1
|
Zhang Y, Yang Y, Wang D, Kang X. A multidisciplinary approach to managing severe scoliosis and cardiovascular complications in a patient with Williams syndrome: A rare report of a case. Asian J Surg 2024:S1015-9584(24)02183-3. [PMID: 39353781 DOI: 10.1016/j.asjsur.2024.09.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Yizhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China
| | - Dongxin Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China.
| |
Collapse
|
2
|
Tandon D, Kubinyi E, Sándor S, Faughnan H, Miklósi Á, vonHoldt BM. Canine hyper-sociability structural variants associated with altered three-dimensional chromatin state. BMC Genomics 2024; 25:767. [PMID: 39112925 PMCID: PMC11305043 DOI: 10.1186/s12864-024-10614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
Strong selection on complex traits can lead to skewed trait means and reduced trait variability in populations. An example of this phenomenon can be evidenced in allele frequency changes and skewed trait distributions driven by persistent human-directed selective pressures in domesticated species. Dog domestication is linked to several genomic variants; however, the functional impacts of these variants may not always be straightforward when found in non-coding regions of the genome. Four polymorphic transposable elements (TE) found within non-coding sites along a 5 Mb region on canine CFA6 have evolved due to directional selection associated with heightened human-directed hyper-sociability in domesticated dogs. We found that the polymorphic TE in intron 17 of the canine GTF2I gene, which was previously reported to be negatively correlated with canid human-directed hyper-sociability, is associated with altered chromatin looping and hence distinct cis-regulatory landscapes. We reported supporting evidence of an E2F1-DNA binding peak concordant with the altered loop and higher expression of GTF2I exon 18, indicative of alternative splicing. Globally, we discovered differences in pathways regulating the extra-cellular matrix with respect to TE copy number. Overall, we reported evidence suggesting an intriguing molecular convergence between the emergence of hypersocial behaviors in dogs and the same genes that, when hemizygous, produce human Williams Beuren Syndrome characterized by cranio-facial defects and heightened social behaviors. Our results additionally emphasize the often-overlooked potential role of chromatin architecture in social evolution.
Collapse
Affiliation(s)
- Dhriti Tandon
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Enikő Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| | - Sára Sándor
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
| | - Hannah Faughnan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Ádám Miklósi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
Abedini SS, Akhavantabasi S, Liang Y, Heng JIT, Alizadehsani R, Dehzangi I, Bauer DC, Alinejad-Rokny H. A critical review of the impact of candidate copy number variants on autism spectrum disorder. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108509. [PMID: 38977176 DOI: 10.1016/j.mrrev.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder (NDD) influenced by genetic, epigenetic, and environmental factors. Recent advancements in genomic analysis have shed light on numerous genes associated with ASD, highlighting the significant role of both common and rare genetic mutations, as well as copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and unique de novo variants. These genetic variations disrupt neurodevelopmental pathways, contributing to the disorder's complexity. Notably, CNVs are present in 10 %-20 % of individuals with autism, with 3 %-7 % detectable through cytogenetic methods. While the role of submicroscopic CNVs in ASD has been recently studied, their association with genomic loci and genes has not been thoroughly explored. In this review, we focus on 47 CNV regions linked to ASD, encompassing 1632 genes, including protein-coding genes and long non-coding RNAs (lncRNAs), of which 659 show significant brain expression. Using a list of ASD-associated genes from SFARI, we detect 17 regions harboring at least one known ASD-related protein-coding gene. Of the remaining 30 regions, we identify 24 regions containing at least one protein-coding gene with brain-enriched expression and a nervous system phenotype in mouse mutants, and one lncRNA with both brain-enriched expression and upregulation in iPSC to neuron differentiation. This review not only expands our understanding of the genetic diversity associated with ASD but also underscores the potential of lncRNAs in contributing to its etiology. Additionally, the discovered CNVs will be a valuable resource for future diagnostic, therapeutic, and research endeavors aimed at prioritizing genetic variations in ASD.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Abedini
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Shiva Akhavantabasi
- Department of Molecular Biology and Genetics, Yeni Yuzyil University, Istanbul, Turkey; Ghiaseddin Jamshid Kashani University, Andisheh University Town, Danesh Blvd, 3441356611, Abyek, Qazvin, Iran
| | - Yuheng Liang
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6845, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, Australia
| | - Iman Dehzangi
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
| | - Denis C Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia; Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, Australia
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Stephens SB, Novy T, Spurzem GN, Jacob B, Beecroft T, Soludczyk E, Kozel BA, Weigand J, Morris SA. Genetic Testing for Supravalvar Aortic Stenosis: What to Do When It Is Not Williams Syndrome. J Am Heart Assoc 2024; 13:e034048. [PMID: 38591341 PMCID: PMC11262489 DOI: 10.1161/jaha.123.034048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND We aimed to describe the frequency and yield of genetic testing in supravalvar aortic stenosis (SVAS) following negative evaluation for Williams-Beuren syndrome (WS). METHODS AND RESULTS This retrospective cohort study included patients with SVAS at our institution who had a negative evaluation for WS from May 1991 to September 2021. SVAS was defined as (1) peak supravalvar velocity of ≥2 meters/second, (2) sinotubular junction or ascending aortic Z score <-2.0, or (3) sinotubular junction Z score <-1.5 with family history of SVAS. Patients with complex congenital heart disease, aortic valve disease as the primary condition, or only postoperative SVAS were excluded. Genetic testing and diagnoses were reported. Of 162 patients who were WS negative meeting inclusion criteria, 61 had genetic testing results available (38%). Chromosomal microarray had been performed in 44 of 61 and was nondiagnostic for non-WS causes of SVAS. Sequencing of 1 or more genes was performed in 47 of 61. Of these, 39 of 47 underwent ELN sequencing, 20 of 39 (51%) of whom had a diagnostic variant. Other diagnoses made by gene sequencing were Noonan syndrome (3 PTPN11, 1 RIT1), Alagille syndrome (3 JAG1), neurofibromatosis (1 NF1), and homozygous familial hypercholesterolemia (1 LDLR1). Overall, sequencing was diagnostic in 29 of 47 (62%). CONCLUSIONS When WS is excluded, gene sequencing for SVAS is high yield, with the highest yield for the ELN gene. Therefore, we recommend gene sequencing using a multigene panel or exome analysis. Hypercholesterolemia can also be considered in individuals bearing the stigmata of this disease.
Collapse
Affiliation(s)
- Sara B. Stephens
- Section of Cardiology, Department of PediatricsBaylor College of Medicine, Texas Children’s HospitalHoustonTX
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public HealthThe University of Texas Health Science CenterHoustonTX
| | - Tyler Novy
- Division of Community and General Pediatrics, Department of Pediatrics, McGovern Medical SchoolThe University of Texas Health Science CenterHoustonTX
| | | | - Benjamin Jacob
- Section of Cardiology, Department of PediatricsBaylor College of Medicine, Texas Children’s HospitalHoustonTX
| | - Taylor Beecroft
- Section of Cardiology, Department of PediatricsBaylor College of Medicine, Texas Children’s HospitalHoustonTX
| | - Emily Soludczyk
- Section of Cardiology, Department of PediatricsBaylor College of Medicine, Texas Children’s HospitalHoustonTX
| | - Beth A. Kozel
- Translational Vascular Medicine BranchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | - Justin Weigand
- Section of Cardiology, Department of PediatricsBaylor College of Medicine, Texas Children’s HospitalHoustonTX
| | - Shaine A. Morris
- Section of Cardiology, Department of PediatricsBaylor College of Medicine, Texas Children’s HospitalHoustonTX
| |
Collapse
|
5
|
Vavetsi K, Panagopoulou O, Koromantzos P, Fryssira Η, Bobetsis SA, Emmanouil D, Bobetsis YA. Oral manifestations of nine individuals with Williams syndrome. A case series. SPECIAL CARE IN DENTISTRY 2024; 44:438-449. [PMID: 37243919 DOI: 10.1111/scd.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/27/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
AIMS Williams syndrome (WS) is a congenital developmental disorder characterized, mainly, by distinctive facial features, cardiovascular anomalies, growth delay and a typical neurobehavioral profile. The oral manifestations have not been sufficiently described and, therefore, the aim of the current study was to present the clinical, radiographic and microbiological findings of individuals with WS. METHODS AND RESULTS A series of nine WS individuals (seven females) with mean age 21 years-old were evaluated. A complete intraoral clinical examination, a radiographic analysis using panoramic and cephalometric x-ray and a supra- and sub-gingival microbiological profiling were performed. We observed abnormal tooth morphology, excessive interdental spacing, congenitally missing permanent teeth and malocclusion. High levels of DMFT were observed and gingivitis was present in all subjects. Bacteria related to periodontal disease were detected in dental plaque. Three patients were classified with a gingival phenotype type I according to the Maynard and Wilson classification. The sella turcica bridging was a novel finding for this group of patients. CONCLUSION Due to the elevated prevalence of gingivitis, caries and malocclusion, a multidisciplinary approach including dental follow-ups should be the standard of care in WS patients.
