpson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - René Veenstra
- Department of Sociology, University of Groningen, Groningen, The Netherlands
| | - Fleur P Velders
- Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum Munich, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Elina Hypponen
- School of Pedagogical and Educational Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
- School of Population Health and Sansom Institute, University of South Australia, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, University of Tampere School of Medicine, Tampere, Finland
| | - Christel M Middeldorp
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands
- Department of child and adolescent psychiatry, GGZ in Geest/VU University Medical Center, Amsterdam, The Netherlands
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Craig E Pennell
- School of Women's and Infants' Health, University of Western Australia, Perth, Australia
| | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Henning Tiemeier
- Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center-Sophia Children's Hospital, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Waltes R, Chiocchetti AG, Freitag CM. The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms. Am J Med Genet B Neuropsychiatr Genet 2016; 171:650-75. [PMID: 26494515 DOI: 10.1002/ajmg.b.32388] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
Aggression is an evolutionary conserved behavior present in most species including humans. Inadequate aggression can lead to long-term detrimental personal and societal effects. Here, we differentiate between proactive and reactive forms of aggression and review the genetic determinants of it. Heritability estimates of aggression in general vary between studies due to differing assessment instruments for aggressive behavior (AB) as well as age and gender of study participants. In addition, especially non-shared environmental factors shape AB. Current hypotheses suggest that environmental effects such as early life stress or chronic psychosocial risk factors (e.g., maltreatment) and variation in genes related to neuroendocrine, dopaminergic as well as serotonergic systems increase the risk to develop AB. In this review, we summarize the current knowledge of the genetics of human aggression based on twin studies, genetic association studies, animal models, and epigenetic analyses with the aim to differentiate between mechanisms associated with proactive or reactive aggression. We hypothesize that from a genetic perspective, the aminergic systems are likely to regulate both reactive and proactive aggression, whereas the endocrine pathways seem to be more involved in regulation of reactive aggression through modulation of impulsivity. Epigenetic studies on aggression have associated non-genetic risk factors with modifications of the stress response and the immune system. Finally, we point to the urgent need for further genome-wide analyses and the integration of genetic and epigenetic information to understand individual differences in reactive and proactive AB. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Regina Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
44
|
Fernàndez-Castillo N, Cormand B. Aggressive behavior in humans: Genes and pathways identified through association studies. Am J Med Genet B Neuropsychiatr Genet 2016; 171:676-96. [PMID: 26773414 DOI: 10.1002/ajmg.b.32419] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
Aggressive behavior has both genetic and environmental components. Many association studies have been performed to identify genetic factors underlying aggressive behaviors in humans. In this review we summarize the previous work performed in this field, considering both candidate gene (CGAS) and genome-wide association studies (GWAS), excluding those performed in samples where the primary diagnosis is a psychiatric or neurological disorder other than an aggression-related phenotype. Subsequently, we have studied the enrichment of pathways and functions in GWAS data. The results of our searches show that most CGAS have identified associations with genes involved in dopaminergic and serotonergic neurotransmission and in hormone regulation. On the other hand, GWAS have not yet identified genome-wide significant associations, but top nominal findings are related to several signaling pathways, such as axon guidance or estrogen receptor signaling, and also to neurodevelopmental processes and synaptic plasticity. Future studies should use larger samples, homogeneous phenotypes and standardized measurements to identify genes that underlie aggressive behaviors in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| |
Collapse
|
45
|
Freudenberg F, Carreño Gutierrez H, Post AM, Reif A, Norton WHJ. Aggression in non-human vertebrates: Genetic mechanisms and molecular pathways. Am J Med Genet B Neuropsychiatr Genet 2016; 171:603-40. [PMID: 26284957 DOI: 10.1002/ajmg.b.32358] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/28/2015] [Indexed: 11/07/2022]
Abstract
Aggression is an adaptive behavioral trait that is important for the establishment of social hierarchies and competition for mating partners, food, and territories. While a certain level of aggression can be beneficial for the survival of an individual or species, abnormal aggression levels can be detrimental. Abnormal aggression is commonly found in human patients with psychiatric disorders. The predisposition to aggression is influenced by a combination of environmental and genetic factors and a large number of genes have been associated with aggression in both human and animal studies. In this review, we compare and contrast aggression studies in zebrafish and mouse. We present gene ontology and pathway analyses of genes linked to aggression and discuss the molecular pathways that underpin agonistic behavior in these species. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | - Antonia M Post
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
46
|
