1
|
Sena-Dos-Santos C, Cavalcante GC, Marques D, Silva CS, de Moraes MR, Pinto P, Santana-da-Silva MN, Ferraz RS, Costa SPT, Ventura AMR, Póvoa MM, Cunha MG, Ribeiro-Dos-Santos Â. Association of apoptosis-related variants to malaria infection and parasite density in individuals from the Brazilian Amazon. Malar J 2023; 22:295. [PMID: 37794476 PMCID: PMC10552311 DOI: 10.1186/s12936-023-04729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND In malaria infection, apoptosis acts as an important immunomodulatory mechanism that leads to the elimination of parasitized cells, thus reducing the parasite density and controlling immune cell populations. Here, it was investigated the association of INDEL variants in apoptotic genes-rs10562972 (FAS), rs4197 (FADD), rs3834129 and rs59308963 (CASP8), rs61079693 (CASP9), rs4647655 (CASP3), rs11269260 (BCL-2), and rs17880560 (TP53)-and the influence of genetic ancestry with susceptibility to malaria and parasite density in an admixed population from the Brazilian Amazon. METHODS Total DNA was extracted from 126 malaria patients and 101 uninfected individuals for investigation of genetic ancestries and genotypic distribution of apoptosis-related variants by Multiplex PCR. Association analyses consisted of multivariate logistic regressions, considering the following comparisons: (i) DEL/DEL genotype vs. INS/DEL + INS/INS; and (ii) INS/INS vs. INS/DEL + DEL/DEL. RESULTS Individuals infected by Plasmodium falciparum had significantly higher African ancestry proportions in comparison to uninfected controls, Plasmodium vivax, and mixed infections. The INS/INS genotype of rs3834129 (CASP8) seemed to increase the risk for P. falciparum infection (P = 0.038; OR = 1.867; 95% CI 0.736-3.725), while the DEL/DEL genotype presented a significant protective effect against infection by P. falciparum (P = 0.049; OR = 0.446; 95% CI 0.185-0.944) and mixed infection (P = 0.026; OR = 0.545; 95% CI 0.281-0.996), and was associated with lower parasite density in P. falciparum malaria (P = 0.009; OR = 0.383; 95% CI 0.113-1.295). Additionally, the INS/INS genotype of rs10562972 (FAS) was more frequent among individuals infected with P. vivax compared to P. falciparum (P = 0.036; OR = 2.493; 95% CI 1.104-4.551), and the DEL/DEL genotype of rs17880560 (TP53) was significantly more present in patients with mono-infection by P. vivax than in individuals with mixed infection (P = 0.029; OR = 0.667; 95% CI 0.211-1.669). CONCLUSIONS In conclusion, variants in apoptosis genes are associated with malaria susceptibility and parasite density, indicating the role of apoptosis-related genetic profiles in immune responses against malaria infection.
Collapse
Affiliation(s)
- Camille Sena-Dos-Santos
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Giovanna C Cavalcante
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Diego Marques
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Caio S Silva
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Milene Raiol de Moraes
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Pablo Pinto
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Dermatoimmunology, Federal University of Pará (UFPA), Marituba, Brazil
| | - Mayara Natália Santana-da-Silva
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Rafaella S Ferraz
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | | | - Ana Maria R Ventura
- Division of Parasitology, Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Marinete M Póvoa
- Division of Parasitology, Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Maristela G Cunha
- Laboratory of Microbiology and Immunology, Federal University of Pará (UFPA), Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil.
- Program of Oncology and Medical Sciences, Oncology Research Center, Belém, Brazil.
| |
Collapse
|
2
|
Futagbi G, Otu PS, Abdul-Rahman M, Aidoo EK, Lo AC, Gyan BA, Afrane YA, Amoah LE. Association of TNF-Alpha, MBL2, NOS2, and G6PD with Malaria Outcomes in People in Southern Ghana. Genet Res (Camb) 2022; 2022:6686406. [PMID: 35291755 PMCID: PMC8901335 DOI: 10.1155/2022/6686406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background One major issue that has set back the gains of the numerous malaria control interventions that national malaria control programs have implemented is asymptomatic malaria. Certain host genetic factors are known to influence symptomatic malaria; however, not much is known about how host genetics influences the acquisition of asymptomatic malaria. Methods Genomic DNA was extracted from whole blood collected from 60 symptomatic and 149 nonfebrile (asymptomatic, N = 109, and uninfected, N = 40) volunteers aged between 2 and 69 years from a high (Obom) and a low (Asutsuare) malaria transmission setting in Southern Ghana. Restriction fragment length polymorphism (RFLP) was used to determine polymorphisms at the MBL2 54, TNF-α 308, NOS2 954, and G6PD 202/376 gene loci. Results Polymorphisms at the MBL2 54 and TNF-α 308 loci were significantly different amongst the three categories of volunteers in both Asutsuare (p = 0.006) and Obom (p=0.05). In Asutsuare, a low malaria transmission area, the allele G has significantly higher odds (3.15) of supporting asymptomatic malaria as against symptomatic malaria. There were significantly higher odds of TNF-α genotype GA being associated with symptomatic malaria as against asymptomatic malaria in both sites, Obom (p=0.027) and Asutsuare (p=0.027). The allele B of the G6PD gene was more prevalent in symptomatic rather than asymptomatic parasite-infected individuals in both Obom (p=0.001) and Asutsuare (p=0.003). Conclusion Individuals in Southern Ghana carrying the TNF-α 308 GA genotype are more likely to exhibit symptoms of malaria when infected with the malaria parasite as opposed to harboring an asymptomatic infection. Also, the B allele of the G6PD gene is likely to prevent a P. falciparum-infected person from exhibiting symptoms and thereby promote asymptomatic parasite carriage.