Collapse
Affiliation(s)
- Konstantina Vavetsi
- Dental Sciences, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis Koromantzos
- Department of Periodontology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ηelen Fryssira
- Department of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Yiorgos A Bobetsis
- Department of Periodontology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Wang Y, Liu C, Hu R, Geng J, Lu J, Zhao X, Xiong Y, Wu J, Yin A. Intrauterine phenotype features of fetuses with 7q11.23 microduplication syndrome. Orphanet J Rare Dis 2023; 18:305. [PMID: 37759207 PMCID: PMC10523695 DOI: 10.1186/s13023-023-02923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE To share our experience on prenatal diagnosis of 7q11.23 microduplication syndrome and to further delineate the fetal phenotypes of the syndrome. METHODS A retrospective study was conducted to evaluate seven cases of dup7q11.23 syndrome diagnosed prenatally by chromosomal microarray (CMA). Clinical data were reviewed, including maternal characteristics, indications for prenatal diagnosis, sonographic findings, CMA results, pregnancy outcomes and follow-ups. RESULTS Seven cases, including 2 pairs of MCDA twins, were prenatally identified with dup7q11.23 syndrome. The most common prenatal sonographic features were ventriculomegaly, low-lying conus medullaris, and dilated ascending aorta. All 7 fetuses presented with typical 7q11.23 duplications (1.40-1.55 Mb). Parental chromosome analysis was performed in four pairs of parents, and indicated that the duplications of Case 6 and 7 were inherited from their asymptomatic mother. CONCLUSION Our case series suggest that prenatal features of dup7q11.23 cases are diversified, with ventriculomegaly and low-lying conus medullaris being the most common intrauterine phenotypes. Additionally, cleft palate, dilated ascending aorta, and renal abnormalities were also observed, and should be taken into consideration in subsequent studies.
Collapse
Affiliation(s)
- Yunan Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Chang Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Rong Hu
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Juan Geng
- UItrasonic Diagnosis Deparment, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Jian Lu
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Xin Zhao
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Ying Xiong
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Jing Wu
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China.
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Hussein Y, Tripathi U, Choudhary A, Nayak R, Peles D, Rosh I, Rabinski T, Djamus J, Vatine GD, Spiegel R, Garin-Shkolnik T, Stern S. Early maturation and hyperexcitability is a shared phenotype of cortical neurons derived from different ASD-associated mutations. Transl Psychiatry 2023; 13:246. [PMID: 37414777 PMCID: PMC10326262 DOI: 10.1038/s41398-023-02535-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized mainly by social and sensory-motor abnormal and repetitive behavior patterns. Over hundreds of genes and thousands of genetic variants were reported to be highly penetrant and causative of ASD. Many of these mutations cause comorbidities such as epilepsy and intellectual disabilities (ID). In this study, we measured cortical neurons derived from induced pluripotent stem cells (iPSCs) of patients with four mutations in the genes GRIN2B, SHANK3, UBTF, as well as chromosomal duplication in the 7q11.23 region and compared them to neurons derived from a first-degree relative without the mutation. Using a whole-cell patch-clamp, we observed that the mutant cortical neurons demonstrated hyperexcitability and early maturation compared to control lines. These changes were characterized by increased sodium currents, increased amplitude and rate of excitatory postsynaptic currents (EPSCs), and more evoked action potentials in response to current stimulation in early-stage cell development (3-5 weeks post differentiation). These changes that appeared in all the different mutant lines, together with previously reported data, indicate that an early maturation and hyperexcitability may be a convergent phenotype of ASD cortical neurons.
Collapse
Affiliation(s)
- Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Tatiana Rabinski
- The Department of Physiology and Cell Biology, Faculty of Health Sciences and the Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jose Djamus
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gad David Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences and the Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ronen Spiegel
- Center for Rare Diseases, Emek Medical Center, Afula, Israel
| | | | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
8
|
Huang R, Zhou H, Fu F, Li R, Lei T, Li Y, Cheng K, Wang Y, Yang X, Li L, Jing X, Zhang Y, Li F, Li D, Liao C. Prenatal diagnosis of Williams-Beuren syndrome by ultrasound and chromosomal microarray analysis. Mol Cytogenet 2022; 15:27. [PMID: 35765027 PMCID: PMC9238061 DOI: 10.1186/s13039-022-00604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022] Open
Abstract
Background There are a few literature reports of prenatal ultrasound manifestations of Williams-Beuren syndrome. We aimed to explore the prenatal diagnosis of Williams-Beuren syndrome by ultrasound and chromosomal microarray analysis and describe the prenatal ultrasound performance of this syndrome. Methods In this retrospective study, we reported eight cases of Williams-Beuren syndrome diagnosed at our prenatal diagnostic center from 2016 to 2021. We systematically reviewed clinical data from these cases, including indications for invasive testing, sonographic findings, QF-PCR results, chromosomal microarray analysis results, and pregnancy outcomes. Results In this study, the common ultrasound features were ventricular septal defect (37.5%), intrauterine growth retardation (25%), and aortic coarctation (25%). Moreover, all patients were found to have a common deletion in the Williams-Beuren syndrome chromosome region at the 7q11.23 locus, which contained the elastin gene. Deletion sizes ranged from 1.42 to 2.07 Mb. Seven parents asked for termination of pregnancy, and one patient was lost to follow-up. Conclusions This study is the most extensive prenatal study using chromosomal microarray analysis technology for detailed molecular analysis of Williams-Beuren syndrome cases. We reported three cases combined with first-reported ultrasound manifestations. Case 1 was concomitant with multicystic dysplastic kidney and duodenal atresia combined with case 3. Notably, case 4 was combined with multiple cardiovascular malformations: Tetralogy of Fallot, right aortic arch, and supravalvar aortic stenosis. These manifestations expand the intrauterine ultrasound phenotype of Williams-Beuren syndrome in previous literature reports.