Kalbitzer U, Roos C, Kopp GH, Butynski TM, Knauf S, Zinner D, Fischer J. Insights into the genetic foundation of aggression in Papio and the evolution of two length-polymorphisms in the promoter regions of serotonin-related genes (5-HTTLPR and MAOALPR) in Papionini. BMC Evol Biol 2016; 16:121. [PMID: 27287312 PMCID: PMC4901440 DOI: 10.1186/s12862-016-0693-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/25/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Aggressive behaviors are an integral part of competitive interactions. There is considerable variation in aggressiveness among individuals both within and among species. Aggressiveness is a quantitative trait that is highly heritable. In modern humans and macaques (Macaca spp.), variation in aggressiveness among individuals is associated with polymorphisms in the serotonergic (5-HT) neurotransmitter system. To further investigate the genetics underlying interspecific variation in aggressiveness, 123 wild individuals from five baboon species (Papio papio, P. hamadryas, P. anubis, P. cynocephalus, and P. ursinus) were screened for two polymorphisms in promoter regions of genes relevant for the 5-HT system (5-HTTLPR and MAOALPR). RESULTS Surprisingly, despite considerable interspecific variation in aggressiveness, baboons are monomorphic in 5-HTTLPR, except for P. hamadryas, which carries one additional allele. Accordingly, this locus cannot be linked to behavioral variation among species. A comparison among 19 papionin species, including nine species of macaques, shows that the most common baboon allele is similar to the one described for Barbary macaques (Macaca sylvanus), probably representing the ancestral allele in this tribe. It should be noted that (almost) all baboons live in Africa, but within Macaca only M. sylvanus lives on this continent. Baboons are, however, highly polymorphic in the so-called 'warrior gene' MAOALPR, carrying three alleles. Due to considerable variation in allele frequencies among populations of the same species, this genotype cannot be invoked to explain variation in aggressiveness at the species level. CONCLUSIONS This study provides another indication that 5-HTTLPR is not related to aggressiveness in primates per se, but may have been under differential selective pressures among taxa and potentially among populations in different geographic regions. The results on MAOALPR alleles in Papio indicate that variation in the metabolism of monoamine neurotransmitters and associated behaviors is more important among populations than among species. We, therefore, propose to compile behavioral data from additional populations of Papio to obtain further insight into the genetics underlying behavioral differences among primate species.
Collapse
Affiliation(s)
- Urs Kalbitzer
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Gisela H Kopp
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Biology, University of Konstanz, 78457, Constance, Germany
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315, Radolfzell, Germany
| | - Thomas M Butynski
- Lolldaiga Hills Research Programme, Sustainability Centre Eastern Africa, P. O. Box 149, Nanyuki, 10400, Kenya
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, Pathology Unit, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| |
Collapse
|
47
|
Holtmann B, Grosser S, Lagisz M, Johnson SL, Santos ESA, Lara CE, Robertson BC, Nakagawa S. Population differentiation and behavioural association of the two ‘personality’ genesDRD4andSERTin dunnocks (Prunella modularis). Mol Ecol 2016; 25:706-22. [DOI: 10.1111/mec.13514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
- B. Holtmann
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - S. Grosser
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - M. Lagisz
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney NSW 2052 Australia
| | - S. L. Johnson
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - E. S. A. Santos
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
- Departamento de Zoologia; Universidade de São Paulo; Rua do Matão, Trav. 14, n˚ 101 Cid. Universitária São Paulo SP 05508-090 Brazil
| | - C. E. Lara
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - B. C. Robertson
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - S. Nakagawa
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
48
|
Budisavljevic S, Kawadler JM, Dell'Acqua F, Rijsdijk FV, Kane F, Picchioni M, McGuire P, Toulopoulou T, Georgiades A, Kalidindi S, Kravariti E, Murray RM, Murphy DG, Craig MC, Catani M. Heritability of the limbic networks. Soc Cogn Affect Neurosci 2015; 11:746-57. [PMID: 26714573 PMCID: PMC4847695 DOI: 10.1093/scan/nsv156] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022] Open
Abstract
Individual differences in cognitive ability and social behaviour are influenced by the variability in the structure and function of the limbic system. A strong heritability of the limbic cortex has been previously reported, but little is known about how genetic factors influence specific limbic networks. We used diffusion tensor imaging tractography to investigate heritability of different limbic tracts in 52 monozygotic and 34 dizygotic healthy adult twins. We explored the connections that contribute to the activity of three distinct functional limbic networks, namely the dorsal cingulum (‘medial default-mode network’), the ventral cingulum and the fornix (‘hippocampal-diencephalic-retrosplenial network’) and the uncinate fasciculus (‘temporo-amygdala-orbitofrontal network’). Genetic and environmental variances were mapped for multiple tract-specific measures that reflect different aspects of the underlying anatomy. We report the highest heritability for the uncinate fasciculus, a tract that underpins emotion processing, semantic cognition, and social behaviour. High to moderate genetic and shared environmental effects were found for pathways important for social behaviour and memory, for example, fornix, dorsal and ventral cingulum. These findings indicate that within the limbic system inheritance of specific traits may rely on the anatomy of distinct networks and is higher for fronto-temporal pathways dedicated to complex social behaviour and emotional processing.