Collapse
Affiliation(s)
- Godfred Futagbi
- Department of Animal Biology and Conservation Science, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Paulina S Otu
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Mubarak Abdul-Rahman
- Department of Pathology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Ebenezer K Aidoo
- Department of Medical Laboratory, Accra Technical University, Accra, Ghana
| | - Aminata C Lo
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Medical Parasitology, Faculty of Medicine, University Cheikh Anta Diop, Dakar, Senegal
| | - Ben A Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Snyder JP, Gullickson SK, del Rio-Guerra R, Sweezy A, Vagher B, Hogan TC, Lahue KG, Reisz JA, D’Alessandro A, Krementsov DN, Amiel E. Divergent Genetic Regulation of Nitric Oxide Production between C57BL/6J and Wild-Derived PWD/PhJ Mice Controls Postactivation Mitochondrial Metabolism, Cell Survival, and Bacterial Resistance in Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:97-109. [PMID: 34872978 PMCID: PMC8702458 DOI: 10.4049/jimmunol.2100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
Dendritic cell (DC) activation is characterized by sustained commitment to glycolysis that is a requirement for survival in DC subsets that express inducible NO synthase (Nos2) due to NO-mediated inhibition of mitochondrial respiration. This phenomenon primarily has been studied in DCs from the classic laboratory inbred mouse strain C57BL/6J (B6) mice, where DCs experience a loss of mitochondrial function due to NO accumulation. To assess the conservation of NO-driven metabolic regulation in DCs, we compared B6 mice to the wild-derived genetically divergent PWD/PhJ (PWD) strain. We show preserved mitochondrial respiration and enhanced postactivation survival due to attenuated NO production in LPS-stimulated PWD DCs phenocopying human monocyte-derived DCs. To genetically map this phenotype, we used a congenic mouse strain (B6.PWD-Chr11.2) that carries a PWD-derived portion of chromosome 11, including Nos2, on a B6 background. B6.PWD-Chr11.2 DCs show preserved mitochondrial function and produce lower NO levels than B6 DCs. We demonstrate that activated B6.PWD-Chr11.2 DCs maintain mitochondrial respiration and TCA cycle carbon flux, compared with B6 DCs. However, reduced NO production by the PWD Nos2 allele results in impaired cellular control of Listeria monocytogenes replication. These studies establish a natural genetic model for restrained endogenous NO production to investigate the contribution of NO in regulating the interplay between DC metabolism and immune function. These findings suggest that reported differences between human and murine DCs may be an artifact of the limited genetic diversity of the mouse models used, underscoring the need for mouse genetic diversity in immunology research.