Collapse
Affiliation(s)
- Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tingying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingsi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ken Cheng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - You Wang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lushan Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangyi Jing
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongling Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fucheng Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Alfieri P, Scibelli F, Montanaro FAM, Caciolo C, Bergonzini P, Dentici ML, Vicari S. A Comparison of Adaptive Functioning Between Children With Duplication 7 Syndrome and Williams-Beuren Syndrome: A Pilot Investigation. Front Psychiatry 2022; 13:863909. [PMID: 35599769 PMCID: PMC9120542 DOI: 10.3389/fpsyt.2022.863909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Interstitial deletions of 7q11.23 cause the well-known Williams-Beuren Syndrome (WBS), while duplication of the same region leads to duplication 7 syndrome (Dup7). Children with WBS share a distinct neurobehavioral phenotype including mild to severe intellectual disability, severely impaired visual spatial abilities, relatively preserved verbal expressive skills, anxiety problems, enhanced social motivation (i.e., hypersociable behaviors) and socio-communicative problems. Children with Dup7 syndrome exhibit some "inverted" features when compared to those of individuals with WBS, such as reduced social motivation and impairment of expressive language. Direct comparison of WBS and Dup7 represents a unique opportunity for the neurobehavioral characterization of the 7q11.23 section. However, most of the available data come from qualitative analysis between different studies. To the best of our knowledge, there are no studies directly comparing features of two matched samples of individuals with WBS and Dup7 syndromes. In this pilot study, we compare the adaptive functioning - measured with the Vineland Adaptive Behavior Scales, Second Edition - of two relatively small samples of children with molecularly confirmed diagnosis of WBS and Dup7 matched for IQ and chronological age, with a particular attention to socialization domain and expressive subdomain. Contrary to our assumption, we have not found any significant difference on socialization domain and expressive subdomains. This pilot investigation suggests that, when matched for chronological age and cognitive level, children with WBS and Dup7 share more similarities than expected. The inverted features that emerge in clinical settings on expressive language and social motivation seem not to differently interfere with the daily abilities to communicate and socialize with meaningful others during daily lives. Differences highlighted by previous undirected comparisons could be due to general and non-specific factors such as cognitive level, which is more severely impaired in individuals with WBS than Dup7. Implications for assessment and treatment are discussed.
Collapse
Affiliation(s)
- Paolo Alfieri
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesco Scibelli
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristina Caciolo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Bergonzini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Riabilitazione Casa San Giuseppe, Opera Don Guanella, Rome, Italy
| |
Collapse
|
10
|
Donabedian PL, Walia JY, Agarwal-Sinha S. Partial CHARGE syndrome with bilateral retinochoroidal colobomas associated with 7q11.23 duplication syndrome: case report. BMC Ophthalmol 2022; 22:100. [PMID: 35246073 PMCID: PMC8895878 DOI: 10.1186/s12886-022-02298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background CHARGE syndrome is a relatively common cause of deafness and blindness resulting from failure to form the primordia of specific organs due to deficient contribution of neural crest cell derivatives. The majority of CHARGE syndrome cases are caused by heterozygous mutations in CHD7 on chromosome 8q21. Those with CHARGE syndrome without CHD7 mutation typically do not have an identified genetic defect. 7q11.23 duplication syndrome is associated with mild facial dysmorphism, heart defects, language delay, and autism spectrum disorder. In the current literature, 7q11.23 duplication has not been associated with CHARGE syndrome, retinochoroidal colobomas, or significant ear abnormalities. Case presentation We describe a patient with 7q11.23 duplication syndrome and clinical CHARGE syndrome with no variant in CHARGE-associated genes. Conclusions This case highlights the still incomplete understanding of the pathogenesis of CHARGE syndrome and raises the possibility of a dose-sensitive effect of genes in the 7q11.23 critical region on neural crest differentiation and fate.
Collapse
Affiliation(s)
- Patrick L Donabedian
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jessica Y Walia
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Swati Agarwal-Sinha
- Department of Ophthalmology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Grad M, Nir A, Levy G, Trangle SS, Shapira G, Shomron N, Assaf Y, Barak B. Altered White Matter and microRNA Expression in a Murine Model Related to Williams Syndrome Suggests That miR-34b/c Affects Brain Development via Ptpru and Dcx Modulation. Cells 2022; 11:cells11010158. [PMID: 35011720 PMCID: PMC8750756 DOI: 10.3390/cells11010158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Williams syndrome (WS) is a multisystem neurodevelopmental disorder caused by a de novo hemizygous deletion of ~26 genes from chromosome 7q11.23, among them the general transcription factor II-I (GTF2I). By studying a novel murine model for the hypersociability phenotype associated with WS, we previously revealed surprising aberrations in myelination and cell differentiation properties in the cortices of mutant mice compared to controls. These mutant mice had selective deletion of Gtf2i in the excitatory neurons of the forebrain. Here, we applied diffusion magnetic resonance imaging and fiber tracking, which showed a reduction in the number of streamlines in limbic outputs such as the fimbria/fornix fibers and the stria terminalis, as well as the corpus callosum of these mutant mice compared to controls. Furthermore, we utilized next-generation sequencing (NGS) analysis of cortical small RNAs' expression (RNA-Seq) levels to identify altered expression of microRNAs (miRNAs), including two from the miR-34 cluster, known to be involved in prominent processes in the developing nervous system. Luciferase reporter assay confirmed the direct binding of miR-34c-5p to the 3'UTR of PTPRU-a gene involved in neural development that was elevated in the cortices of mutant mice relative to controls. Moreover, we found an age-dependent variation in the expression levels of doublecortin (Dcx)-a verified miR-34 target. Thus, we demonstrate the substantial effect a single gene deletion can exert on miRNA regulation and brain structure, and advance our understanding and, hopefully, treatment of WS.
Collapse
Affiliation(s)
- Meitar Grad
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Ariel Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Gilad Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Sari Schokoroy Trangle
- Faculty of Social Sciences, School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noam Shomron
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Faculty of Life Sciences, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Boaz Barak
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Faculty of Social Sciences, School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
- Correspondence:
| |
Collapse
|
12
|
Honjo RS, Monteleone VF, Aiello VD, Wagenfuhr J, Issa VS, Pomerantzeff PMA, Furusawa EA, Zanardo EA, Kulikowski LD, Bertola DR, Kim CA. Cardiovascular findings in Williams-Beuren Syndrome: Experience of a single center with 127 cases. Am J Med Genet A 2021; 188:676-682. [PMID: 34713566 DOI: 10.1002/ajmg.a.62542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/12/2022]
Abstract
Williams-Beuren syndrome (WBS) is a rare, microdeletion syndrome characterized by facial dysmorphisms, intellectual disability, a friendly personality, cardiovascular and other abnormalities. Cardiovascular defects (CVD) are among the most prevalent characteristics in WBS, being supravalvular aortic stenosis (SVAS) the most frequent, followed by peripheral pulmonary stenosis (PPS). A comprehensive retrospective review of medical records of 127 patients with molecular diagnosis of WBS, in a period of 20 years, was done to evaluate the incidence, the natural history of cardiovascular disease, and the need for surgical intervention, including heart transplantation (HT). A total of 94/127 patients presented with CVD. Of these 94 patients, 50% presented with SVAS and 22.3% needed heart surgery and/or cardiac catheterization including one that required HT due to severe SVAS-related heart failure at 19 years of age. The patient died in the postoperative period due to infectious complications. Cardiovascular problems are the major cause of sudden death in patients with WBS, who have a significantly higher mortality risk associated with surgical interventions. There is a higher risk for anesthesia-related adverse events and for major adverse cardiac events following surgery. End-stage heart failure due to myocardial ischemia has been described in WBS patients and it is important to consider that HT can become their only viable option. To our knowledge, the case mentioned here is the first HT reported in an adolescent with WBS. HT can be a viable therapeutic option in WBS patients with adequate evaluation, planning, and a multidisciplinary team to provide the required perioperative care and follow-up.