Collapse
Affiliation(s)
- Sanja Budisavljevic
- Department of Forensic and Neurodevelopmental Sciences, and Natbrainlab, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK, NEMo Laboratory, Department of General Psychology, University of Padova, 35131 Padova, Italy,
| | - Jamie M Kawadler
- Department of Forensic and Neurodevelopmental Sciences, and Natbrainlab, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental Sciences, and Natbrainlab, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | | | | | | | - Timothea Toulopoulou
- Department of Psychological Medicine, and Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK, Department of Psychology, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong, and
| | - Anna Georgiades
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Sridevi Kalidindi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Eugenia Kravariti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Michael C Craig
- Department of Forensic and Neurodevelopmental Sciences, and Natbrainlab, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK, National Autism Unit, South London and Maudsley NHS Foundation Trust, Beckenham, UK
| | - Marco Catani
- Department of Forensic and Neurodevelopmental Sciences, and Natbrainlab, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| |
Collapse
|
49
|
van Dongen WFD, Robinson RW, Weston MA, Mulder RA, Guay PJ. Variation at the DRD4 locus is associated with wariness and local site selection in urban black swans. BMC Evol Biol 2015; 15:253. [PMID: 26653173 PMCID: PMC4676183 DOI: 10.1186/s12862-015-0533-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 11/04/2015] [Indexed: 11/24/2022] Open
Abstract
Background Interactions between wildlife and humans are increasing. Urban animals are often less wary of humans than their non-urban counterparts, which could be explained by habituation, adaptation or local site selection. Under local site selection, individuals that are less tolerant of humans are less likely to settle in urban areas. However, there is little evidence for such temperament-based site selection, and even less is known about its underlying genetic basis. We tested whether site selection in urban and non-urban habitats by black swans (Cygnus atratus) was associated with polymorphisms in two genes linked to fear in animals, the dopamine receptor D4 (DRD4) and serotonin transporter (SERT) genes. Results Wariness in swans was highly repeatable between disturbance events (repeatability = 0.61) and non-urban swans initiated escape from humans earlier than urban swans. We found no inter-individual variation in the SERT gene, but identified five DRD4 genotypes and an association between DRD4 genotype and wariness. Individuals possessing the most common DRD4 genotype were less wary than individuals possessing rarer genotypes. As predicted by the local site selection hypothesis, genotypes associated with wary behaviour were over three times more frequent at the non-urban site. This resulted in moderate population differentiation at DRD4 (FST = 0.080), despite the sites being separated by only 30 km, a short distance for this highly-mobile species. Low population differentiation at neutrally-selected microsatellite loci and the likely occasional migration of swans between the populations reduces the likelihood of local site adaptations. Conclusion Our results suggest that wariness in swans is partly genetically-determined and that wary swans settle in less-disturbed areas. More generally, our findings suggest that site-specific management strategies may be necessary that consider the temperament of local animals.
Collapse
Affiliation(s)
- Wouter F D van Dongen
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University-Footscray Park Campus, PO Box 14428, Melbourne MC, VIC, 8001, Australia. .,Centre for Integrative Ecology, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Randall W Robinson
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University-Footscray Park Campus, PO Box 14428, Melbourne MC, VIC, 8001, Australia.
| | - Michael A Weston
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Raoul A Mulder
- Department of Zoology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Patrick-Jean Guay
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University-Footscray Park Campus, PO Box 14428, Melbourne MC, VIC, 8001, Australia.
| |
Collapse
|
50
|
Sukhodolskaya EM, Vasilyev VA, Shibalev DV, Shcherbakova OI, Kulikov AM, Lazebny OE, Karelin DV, Butovskaya ML, Ryskov AP. Comparative analysis of polymorphisms of the serotonin receptor genes HTR1A, HTR2A, and HTR1B in Hadza and Datoga males. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415110162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|