Collapse
Affiliation(s)
- Julia P. Snyder
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA,Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Soyeon K. Gullickson
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA
| | - Roxana del Rio-Guerra
- Flow Cytometry and Cell Sorting Facility, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Andrea Sweezy
- Undergraduate Student Researcher, University of Vermont
| | - Bay Vagher
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA,Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Tyler C. Hogan
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Karolyn G. Lahue
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado – Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado – Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Dimitry N. Krementsov
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA,Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Eyal Amiel
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA,Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA,Corresponding author: please direct all correspondence to
| |
Collapse
|
4
|
Association of NOS2A gene polymorphisms with susceptibility to bovine tuberculosis in Chinese Holstein cattle. PLoS One 2021; 16:e0253339. [PMID: 34138949 PMCID: PMC8211175 DOI: 10.1371/journal.pone.0253339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022] Open
Abstract
Bovine tuberculosis (bTB) is a global zoonotic disease that has detrimental economic impacts worldwide. The NOS2A gene plays a key role in immunological control of many infectious diseases. However, research on the association between NOS2A polymorphisms and bTB infection in Holstein cattle reared on the Yunnan-Guizhou plateau of China is scarce. This study investigated a possible linkage between NOS2A polymorphisms and risk of developing bTB in Chinese Holstein cattle. The NOS2A gene was genotyped in 144 bTB-infected Holstein cows and 139 healthy controls were genotyped through nucleotide sequencing. Ten single-nucleotide polymorphisms (SNPs) were detected, six of which were associated with susceptibility/resistance patterns of bTB. Furthermore, the C/T genotypes of 671 and 2793, and T/T genotype of E22 (+15) were significantly associated with susceptibility risk; the G/A genotype of 2857, T/T genotype of E9 (+65), and C/C genotype of E9 (+114) probably increased resistance to bTB. In addition, the haplotypes of NOS2A-2 and NOS2A-9 were risk factors for bTB susceptibility, while the NOS2A-5 and NOS2A-8 haplotypes were contributing protective variants against tuberculosis. There is a significant association between variation in SNPs of NOS2A and tuberculosis susceptibility/resistance pattern. These findings suggest that substitution of genetic selection would be helpful for eradicating bTB. However, further investigation is required to study the underlying mechanism through which NOS2A polymorphisms affect bTB infection.
Collapse
|
5
|
Pereira DMS, Carvalho Júnior AR, Lacerda EMDCB, da Silva LCN, Marinho CRF, André E, Fernandes ES. Oxidative and nitrosative stresses in cerebral malaria: can we target them to avoid a bad prognosis? J Antimicrob Chemother 2020; 75:1363-1373. [PMID: 32105324 DOI: 10.1093/jac/dkaa032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is currently a global effort to reduce malaria morbidity and mortality. However, malaria still results in the deaths of thousands of people every year. Malaria is caused by Plasmodium spp., parasites transmitted through the bite of an infected female Anopheles mosquito. Treatment timing plays a decisive role in reducing mortality and sequelae associated with the severe forms of the disease such as cerebral malaria (CM). The available antimalarial therapy is considered effective but parasite resistance to these drugs has been observed in some countries. Antimalarial drugs act by increasing parasite lysis, especially through targeting oxidative stress pathways. Here we discuss the roles of reactive oxygen species and reactive nitrogen intermediates in CM as a result of host-parasite interactions. We also present evidence of the potential contribution of oxidative and nitrosative stress-based antimalarial drugs to disease treatment and control.
Collapse
Affiliation(s)
| | | | | | | | | | - Eunice André
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Programa de Pós-graduação, Universidade CEUMA, São Luís, MA, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.,Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| |
Collapse
|
6
|
Ghosh S, Pathak S, Sonawat HM, Sharma S, Sengupta A. Metabolomic changes in vertebrate host during malaria disease progression. Cytokine 2018; 112:32-43. [PMID: 30057363 DOI: 10.1016/j.cyto.2018.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Metabolomics refers to top-down systems biological analysis of metabolites in biological specimens. Phenotypic proximity of metabolites makes them interesting candidates for studying biomarkers of environmental stressors such as parasitic infections. Moreover, the host-parasite interaction directly impinges upon metabolic pathways since the parasite uses the host metabolite pool as a biosynthetic resource. Malarial infection, although not recognized as a classic metabolic disorder, often leads to severe metabolic changes such as hypoglycemia and lactic acidosis. Thus, metabolomic analysis of the infection has become an invaluable tool for promoting a better understanding of the host-parasite interaction and for the development of novel therapeutics. In this review, we summarize the current knowledge obtained from metabolomic studies of malarial infection in rodent models and human patients. Metabolomic analysis of experimental rodent malaria has provided significant insights into the mechanisms of disease progression including utilization of host resources by the parasite, sexual dimorphism in metabolic phenotypes, and cellular changes in host metabolism. Moreover, these studies also provide proof of concept for prediction of cerebral malaria. On the other hand, metabolite analysis of patient biofluids generates extensive data that could be of use in identifying biomarkers of infection severity and in monitoring disease progression. Through the use of metabolomic datasets one hopes to assess crucial infection-specific issues such as clinical severity, drug resistance, therapeutic targets, and biomarkers. Also discussed are nascent or newly emerging areas of metabolomics such as pre-erythrocytic stages of the infection and the host immune response. This review is organized in four broad sections-methodologies for metabolomic analysis, rodent infection models, studies of human clinical specimens, and potential of immunometabolomics. Data summarized in this review should serve as a springboard for novel hypothesis testing and lead to a better understanding of malarial infection and parasite biology.