Collapse
Affiliation(s)
- Rachel Sayuri Honjo
- Genetics Unit, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vanessa Figueiredo Monteleone
- Genetics Unit, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vera Demarchi Aiello
- Pathology Laboratory, Instituto do Coração do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jaqueline Wagenfuhr
- Pediatric Cardiology Unit, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Pablo Maria Alberto Pomerantzeff
- Heart Transplantation Unit, Instituto do Coraçao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Erika Arai Furusawa
- Pediatric Nephrology Unit, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Evelin Aline Zanardo
- Cytogenomic Laboratory, LIM 03, Pathology Department, Faculdade de Medicina HC-FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leslie Domenici Kulikowski
- Cytogenomic Laboratory, LIM 03, Pathology Department, Faculdade de Medicina HC-FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Debora Romeo Bertola
- Genetics Unit, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Genetics Unit, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
13
|
Mostovoy Y, Yilmaz F, Chow SK, Chu C, Lin C, Geiger EA, Meeks NJL, Chatfield KC, Coughlin CR, Surti U, Kwok PY, Shaikh TH. Genomic regions associated with microdeletion/microduplication syndromes exhibit extreme diversity of structural variation. Genetics 2021; 217:6066166. [PMID: 33724415 DOI: 10.1093/genetics/iyaa038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/18/2020] [Indexed: 11/12/2022] Open
Abstract
Segmental duplications (SDs) are a class of long, repetitive DNA elements whose paralogs share a high level of sequence similarity with each other. SDs mediate chromosomal rearrangements that lead to structural variation in the general population as well as genomic disorders associated with multiple congenital anomalies, including the 7q11.23 (Williams-Beuren Syndrome, WBS), 15q13.3, and 16p12.2 microdeletion syndromes. Population-level characterization of SDs has generally been lacking because most techniques used for analyzing these complex regions are both labor and cost intensive. In this study, we have used a high-throughput technique to genotype complex structural variation with a single molecule, long-range optical mapping approach. We characterized SDs and identified novel structural variants (SVs) at 7q11.23, 15q13.3, and 16p12.2 using optical mapping data from 154 phenotypically normal individuals from 26 populations comprising five super-populations. We detected several novel SVs for each locus, some of which had significantly different prevalence between populations. Additionally, we localized the microdeletion breakpoints to specific paralogous duplicons located within complex SDs in two patients with WBS, one patient with 15q13.3, and one patient with 16p12.2 microdeletion syndromes. The population-level data presented here highlights the extreme diversity of large and complex SVs within SD-containing regions. The approach we outline will greatly facilitate the investigation of the role of inter-SD structural variation as a driver of chromosomal rearrangements and genomic disorders.
Collapse
Affiliation(s)
- Yulia Mostovoy
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Feyza Yilmaz
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA.,Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephen K Chow
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Catherine Chu
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Chin Lin
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Elizabeth A Geiger
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Pediatrics, Section of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Curtis R Coughlin
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Urvashi Surti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA.,Department of Dermatology, UCSF School of Medicine, San Francisco, CA 94143, USA.,Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Kopp ND, Nygaard KR, Liu Y, McCullough KB, Maloney SE, Gabel HW, Dougherty JD. Functions of Gtf2i and Gtf2ird1 in the developing brain: transcription, DNA binding and long-term behavioral consequences. Hum Mol Genet 2021; 29:1498-1519. [PMID: 32313931 DOI: 10.1093/hmg/ddaa070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
Gtf2ird1 and Gtf2i are two transcription factors (TFs) among the 28 genes deleted in Williams syndrome, and prior mouse models of each TF show behavioral phenotypes. Here we identify their genomic binding sites in the developing brain and test for additive effects of their mutation on transcription and behavior. GTF2IRD1 binding targets were enriched for transcriptional and chromatin regulators and mediators of ubiquitination. GTF2I targets were enriched for signal transduction proteins, including regulators of phosphorylation and WNT. Both TFs are highly enriched at promoters, strongly overlap CTCF binding and topological associating domain boundaries and moderately overlap each other, suggesting epistatic effects. Shared TF targets are enriched for reactive oxygen species-responsive genes, synaptic proteins and transcription regulators such as chromatin modifiers, including a significant number of highly constrained genes and known ASD genes. We next used single and double mutants to test whether mutating both TFs will modify transcriptional and behavioral phenotypes of single Gtf2ird1 mutants, though with the caveat that our Gtf2ird1 mutants, like others previously reported, do produce low levels of a truncated protein product. Despite little difference in DNA binding and transcriptome-wide expression, homozygous Gtf2ird1 mutation caused balance, marble burying and conditioned fear phenotypes. However, mutating Gtf2i in addition to Gtf2ird1 did not further modify transcriptomic or most behavioral phenotypes, suggesting Gtf2ird1 mutation alone was sufficient for the observed phenotypes.
Collapse
Affiliation(s)
- Nathan D Kopp
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kayla R Nygaard
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B McCullough
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Zhang H, Li L, Yu Y, Li L, Jiang Y, Liu R. Prenatal detection of a 7q11.21 microdeletion (517-605 kb): A variant with normal characteristics at birth (STROBE). Medicine (Baltimore) 2021; 100:e24560. [PMID: 33578551 PMCID: PMC7886492 DOI: 10.1097/md.0000000000024560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
In the literature, 7q11 deletion was reported with various abnormalities. However, there were other genetic conditions combined with 7q11.21. It is necessary to have sufficient pure 7q11.21 microdeletions for classifying the pathogenic categories of variation.Chromosomal karyotyping analysis was performed on cultured amniotic fluid cells. Eighteen pregnant women took chromosomal microarray using prenatal amniotic fluid samples at our center by Affymetrix CytoScan750K_Array. We followed the outcome of these pregnancies and determined postnatal health conditions.Cytogenetic studies delineated that all patients had normal karyotypes. The exception was P17, who had 47, XN. Single nucleotide polymorphism array results showed 517 to 605 kb deletions of 7q11.21 (chr7: 64543313-65196780) in these cases. The microarray results were pure or combined 7q11.21 microdeletions. In 11 pure 7q11.21 microdeletions and 7 combined cases, there was no apparent abnormal phenotype associated with partial 7q11.21. Among them, only mothers of P10 and P17 decided to terminate the pregnancies due to 18 trisomy or ultrasound abnormal fetal strephenopodia. In the follow-up survey, the newborns had no apparent abnormalities.In this study, we described 11 pure and 7 combined 7q11.21 microdeletions associating with no apparent postnatal phenotypic abnormalities. From this study, we can learn that the partial 7q11.21 deletion (chr7: 64543313-65196780) might be benign and have no association with human disorders.
Collapse
Affiliation(s)
- Hongguo Zhang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Leilei Li
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Yang Yu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Linlin Li
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Yuting Jiang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Ruizhi Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| |
Collapse
|
16
|
Pauta M, Badenas C, Rodriguez-Revenga L, Soler A, Grande M, Sabrià J, Illanes C, Borobio V, Borrell A. A New Stepwise Molecular Work-Up After Chorionic Villi Sampling in Women With an Early Pregnancy Loss. Front Genet 2021; 11:561720. [PMID: 33519888 PMCID: PMC7841437 DOI: 10.3389/fgene.2020.561720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
Objective: To explore the use of a new molecular work-up based on the stepwise use of Quantitative Fluorescence PCR (QF-PCR) extended to eight chromosomes and single nucleotide polymorphism array (SNP-array) in chorionic villi obtained by chorionic villi sampling (CVS) offered to women experiencing an early pregnancy loss. Methods: During a 3-year period (January 2016–December 2018), CVS was offered to women experiencing an early pregnancy loss before the evacuation of the products of conception (POC) to retrieve chorionic villi, irrespective of the number of previous losses. A new molecular work-up was prospectively assayed encompassing a first QF-PCR round (with the 21, 18, 13, 7, X, and Y chromosomes), a second QF-PCR round (with the 15, 16, and 22 chromosomes), and a high resolution SNP-array in those cases with normal QF-PCR results. A control group in which POC were collected after surgical uterine evacuation was used to be compared with the intervention group. Results: Around 459 women were enrolled in the intervention group (CVS) and 185 in the control group (POC after uterine evacuation). The QF-PCR testing success rates were significantly higher in the intervention group (98.5%: 452/459) as compared to the control group (74%: 109/147; p < 0.001), while the chromosomal anomaly rate at the two QF-PCR rounds was similar between the two groups: 52% (234/452) in the intervention and 42% (46/109) in the control group (p = 0.073). The SNP-array was performed in 202 QF-PCR normal samples of the intervention group and revealed 67 (33%) atypical chromosomal anomalies (>10 Mb), 5 (2.5%) submicroscopic pathogenic copy number variants, and 2 (1%) variant of uncertain significance (VOUS). Conclusion: Eighty-two percent of women experiencing an early pregnancy loss opted for a CVS. The testing success rates were higher in the intervention group (CVS; 98%) as compared to the control group (POC; 74%). The overall yields were 52% by QF-PCR (including three complete hydatiform moles), and 16% by SNP-array, including 15% atypical chromosomal anomalies and 1.1% submicroscopic pathogenic copy number variants.