Collapse
Affiliation(s)
- Soumita Ghosh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Haripalsingh M Sonawat
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Kumar A, Singh KP, Bali P, Anwar S, Kaul A, Singh OP, Gupta BK, Kumari N, Noor Alam M, Raziuddin M, Sinha MP, Gourinath S, Sharma AK, Sohail M. iNOS polymorphism modulates iNOS/NO expression via impaired antioxidant and ROS content in P. vivax and P. falciparum infection. Redox Biol 2018; 15:192-206. [PMID: 29268202 PMCID: PMC5738204 DOI: 10.1016/j.redox.2017.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide (NO) has dicotomic influence on modulating host-parasite interplay, synchronizing physiological orchestrations and diagnostic potential; instigated us to investigate the plausible association and genetic regulation among NO level, components of oxidative stress, iNOS polymorphisms and risk of malaria. Here, we experimentally elucidate that iNOS promoter polymorphisms are associated with risk of malaria; employing mutation specific genotyping, functional interplay using western blot and RT-PCR, quantitative estimation of NO, total antioxidant content (TAC) and reactive oxygen species (ROS). Genotyping revealed significantly associated risk of P. vivax (adjusted OR = 1.92 and 1.72) and P. falciparum (adjusted OR = 1.68 and 1.75) infection with SNP at iNOS-954G/C and iNOS-1173C/T positions, respectively; though vivax showed higher risk of infection. Intriguingly, mutation and infection specific differential upregulation of iNOS expression/NO level was observed and found to be significantly associated with mutant genotypes. Moreover, P. vivax showed pronounced iNOS protein (2.4 fold) and mRNA (2.5 fold) expression relative to healthy subjects. Furthermore, TAC and ROS were significantly decreased in infection; and differentially decreased in mutant genotypes. Our findings endorse polymorphic regulation of iNOS expression, altered oxidant-antioxidant components and evidences of risk association as the hallmark of malaria pathogenesis. iNOS/NO may serve as potential diagnostic marker in assessing clinical malaria.
Collapse
Affiliation(s)
- Amod Kumar
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Krishn Pratap Singh
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Prerna Bali
- National Institute of Malaria Research, Dawarka, Delhi, India
| | - Shadab Anwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Asha Kaul
- National Institute of Malaria Research, Dawarka, Delhi, India
| | - Om P Singh
- National Institute of Malaria Research, Dawarka, Delhi, India
| | - Birendra Kumar Gupta
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Nutan Kumari
- Department of Physiology, Patna Medical College and Hospital, Patna, India
| | - Md Noor Alam
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Mohammad Raziuddin
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | | | | | - Ajay Kumar Sharma
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India.
| | - Mohammad Sohail
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India.
| |
Collapse
|
8
|
Lwanira CN, Kironde F, Kaddumukasa M, Swedberg G. Prevalence of polymorphisms in glucose-6-phosphate dehydrogenase, sickle haemoglobin and nitric oxide synthase genes and their relationship with incidence of uncomplicated malaria in Iganga, Uganda. Malar J 2017; 16:322. [PMID: 28793894 PMCID: PMC5551019 DOI: 10.1186/s12936-017-1970-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/03/2017] [Indexed: 12/02/2022] Open
Abstract
Background Host genetics play an important role in Plasmodium falciparum malaria susceptibility. However, information on host genetic factors and their relationships with malaria in the vaccine trial site of Iganga, Uganda is limited. The main objective of this study was to determine the prevalence of selected host genetic markers and their relationship to malaria incidence in the vaccine trial site of Iganga, Uganda. In a 1-year longitudinal cohort study, 423 children aged below 9 years were recruited and their malaria episodes were investigated. Host genetic polymorphisms were assessed by PCR–RFLP, haemoglobin electrophoresis and DNA sequencing. Using a multivariate negative binomial regression model, estimates of the impact of human genetic polymorphisms on malaria incidence were performed. In all statistical tests, a P value of <0.05 was considered as significant. Results The prevalences of sickle cell haemoglobin trait, G6PD c.202 G>A (rs 1050828) and NOS2 −954 G>C (rs 1800482) variants were 26.6, 22.7 and 17.3%, respectively. Inducible nitric oxide synthase 2 (NOS2 −954 G>C; rs 1800482) heterozygosity was associated with lower incidence of malaria in all age groups {Adjusted incident rates ratio (aIRR) 0.59; 95% CI [0.386–0.887]; P = 0.012)}. About 4% of study subjects had co-existence of sickle cell Hb trait and G6PD deficiency. Sickle cell Hb heterozygotes (Hb AS) aged less than 1 year experienced significantly more malaria episodes annually than children with normal haemoglobin (Hb AA) {aIRR = 1.98; 95% CI [1.240–3.175]; P = 0.004}. There was no significant influence of the sickle cell trait on malaria incidence among older children of 1–9 years. Conclusions Mutation (NOS2 −954 G>C; rs 1800482) of nitric oxide synthase 2 gene promoter was associated with a lower incidence of acute malaria. The normal haemoglobin (wild genotype; HbAA) was associated with reduced malaria incidence rates during the first year of life. More understanding of the interplay between host genetics and malaria susceptibility is required.