Collapse
Affiliation(s)
- Montse Pauta
- BCNatal, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cèlia Badenas
- Servei de Bioquímica i Genètica Molecular, CDB, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Laia Rodriguez-Revenga
- Servei de Bioquímica i Genètica Molecular, CDB, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Soler
- Servei de Bioquímica i Genètica Molecular, CDB, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maribel Grande
- BCNatal, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Sabrià
- BCNatal, Servei de Ginecologia i Obstetricia, Hospital de Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carmen Illanes
- BCNatal Department of Maternal-Fetal Medicine, Institute Gynecology, Obstetrics and Neonatology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Virginia Borobio
- BCNatal Department of Maternal-Fetal Medicine, Institute Gynecology, Obstetrics and Neonatology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Antoni Borrell
- BCNatal Department of Maternal-Fetal Medicine, Institute Gynecology, Obstetrics and Neonatology, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Qaiser F, Yin Y, Mervis CB, Morris CA, Klein-Tasman BP, Tam E, Osborne LR, Yuen RKC. Rare and low frequency genomic variants impacting neuronal functions modify the Dup7q11.23 phenotype. Orphanet J Rare Dis 2021; 16:6. [PMID: 33407644 PMCID: PMC7788915 DOI: 10.1186/s13023-020-01648-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND 7q11.23 duplication (Dup7) is one of the most frequent recurrent copy number variants (CNVs) in individuals with autism spectrum disorder (ASD), but based on gold-standard assessments, only 19% of Dup7 carriers have ASD, suggesting that additional genetic factors are necessary to manifest the ASD phenotype. To assess the contribution of additional genetic variants to the Dup7 phenotype, we conducted whole-genome sequencing analysis of 20 Dup7 carriers: nine with ASD (Dup7-ASD) and 11 without ASD (Dup7-non-ASD). RESULTS We identified three rare variants of potential clinical relevance for ASD: a 1q21.1 microdeletion (Dup7-non-ASD) and two deletions which disrupted IMMP2L (one Dup7-ASD, one Dup7-non-ASD). There were no significant differences in gene-set or pathway variant burden between the Dup7-ASD and Dup7-non-ASD groups. However, overall intellectual ability negatively correlated with the number of rare loss-of-function variants present in nervous system development and membrane component pathways, and adaptive behaviour standard scores negatively correlated with the number of low-frequency likely-damaging missense variants found in genes expressed in the prenatal human brain. ASD severity positively correlated with the number of low frequency loss-of-function variants impacting genes expressed at low levels in the brain, and genes with a low level of intolerance. CONCLUSIONS Our study suggests that in the presence of the same pathogenic Dup7 variant, rare and low frequency genetic variants act additively to contribute to components of the overall Dup7 phenotype.
Collapse
Affiliation(s)
- Farah Qaiser
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Genetics & Genome Biology Program, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4 Canada
| | - Yue Yin
- Genetics & Genome Biology Program, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4 Canada
| | - Carolyn B. Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY USA
| | - Colleen A. Morris
- Department of Pediatrics, UNLV School of Medicine, Las Vegas, NV USA
| | | | - Elaine Tam
- Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Lucy R. Osborne
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Ryan K. C. Yuen
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Genetics & Genome Biology Program, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4 Canada
| |
Collapse
|
18
|
Cavallo F, Troglio F, Fagà G, Fancelli D, Shyti R, Trattaro S, Zanella M, D'Agostino G, Hughes JM, Cera MR, Pasi M, Gabriele M, Lazzarin M, Mihailovich M, Kooy F, Rosa A, Mercurio C, Varasi M, Testa G. High-throughput screening identifies histone deacetylase inhibitors that modulate GTF2I expression in 7q11.23 microduplication autism spectrum disorder patient-derived cortical neurons. Mol Autism 2020; 11:88. [PMID: 33208191 PMCID: PMC7677843 DOI: 10.1186/s13229-020-00387-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26–28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams–Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defined as WBS critical region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of WBS and 7Dup both from mouse models and human studies. Methods We performed a high-throughput screening of 1478 compounds, including central nervous system agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons differentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role. The hits identified were validated by measuring gene expression by qRT-PCR and the results were confirmed by western blotting. Results We identified and selected three histone deacetylase inhibitors (HDACi) that decreased the abnormal expression level of GTF2I in 7Dup cortical glutamatergic neurons differentiated from four genetically different iPSC lines. We confirmed this effect also at the protein level. Limitations In this study, we did not address the molecular mechanisms whereby HDAC inhibitors act on GTF2I. The lead compounds identified will now need to be advanced to further testing in additional models, including patient-derived brain organoids and mouse models recapitulating the gene imbalances of the 7q11.23 microduplication, in order to validate their efficacy in rescuing phenotypes across multiple functional layers within a translational pipeline towards clinical use. Conclusions These results represent a unique opportunity for the development of a specific class of compounds for treating 7Dup and other forms of intellectual disability and autism.
Collapse
Affiliation(s)
- Francesca Cavallo
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Flavia Troglio
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Giovanni Fagà
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Daniele Fancelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Reinald Shyti
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Sebastiano Trattaro
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Matteo Zanella
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Evotec SE, Hamburg, Germany
| | - Giuseppe D'Agostino
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - James M Hughes
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,FPO - IRCCS, Candiolo Cancer Institute, SP 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Maria Rosaria Cera
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Maurizio Pasi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Michele Gabriele
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Maddalena Lazzarin
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Marija Mihailovich
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.,Center for Life Nano Science, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Ciro Mercurio
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Mario Varasi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy. .,Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy. .,Human Technopole, Via Cristina Belgioioso, 171, 20157, Milan, Italy.
| |
Collapse
|
19
|
Dentici ML, Bergonzini P, Scibelli F, Caciolo C, De Rose P, Cumbo F, Alesi V, Capolino R, Zanni G, Sinibaldi L, Novelli A, Tartaglia M, Digilio MC, Dallapiccola B, Vicari S, Alfieri P. 7q11.23 Microduplication Syndrome: Clinical and Neurobehavioral Profiling. Brain Sci 2020; 10:E839. [PMID: 33187326 PMCID: PMC7697259 DOI: 10.3390/brainsci10110839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
7q11.23 Microduplication (dup7q11.23) syndrome is a rare autosomal dominant disorder due to a recurring 1.5 to 1.8 Mb duplication of the Williams-Beuren Syndrome critical region. Dup7q11.23 has been associated with several neuro-behavioral characteristics such as low cognitive and adaptive functioning, expressive language impairment, anxiety problems and autistic features. In the present study, we analyze the clinical features of ten individuals in which array-CGH detected dup7q11.23, spanning from 1.4 to 2.1 Mb. The clinical characteristics associated with dup7q11.23 are discussed with respect to its reciprocal deletion. Consistent with previous studies, we confirm that individuals with dup7q11.23 syndrome do not have a homogeneous clinical profile, although some recurring dysmorphic features were found, including macrocephaly, prominent forehead, elongated palpebral fissures, thin lip vermilion and microstomia. Minor congenital malformations include patent ductus arteriosus, cryptorchidism and pes planus. A common finding is hypotonia and joint laxity, resulting in mild motor delay. Neuropsychological and psychodiagnostic assessment confirm that mild cognitive impairment, expressive language deficits and anxiety are recurring neurobehavioral features. New insights into adaptive, psychopathological and neurodevelopmental profiles are discussed.