Collapse
Affiliation(s)
| | - Fred Kironde
- Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda (IUIU), Kampala Campus, Kampala, Uganda.
| | - Mark Kaddumukasa
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Iwakiri Y. Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase. Clin Mol Hepatol 2015; 21:319-25. [PMID: 26770919 PMCID: PMC4712158 DOI: 10.3350/cmh.2015.21.4.319] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 11/14/2015] [Indexed: 12/16/2022] Open
Abstract
The inducible form of nitric oxide synthase (iNOS) is expressed in hepatic cells in pathological conditions. Its induction is involved in the development of liver fibrosis, and thus iNOS could be a therapeutic target for liver fibrosis. This review summarizes the role of iNOS in liver fibrosis, focusing on 1) iNOS biology, 2) iNOS-expressing liver cells, 3) iNOS-related therapeutic strategies, and 4) future directions.
Collapse
Affiliation(s)
- Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Cheng Y, Huang C, Tsai HJ. Relationship of bovine NOS2 gene polymorphisms to the risk of bovine tuberculosis in Holstein cattle. J Vet Med Sci 2015; 78:281-6. [PMID: 26468216 PMCID: PMC4785118 DOI: 10.1292/jvms.15-0295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many studies suggest significant genetic variation in the resistance of cattle and humans to infection with
Mycobacterium bovis, the causative agent of zoonotic tuberculosis. The inducible nitric
oxide synthase (iNOS which is encoded by the NOS2 gene) plays a key role in the immunological
control of a broad spectrum of infectious agents. This study aimed to investigate the influence of genetic
variations in the promoter of the NOS2 gene on bovine tuberculosis (bTB) susceptibility. In
this study, the NOS2 genes of 74 bTB-infected Holstein cows and 90 healthy controls were
genotyped using PCR followed by nucleotide sequencing. Polymorphisms at rs207692718, rs109279434, rs209895548,
rs385993919, rs433717754, rs383366213, rs466730386, rs715225976, rs525673647, rs720757654 and g.19958101T>G
in the promoter region of the NOS2 gene were detected. The g.19958101T>G SNP produced two
different conformation patterns (TT and TG) and the TG genotype was over-represented in the bTB group (20.27%)
compared with the control group (2.22%). The TG genotype frequency of the g.19958101T>G variant was
significantly higher in bTB cattle than in healthy controls (OR, 11.19; 95% CI, 2.47–50.73;
P=0.0002). The G allele of the g.19958101T>G polymorphism was more frequent in bTB group
when compared to control group (10.14% versus 1.11%). Furthermore, the G allele was a risk factor for bTB
susceptibility (OR, 10.04; 95% CI, 2.26–44.65; P=0.0002). In conclusion, the g.19958101T>G
polymorphism of the NOS2 gene may contribute to the susceptibility of Holstein cattle to
bTB.
Collapse
Affiliation(s)
- Yafen Cheng
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | | | | |
Collapse
|
11
|
Kanchan K, Pati SS, Mohanty S, Mishra SK, Sharma SK, Awasthi S, Venkatesh V, Habib S. Polymorphisms in host genes encoding NOSII, C-reactive protein, and adhesion molecules thrombospondin and E-selectin are risk factors for Plasmodium falciparum malaria in India. Eur J Clin Microbiol Infect Dis 2015; 34:2029-39. [DOI: 10.1007/s10096-015-2448-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/01/2015] [Indexed: 12/28/2022]
|
12
|
Inducible nitric oxide synthase (iNOS) regulatory region variation in non-human primates. INFECTION GENETICS AND EVOLUTION 2015; 31:236-44. [PMID: 25675838 DOI: 10.1016/j.meegid.2015.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/07/2015] [Accepted: 01/19/2015] [Indexed: 01/26/2023]
Abstract
Inducible nitric oxide synthase (iNOS) is an enzyme that plays a key role in intracellular immune response against respiratory infections. Since various species of nonhuman primates exhibit different levels of susceptibility to infectious respiratory diseases, and since variation in regulatory regions of genes is thought to play a key role in expression levels of genes, two candidate regulatory regions of iNOS were mapped, sequenced, and compared across five species of nonhuman primates: African green monkeys (Chlorocebus sabaeus), pig-tailed macaques (Macaca nemestrina), cynomolgus macaques (Macaca fascicularis), Indian rhesus macaques (Macaca mulatta), and Chinese rhesus macaques (M. mulatta). In addition, we conducted an in silico analysis of the transcription factor binding sites associated with genetic variation in these two candidate regulatory regions across species. We found that only one of the two candidate regions showed strong evidence of involvement in iNOS regulation. Specifically, we found evidence of 13 conserved binding site candidates linked to iNOS regulation: AP-1, C/EBPB, CREB, GATA-1, GATA-3, NF-AT, NF-AT5, NF-κB, KLF4, Oct-1, PEA3, SMAD3, and TCF11. Additionally, we found evidence of interspecies variation in binding sites for several regulatory elements linked to iNOS (GATA-3, GATA-4, KLF6, SRF, STAT-1, STAT-3, OLF-1 and HIF-1) across species, especially in African green monkeys relative to other species. Given the key role of iNOS in respiratory immune response, the findings of this study might help guide the direction of future studies aimed to uncover the molecular mechanisms underlying the increased susceptibility of African green monkeys to several viral and bacterial respiratory infections.
Collapse
|
13
|
Jena M, Srivastava AK, Singh RK, Sharma PR, Das P, Bamezai RN. NOS2A promoter (CCTTT)n association with TB lacks independent functional correlation amongst Indians. Tuberculosis (Edinb) 2014; 94:81-6. [DOI: 10.1016/j.tube.2013.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 01/23/2023]
|
14
|
NOS2 variants reveal a dual genetic control of nitric oxide levels, susceptibility to Plasmodium infection, and cerebral malaria. Infect Immun 2013; 82:1287-95. [PMID: 24379293 DOI: 10.1128/iai.01070-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nitric oxide (NO) is a proposed component of malaria pathogenesis, and the inducible nitric oxide synthase gene (NOS2) has been associated to malaria susceptibility. We analyzed the role of NOS2 polymorphisms on NO bioavailability and on susceptibility to infection, Plasmodium carrier status and clinical malaria. Two distinct West African sample collections were studied: a population-based collection of 1,168 apparently healthy individuals from the Príncipe Island and a hospital-based cohort of 269 Angolan children. We found that two NOS2 promoter single-nucleotide polymorphism (SNP) alleles associated to low NO plasma levels in noninfected individuals were also associated to reduced risk of pre-erythrocytic infection as measured anti-CSP antibody levels (6.25E-04 < P < 7.57E-04). In contrast, three SNP alleles within the NOS2 cistronic region conferring increased NO plasma levels in asymptomatic carriers were strongly associated to risk of parasite carriage (8.00E-05 < P < 7.90E-04). Notwithstanding, three SNP alleles in this region protected from cerebral malaria (7.90E-4 < P < 4.33E-02). Cohesively, the results revealed a dual regimen in the genetic control of NO bioavailability afforded by NOS2 depending on the infection status. NOS2 promoter variants operate in noninfected individuals to decrease both NO bioavailability and susceptibility to pre-erythrocytic infection. Conversely, NOS2 cistronic variants (namely, rs6505469) operate in infected individuals to increase NO bioavailability and confer increased susceptibility to unapparent infection but protect from cerebral malaria. These findings corroborate the hypothesis that NO anti-inflammatory properties impact on different steps of malaria pathogenesis, explicitly by favoring infection susceptibility and deterring severe malaria syndromes.
Collapse
|
15
|
Lima-Junior JDC, Rodrigues-da-Silva RN, Pereira VA, Storer FL, Perce-da-Silva DDS, Fabrino DL, Santos F, Banic DM, Oliveira-Ferreira JD. Cells and mediators of inflammation (C-reactive protein, nitric oxide, platelets and neutrophils) in the acute and convalescent phases of uncomplicated Plasmodium vivax and Plasmodium falciparum infection. Mem Inst Oswaldo Cruz 2013; 107:1035-41. [PMID: 23295755 DOI: 10.1590/s0074-02762012000800012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/14/2012] [Indexed: 11/22/2022] Open
Abstract
The haematological changes and release of soluble mediators, particularly C-reactive protein (CRP) and nitric oxide (NO), during uncomplicated malaria have not been well studied, especially in Brazilian areas in which the disease is endemic. Therefore, the present study examined these factors in acute (day 0) and convalescent phase (day 15) patients infected with Plasmodium falciparum and Plasmodium vivax malaria in the Brazilian Amazon. Haematologic parameters were measured using automated cell counting, CRP levels were measured with ELISA and NO plasma levels were measured by the Griess reaction. Our data indicate that individuals with uncomplicated P. vivax and P. falciparum infection presented similar inflammatory profiles with respect to white blood cells, with high band cell production and a considerable degree of thrombocytopaenia during the acute phase of infection. Higher CRP levels were detected in acute P. vivax infection than in acute P. falciparum infection, while higher NO was detected in patients with acute and convalescent P. falciparum infections. Although changes in these mediators cannot predict malaria infection, the haematological aspects associated with malaria infection, especially the roles of platelets and band cells, need to be investigated further.