Collapse
Affiliation(s)
- Maria Lisa Dentici
- Medical Genetic Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.D.); (R.C.); (L.S.); (M.C.D.)
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
| | - Paola Bergonzini
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| | - Francesco Scibelli
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| | - Cristina Caciolo
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| | - Paola De Rose
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| | - Francesca Cumbo
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| | - Viola Alesi
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.A.); (A.N.)
| | - Rossella Capolino
- Medical Genetic Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.D.); (R.C.); (L.S.); (M.C.D.)
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
| | - Ginevra Zanni
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Lorenzo Sinibaldi
- Medical Genetic Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.D.); (R.C.); (L.S.); (M.C.D.)
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.A.); (A.N.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
| | - Maria Cristina Digilio
- Medical Genetic Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.D.); (R.C.); (L.S.); (M.C.D.)
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
- Department of Life Sciences and Public Health, Catholic University, 00168 Rome, Italy
| | - Paolo Alfieri
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| |
Collapse
|
20
|
Evangelidou P, Kousoulidou L, Salameh N, Alexandrou A, Papaevripidou I, Alexandrou IM, Ketoni A, Ioannidou C, Christophidou-Anastasiadou V, Tanteles GA, Sismani C. An unusual combination of an atypical maternally inherited novel 0.3 Mb deletion in Williams-Beuren region and a de novo 22q11.21 microduplication in an infant with supravalvular aortic stenosis. Eur J Med Genet 2020; 63:104084. [PMID: 33045407 DOI: 10.1016/j.ejmg.2020.104084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 12/31/2022]
Abstract
Williams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder characterized by supravalvular aortic stenosis (SVAS), intellectual disability, overfriendliness and dysmorphic features. It is typically caused by 1.5-1.8 Mb deletions on 7q11.23. The 22q11.21 microduplication syndrome has a variable phenotype and is frequently associated with congenital heart disease. Here we present a unique patient, carrying aberrations within both of the above syndrome regions, referred for possible diagnosis of WBS because of SVAS. The patient was a boy who died suddenly 47 days after birth, possibly due to cardiac complications. Genetic testing was carried out, including array Comparative Genomic Hybridization (aCGH), Fluorescence In situ Hybridization (FISH) and Multiplex Ligation-Dependent Probe Amplification (MLPA) showing that the proband was heterozygous for a novel and atypical 0.3 Mb deletion in WBS region (7q11.23) encompassing the ELN gene. In addition, he was found heterozygous for a 22q11.21 microduplication. Parental studies revealed that the 7q11.23 deletion was inherited from the mother who also exhibited a cardiovascular phenotype, however very mild. The same maternally inherited deletion was detected in one of the proband's siblings, born two years later with a less severe SVAS. The 22q11.2 microduplication was de novo in origin. Detection and investigation of atypical deletions within known syndrome regions are crucial for better genotype-phenotype correlations and more accurate characterization of critical regions. The combined effect of two different genetic defects - one in a known syndrome region and one with variable clinical significance, is valuable for revealing gene interactions and enabling more accurate predictions, especially in prenatal diagnosis.
Collapse
Affiliation(s)
- Paola Evangelidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Ludmila Kousoulidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Nicole Salameh
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioanna-Maria Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andria Ketoni
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Charithea Ioannidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - George A Tanteles
- Clinical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Carolina Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; The Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
21
|
Quantitative genome-wide association study of six phenotypic subdomains identifies novel genome-wide significant variants in autism spectrum disorder. Transl Psychiatry 2020; 10:215. [PMID: 32624584 PMCID: PMC7335742 DOI: 10.1038/s41398-020-00906-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 11/09/2022] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable and are characterized by deficits in social communication and restricted and repetitive behaviors. Twin studies on phenotypic subdomains suggest a differing underlying genetic etiology. Studying genetic variation explaining phenotypic variance will help to identify specific underlying pathomechanisms. We investigated the effect of common variation on ASD subdomains in two cohorts including >2500 individuals. Based on the Autism Diagnostic Interview-Revised (ADI-R), we identified and confirmed six subdomains with a SNP-based genetic heritability h2SNP = 0.2-0.4. The subdomains nonverbal communication (NVC), social interaction (SI), and peer interaction (PI) shared genetic risk factors, while the subdomains of repetitive sensory-motor behavior (RB) and restricted interests (RI) were genetically independent of each other. The polygenic risk score (PRS) for ASD as categorical diagnosis explained 2.3-3.3% of the variance of SI, joint attention (JA), and PI, 4.5% for RI, 1.2% of RB, but only 0.7% of NVC. We report eight genome-wide significant hits-partially replicating previous findings-and 292 known and novel candidate genes. The underlying biological mechanisms were related to neuronal transmission and development. At the SNP and gene level, all subdomains showed overlap, with the exception of RB. However, no overlap was observed at the functional level. In summary, the ADI-R algorithm-derived subdomains related to social communication show a shared genetic etiology in contrast to restricted and repetitive behaviors. The ASD-specific PRS overlapped only partially, suggesting an additional role of specific common variation in shaping the phenotypic expression of ASD subdomains.
Collapse
|
22
|
Dunlap JD, Green MC, Shah AM, Kibby BT, Billmire DF. Cardiac arrest after induction of anesthesia in a 2-month-old infant with undiagnosed Williams syndrome. Ann Card Anaesth 2020; 22:210-212. [PMID: 30971606 PMCID: PMC6489387 DOI: 10.4103/aca.aca_38_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A 2-month-old male infant presented for elective repair of inguinal hernias. His preoperative medical history and physical examination were unremarkable. During induction of anesthesia, the infant sustained an adverse cardiac event. The event was characterized by tachycardia, hypotension, and massive ST-segment elevation. Despite vigorous resuscitation, spontaneous hemodynamic stability could not be achieved and extracorporeal membrane oxygenation was required. A transthoracic echocardiogram revealed severe hypoplasia of the ascending aorta. As effective cardiac function did not recover and there was evidence of diffuse ischemic brain injury, life support was withdrawn. Genetic testing performed postoperatively was definitive for Williams syndrome.
Collapse
Affiliation(s)
- Julie D Dunlap
- Department of Clinical Anaesthesia, Riley Hospital for Children, Indianapolis, IN 46202-5200, USA
| | - Morton C Green
- Department of Clinical Anaesthesia, Riley Hospital for Children, Indianapolis, IN 46202-5200, USA
| | - Aali M Shah
- Department of Clinical Anaesthesia, Riley Hospital for Children, Indianapolis, IN 46202-5200, USA
| | - Brandon T Kibby
- Department of Clinical Anaesthesia, Riley Hospital for Children, Indianapolis, IN 46202-5200, USA
| | - Deborah F Billmire
- Department of Surgery, Riley Hospital for Children, Indianapolis, IN 46202-5200, USA
| |
Collapse
|
23
|
Pinelli M, Terrone G, Troglio F, Squeo GM, Cappuccio G, Imperati F, Pignataro P, Genesio R, Nitch L, Del Giudice E, Merla G, Testa G, Brunetti-Pierri N. A small 7q11.23 microduplication involving GTF2I in a family with intellectual disability. Clin Genet 2020; 97:940-942. [PMID: 32349160 PMCID: PMC7318190 DOI: 10.1111/cge.13753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Michele Pinelli
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Gabriella Maria Squeo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Floriana Imperati
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | - Piero Pignataro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Lucio Nitch
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ennio Del Giudice
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Testa
- European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Human Technopole, Milan, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy
| |
Collapse
|
24
|
Codina-Sola M, Costa-Roger M, Pérez-García D, Flores R, Palacios-Verdú MG, Cusco I, Pérez-Jurado LA. Genetic factors contributing to autism spectrum disorder in Williams-Beuren syndrome. J Med Genet 2019; 56:801-808. [PMID: 31413120 PMCID: PMC6929708 DOI: 10.1136/jmedgenet-2019-106080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The hallmark of the neurobehavioural phenotype of Williams-Beuren syndrome (WBS) is increased sociability and relatively preserved language skills, often described as opposite to autism spectrum disorders (ASD). However, the prevalence of ASD in WBS is 6-10 times higher than in the general population. We have investigated the genetic factors that could contribute to the ASD phenotype in individuals with WBS. METHODS We studied four males and four females with WBS and a confirmed diagnosis of ASD by the Autism Diagnostic Interview-Revised. We performed a detailed molecular characterisation of the deletion and searched for genomic variants using exome sequencing. RESULTS A de novo deletion of 1.55 Mb (6 cases) or 1.83 Mb (2 cases) at 7q11.23 was detected, being in 7/8 patients of paternal origin. No common breakpoint, deletion mechanism or size was found. Two cases were hemizygous for the rare T allele at rs12539160 in MLXIPL, previously associated with ASD. Inherited rare variants in ASD-related or functionally constrained genes and a de novo nonsense mutation in the UBR5 gene were identified in six cases, with higher burden in females compared with males (p=0.016). CONCLUSIONS The increased susceptibility to ASD in patients with WBS might be due to additive effects of the common WBS deletion, inherited and de novo rare sequence variants in ASD-related genes elsewhere in the genome, with higher burden of deleterious mutations required for females, and possible hypomorphic variants in the hemizygous allele or cis-acting mechanisms on imprinting.