Collapse
|
16
|
The host genetic diversity in malaria infection. J Trop Med 2012; 2012:940616. [PMID: 23316245 PMCID: PMC3532872 DOI: 10.1155/2012/940616] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/06/2012] [Accepted: 11/19/2012] [Indexed: 02/06/2023] Open
Abstract
Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment.
Collapse
|
17
|
Wang Z, Feng K, Yue M, Lu X, Zheng Q, Zhang H, Zhai Y, Li P, Yu L, Cai M, Zhang X, Kang X, Shi W, Xia X, Chen X, Cao P, Li Y, Chen H, Ling Y, Li Y, He F, Zhou G. A non-synonymous SNP in the NOS2 associated with septic shock in patients with sepsis in Chinese populations. Hum Genet 2012. [PMID: 23192595 DOI: 10.1007/s00439-012-1253-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sepsis represents a systemic inflammatory response to infection and its sequelae include severe sepsis, septic shock, multiple organ dysfunction syndrome (MODS) and death. Studies in mice and humans indicate that the inducible nitric oxide synthase (iNOS, NOS2) plays an important role in the development of sepsis and its sequelae. It was reported that several single nucleotide polymorphisms (SNPs) within NOS2 could influence the production or activity of NOS2. In this study, we assessed whether SNPs within NOS2 gene were associated with severity of sepsis in Chinese populations. A case-control study was conducted, which included 299 and 280 unrelated patients with sepsis recruited from Liaoning and Jiangsu provinces in China, respectively. Six SNPs within NOS2 were genotyped using Sequenom MassARRAY system. The associations between the SNPs and risk of sepsis complications were estimated by a binary logistic regression model adjusted for confounding factors. Functional assay was performed to assess the biological significance. The GA + AA genotype of a non-synonymous SNP in the exon 16 of NOS2 (rs2297518: G>A) was significantly associated with increased susceptibility to septic shock compared with GG genotype in Liaoning population (OR = 3.29, 95% CI = 1.40-7.72, P = 0.0047). This association was confirmed in the Jiangsu population (OR = 3.49, 95% CI = 1.57-7.79, P = 0.0019). Furthermore, the functional assay performed in the immortalized lymphocyte cell lines indicated that the at-risk GA genotype had a tendency of higher NOS2 activity than the GG genotype (P = 0.32). Our findings suggest that the NOS2 rs2297518 may play a role in mediating the susceptibility to septic shock in patients with sepsis in Chinese populations.
Collapse
Affiliation(s)
- Zhifu Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Planche T, Macallan DC, Sobande T, Borrmann S, Kun JFJ, Krishna S, Kremsner PG. Nitric oxide generation in children with malaria and the NOS2G-954C promoter polymorphism. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1248-53. [PMID: 20811009 DOI: 10.1152/ajpregu.00390.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous epidemiological studies have demonstrated a protective association between the NOS2G-954C (NOS2(Lambaréné)) polymorphism in inducible nitric oxide synthase and severe malaria. The polymorphism is commoner in children with uncomplicated compared with severe malaria. We now show that the likely mechanism for such protection is increased flux of nitrogen from arginine to nitric oxide (NO) during episodes of malaria. Forty-seven boys with uncomplicated malaria received an infusion of (15)N-arginine to measure directly whole body in vivo NO production. The NOS2G-954C genotype previously associated with reduced risk of severe malaria in Gabon was also assessed. Evaluable data were obtained from 40 boys, of whom 6 were NOS2G-954C heterozygotes. Heterozygotes had higher urinary (15)N nitrate enrichments, 2.3 ± 0.6 vs. 1.4 ± 0.5 atoms percent excess (P = 0.001) and higher ratios of (15)N between urine nitrate and plasma arginine (87 ± 11 vs. 57 ± 18%, P = 0.001) consistent with accelerated NO production. We also derived total NO production rates, combining data with total urine production rate and nitrate concentration; these showed no difference by genotype (0.62 ± 0.36, n = 6 vs. 0.83 ± 0.50 μmol/kg·h, n = 16; P = 0.36), but data were confounded by very high variability in measurements of urine output and nitrate concentrations. This study supports the idea that NOS2 genotype protects against severe malaria by increasing NO production during episodes of uncomplicated malaria.
Collapse
Affiliation(s)
- Timothy Planche
- Centre for Infection, St. George's Hospital Medical School, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
López C, Saravia C, Gomez A, Hoebeke J, Patarroyo MA. Mechanisms of genetically-based resistance to malaria. Gene 2010; 467:1-12. [PMID: 20655368 DOI: 10.1016/j.gene.2010.07.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 07/13/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
Malaria remains one of the most prevalent parasitoses worldwide. About 350 to 500 million febrile episodes are observed yearly in African children alone and more than 1 million people die because of malaria each year. Multiple factors have hampered the effective control of this disease, some of which include the complex biology of the Plasmodium parasites, their high polymorphism and their increasingly high resistance to antimalarial drugs, mainly in endemic regions. The ancient interaction between malarial parasites and humans has led to the fixation in the population of several inherited alterations conferring protection against malaria. Some of the mechanisms underlying protection against this disease are described in this review for hemoglobin-inherited disorders (thalassemia, sickle-cell trait, HbC and HbE), erythrocyte polymorphisms (ovalocytosis and Duffy blood group), enzymopathies (G6PD deficiency and PK deficiency) and immunogenetic variants (HLA alleles, complement receptor 1, NOS2, tumor necrosis factor-α promoter and chromosome 5q31-q33 polymorphisms).
Collapse
Affiliation(s)
- Carolina López
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No 26-20, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
20
|
Randall LM, Kenangalem E, Lampah DA, Tjitra E, Mwaikambo ED, Handojo T, Piera KA, Zhao ZZ, de Labastida Rivera F, Zhou Y, McSweeney KM, Le L, Amante FH, Haque A, Stanley AC, Woodberry T, Salwati E, Granger DL, Hobbs MR, Price RN, Weinberg JB, Montgomery GW, Anstey NM, Engwerda CR. Age-related susceptibility to severe malaria associated with galectin-2 in highland Papuans. J Infect Dis 2010; 202:117-24. [PMID: 20500087 DOI: 10.1086/653125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Age and host genetics are important determinants of malaria severity. Lymphotoxin-alpha (LTalpha) has been associated with the development of cerebral malaria (CM) and other severe malaria (SM) syndromes. Mutations in genes regulating LTalpha production contribute to other acute vascular diseases and may contribute to malaria pathogenesis. METHODS We tested the association between rs7291467, a single-nucleotide polymorphism (SNP) in the LTalpha-related gene encoding galectin-2 (LGALS2), disease severity, and function in a case-control study of ethnic Highland Papuan adults and children with SM (n = 380) and asymptomatic malaria-exposed controls (n = 356) originating from a non-malaria-endemic region but residing in a lowland malaria-endemic area of Papua, Indonesia. RESULTS The LGALS2 SNP showed a significant association with susceptibility to SM (including CM), in children (odds ratio, 2.02 [95% confidence interval, 1.14-3.57]) but not in adults. In SM, the C allele at rs7291467 was associated with enhanced galectin-2 transcript levels. In a separate group of Tanzanian children originating from a malaria-endemic region, we found preservation of the major ancestral LGALS2 allele and no association with susceptibility to CM. CONCLUSIONS Results suggest differences in the inflammatory contribution to the development of SM between children and adults in the same population and potential differences between individuals originating from malaria-endemic and non-malaria-endemic areas.
Collapse
Affiliation(s)
- Louise M Randall
- Queensland Institute of Medical Research and Australian Centre for Vaccine Development, and The University of Queensland, School of Population Health, Herston, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 2010; 23:75-93. [PMID: 20438856 DOI: 10.1016/j.niox.2010.04.007] [Citation(s) in RCA: 393] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/23/2010] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is involved in complex immunomodulatory and antitumoral mechanisms and has been described to have multiple beneficial microbicidal, antiviral and antiparasital effects. However, dysfunctional induction of iNOS expression seems to be involved in the pathophysiology of several human diseases. Therefore iNOS has to be regulated very tightly. Modulation of expression, on both the transcriptional and post-transcriptional level, is the major regulation mechanism for iNOS. Pathways resulting in the induction of iNOS expression vary in different cells or species. Activation of the transcription factors NF-kappaB and STAT-1alpha and thereby activation of the iNOS promoter seems to be an essential step for the iNOS induction in most human cells. However, at least in the human system, also post-transcriptional mechanisms involving a complex network of RNA-binding proteins build up by AUF1, HuR, KSRP, PTB and TTP is critically involved in the regulation of iNOS expression. Recent data also implicate regulation of iNOS expression by non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|