Collapse
Affiliation(s)
- Marta Codina-Sola
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
- Clinical and Molecular Genetics Area, Vall Hebrón Hospital Research Institute (VHIR), Hospital Vall d'Hebron, Barcelona, Spain
| | - Mar Costa-Roger
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
| | - Debora Pérez-García
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
| | - Raquel Flores
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
| | - Maria Gabriela Palacios-Verdú
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
- Fundacio Dexeus Salut de la Dona, Barcelona, Spain
| | - Ivon Cusco
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
- Clinical and Molecular Genetics Area, Vall Hebrón Hospital Research Institute (VHIR), Hospital Vall d'Hebron, Barcelona, Spain
| | - Luis Alberto Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat Pompeu Fabra Departament de Ciences Experimentals i de la Salut, Barcelona, Spain
- SA Clinical Genetics, Women's and Children's Hospital, South Australian Health and Medical Research Institute (SAHMRI) and University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
In vitro fertilization does not increase the incidence of de novo copy number alterations in fetal and placental lineages. Nat Med 2019; 25:1699-1705. [PMID: 31686035 DOI: 10.1038/s41591-019-0620-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/20/2019] [Indexed: 01/21/2023]
Abstract
Although chromosomal instability (CIN) is a common phenomenon in cleavage-stage embryogenesis following in vitro fertilization (IVF)1-3, its rate in naturally conceived human embryos is unknown. CIN leads to mosaic embryos that contain a combination of genetically normal and abnormal cells, and is significantly higher in in vitro-produced preimplantation embryos as compared to in vivo-conceived preimplantation embryos4. Even though embryos with CIN-derived complex aneuploidies may arrest between the cleavage and blastocyst stages of embryogenesis5,6, a high number of embryos containing abnormal cells can pass this strong selection barrier7,8. However, neither the prevalence nor extent of CIN during prenatal development and at birth, following IVF treatment, is well understood. Here we profiled the genomic landscape of fetal and placental tissues postpartum from both IVF and naturally conceived children, to investigate the prevalence and persistence of large genetic aberrations that probably arose from IVF-related CIN. We demonstrate that CIN is not preserved at later stages of prenatal development, and that de novo numerical aberrations or large structural DNA imbalances occur at similar rates in IVF and naturally conceived live-born neonates. Our findings affirm that human IVF treatment has no detrimental effect on the chromosomal constitution of fetal and placental lineages.
Collapse
|
26
|
Tebbenkamp ATN, Varela L, Choi J, Paredes MI, Giani AM, Song JE, Sestan-Pesa M, Franjic D, Sousa AMM, Liu ZW, Li M, Bichsel C, Koch M, Szigeti-Buck K, Liu F, Li Z, Kawasawa YI, Paspalas CD, Mineur YS, Prontera P, Merla G, Picciotto MR, Arnsten AFT, Horvath TL, Sestan N. The 7q11.23 Protein DNAJC30 Interacts with ATP Synthase and Links Mitochondria to Brain Development. Cell 2019; 175:1088-1104.e23. [PMID: 30318146 DOI: 10.1016/j.cell.2018.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022]
Abstract
Despite the known causality of copy-number variations (CNVs) to human neurodevelopmental disorders, the mechanisms behind each gene's contribution to the constellation of neural phenotypes remain elusive. Here, we investigated the 7q11.23 CNV, whose hemideletion causes Williams syndrome (WS), and uncovered that mitochondrial dysfunction participates in WS pathogenesis. Dysfunction is facilitated in part by the 7q11.23 protein DNAJC30, which interacts with mitochondrial ATP-synthase machinery. Removal of Dnajc30 in mice resulted in hypofunctional mitochondria, diminished morphological features of neocortical pyramidal neurons, and altered behaviors reminiscent of WS. The mitochondrial features are consistent with our observations of decreased integrity of oxidative phosphorylation supercomplexes and ATP-synthase dimers in WS. Thus, we identify DNAJC30 as an auxiliary component of ATP-synthase machinery and reveal mitochondrial maladies as underlying certain defects in brain development and function associated with WS.
Collapse
Affiliation(s)
- Andrew T N Tebbenkamp
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Luis Varela
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jinmyung Choi
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Miguel I Paredes
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Alice M Giani
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jae Eun Song
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Matija Sestan-Pesa
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel Franjic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zhong-Wu Liu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Candace Bichsel
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Marco Koch
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Klara Szigeti-Buck
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fuchen Liu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zhuo Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yuka I Kawasawa
- Institute for Personalized Medicine and Departments of Biochemistry and Molecular Biology and Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Constantinos D Paspalas
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yann S Mineur
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Paolo Prontera
- Medical Genetics Unit, Hospital "Santa Maria della Misericordia," 06129 Perugia, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Marina R Picciotto
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Amy F T Arnsten
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tamas L Horvath
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Anatomy and Histology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Genetics and of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
27
|
Williams–Beuren syndrome in Mexican patients confirmed by FISH and assessed by aCGH. J Genet 2019. [DOI: 10.1007/s12041-019-1080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Yao D, Ji C, Chen W, Li M, Zhao ZY. Physical growth and development characteristics of children with Williams syndrome aged 0-24 months in Zhejiang Province. J Pediatr Endocrinol Metab 2019; 32:233-237. [PMID: 30710484 DOI: 10.1515/jpem-2018-0185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/16/2018] [Indexed: 11/15/2022]
Abstract
Background The objective of this study was to evaluate the physical growth and development characteristics of children with Williams syndrome (WS) aged 0-24 months, and provide help for early diagnosis of WS. Methods A total of 32 cases of children (17 males and 15 females) aged 0-24 months who were diagnosed with WS were enrolled between 2008 and 2017. These children were divided into four different groups: 1-6 months (six cases), 7-12 months (eight cases), 12-18 months (nine cases) and 19-24 months (nine cases). Meanwhile, a total of 32 healthy children (17 males and 15 females) were enrolled in the study from the Department of Health Care for physical examination in our hospital as the control group and matched with each divided group. Weight and height were measured, and meanwhile birth weight and height were also asked and recorded. Results There was no statistically significant difference in birth height between the two groups (p>0.05), and birth weight and the height and weight of the children with WS in the four groups were significantly lower than those of the children in the normal control (NC) group (p>0.05). When the corresponding age of WS children was compared to the Nine City Growth Curve Standards in China, 97% of cases were lagging behind in physical growth and development. Conclusions WS children often have the features of early slow physical growth, which provides certain help for the early diagnosis of WS. Therefore, for younger children, facial features combined with an accurate and objective physical growth assessment and ultrasonic cardiogram can greatly improve the screening rate.
Collapse
Affiliation(s)
- Dan Yao
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chai Ji
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weijun Chen
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mingyan Li
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zheng-Yan Zhao
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Zhang R, Chen X, Wang D, Chen X, Wang C, Zhang Y, Xu M, Yu J. Prevalence of chromosomal abnormalities identified by copy number variation sequencing in high-risk pregnancies, spontaneous abortions, and suspected genetic disorders. J Int Med Res 2019; 47:1169-1178. [PMID: 30732499 PMCID: PMC6421393 DOI: 10.1177/0300060518818020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Objective High-throughput sequencing based on copy number variation (CNV-seq) is
commonly used to detect chromosomal abnormalities including aneuploidy. This
study provides evidence for the prevalence of chromosomal abnormalities in
target populations. Methods A total of 160 samples, including 83 high-risk pregnancies, 37 spontaneous
abortions, and 40 suspected genetic disorders, were analyzed by CNV-seq.
Relationships between the incidence of these chromosomal abnormalities and
risk factors (e.g. advanced maternal age, abnormal pregnancy history, and
family history of congenital disease) were further analyzed by subgroup. Results A total of 37 (44.6%) high-risk pregnancies, 25 (67.6%) spontaneous
abortions, and 22 (55%) suspected genetic disorders had chromosomal
abnormalities including aneuploidy and CNVs. There was an increased risk
association between the prevalence of aneuploidy and pathogenic-relevant CNV
in the fetus or abortive tissue and advanced maternal age. Moreover, a
family history of congenital disease was also positively correlated with
fetal chromosomal abnormalities in high-risk pregnancies. Conclusion A relatively high prevalence of chromosomal abnormalities was detected in
high-risk pregnancies, spontaneous abortions, and suspected genetic
disorders, indicating the importance of CNV detection in such
populations.
Collapse
Affiliation(s)
- Rui Zhang
- 1 Prenatal Diagnosis Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,2 Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Dong Wang
- 2 Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuan Chen
- 4 Department of Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Wang
- 1 Prenatal Diagnosis Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhong Zhang
- 1 Prenatal Diagnosis Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Jingcui Yu
- 2 Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Forsingdal A, Jørgensen TN, Olsen L, Werge T, Didriksen M, Nielsen J. Can Animal Models of Copy Number Variants That Predispose to Schizophrenia Elucidate Underlying Biology? Biol Psychiatry 2019; 85:13-24. [PMID: 30144930 DOI: 10.1016/j.biopsych.2018.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The diagnosis of schizophrenia rests on clinical criteria that cannot be assessed in animal models. Together with absence of a clear underlying pathology and understanding of what causes schizophrenia, this has hindered development of informative animal models. However, recent large-scale genomic studies have identified copy number variants (CNVs) that confer high risk of schizophrenia and have opened a new avenue for generation of relevant animal models. Eight recurrent CNVs have reproducibly been shown to increase the risk of schizophrenia by severalfold: 22q11.2(del), 15q13.3(del), 1q21(del), 1q21(dup), NRXN1(del), 3q29(del), 7q11.23(dup), and 16p11.2(dup). Five of these CNVs have been modeled in animals, mainly mice, but also rats, flies, and zebrafish, and have been shown to recapitulate behavioral and electrophysiological aspects of schizophrenia. Here, we provide an overview of the schizophrenia-related phenotypes found in animal models of schizophrenia high-risk CNVs. We also discuss strengths and limitations of the CNV models, and how they can advance our biological understanding of mechanisms that can lead to schizophrenia and can be used to develop new and better treatments for schizophrenia.
Collapse
Affiliation(s)
- Annika Forsingdal
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Trine Nygaard Jørgensen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Line Olsen
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Michael Didriksen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Jacob Nielsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde.
| |
Collapse
|
31
|
Decreased Neuron Density and Increased Glia Density in the Ventromedial Prefrontal Cortex (Brodmann Area 25) in Williams Syndrome. Brain Sci 2018; 8:brainsci8120209. [PMID: 30501059 PMCID: PMC6316781 DOI: 10.3390/brainsci8120209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Williams Syndrome (WS) is a neurodevelopmental disorder caused by a deletion of 25–28 genes on chromosome 7 and characterized by a specific behavioral phenotype, which includes hypersociability and anxiety. Here, we examined the density of neurons and glia in fourteen human brains in Brodmann area 25 (BA 25), in the ventromedial prefrontal cortex (vmPFC), using a postmortem sample of five adult and two infant WS brains and seven age-, sex- and hemisphere-matched typically developing control (TD) brains. We found decreased neuron density, which reached statistical significance in the supragranular layers, and increased glia density and glia to neuron ratio, which reached statistical significance in both supra- and infragranular layers. Combined with our previous findings in the amygdala, caudate nucleus and frontal pole (BA 10), these results in the vmPFC suggest that abnormalities in frontostriatal and frontoamygdala circuitry may contribute to the anxiety and atypical social behavior observed in WS.
Collapse
|
32
|
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e653-e711. [PMID: 30571578 PMCID: PMC6555769 DOI: 10.1161/cir.0000000000000606] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Collapse
|
33
|
Kopp ND, Parrish PCR, Lugo M, Dougherty JD, Kozel BA. Exome sequencing of 85 Williams-Beuren syndrome cases rules out coding variation as a major contributor to remaining variance in social behavior. Mol Genet Genomic Med 2018; 6:749-765. [PMID: 30008175 PMCID: PMC6160704 DOI: 10.1002/mgg3.429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/03/2018] [Accepted: 06/11/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Large, multigenic deletions at chromosome 7q11.23 result in a highly penetrant constellation of physical and behavioral symptoms known as Williams-Beuren syndrome (WS). Of particular interest is the unusual social-cognitive profile evidenced by deficits in social cognition and communication reminiscent of autism spectrum disorders (ASD) that are juxtaposed with normal or even relatively enhanced social motivation. Interestingly, duplications in the same region also result in ASD-like phenotypes as well as social phobias. Thus, the region clearly regulates human social motivation and behavior, yet the relevant gene(s) have not been definitively identified. METHOD Here, we deeply phenotyped 85 individuals with WS and used exome sequencing to analyze common and rare variation for association with the remaining variance in social behavior as assessed by the Social Responsiveness Scale. RESULTS We replicated the previously reported unusual juxtaposition of behavioral symptoms in this new patient collection, but we did not find any new alleles of large effect in the targeted analysis of the remaining copy of genes in the Williams syndrome critical region. However, we report on two nominally significant SNPs in two genes that have been implicated in the cognitive and social phenotypes of Williams syndrome, BAZ1B and GTF2IRD1. Secondary discovery driven explorations focusing on known ASD genes and an exome wide scan do not highlight any variants of a large effect. CONCLUSIONS Whole exome sequencing of 85 individuals with WS did not support the hypothesis that there are variants of large effect within the remaining Williams syndrome critical region that contribute to the social phenotype. This deeply phenotyped and genotyped patient cohort with a defined mutation provides the opportunity for similar analyses focusing on noncoding variation and/or other phenotypic domains.
Collapse
Affiliation(s)
- Nathan D. Kopp
- Department of GeneticsWashington University School of MedicineSt. LouisMissouri
| | - Phoebe C. R. Parrish
- National Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMaryland
| | - Michael Lugo
- National Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMaryland
- Department of PediatricsWashington University School of MedicineSt. LouisMissouri
| | - Joseph D. Dougherty
- Department of GeneticsWashington University School of MedicineSt. LouisMissouri
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouri
| | - Beth A. Kozel
- National Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMaryland
- Department of PediatricsWashington University School of MedicineSt. LouisMissouri
| |
Collapse
|
34
|
Ghaffari M, Tahmasebi Birgani M, Kariminejad R, Saberi A. Genotype–phenotype correlation and the size of microdeletion or microduplication of 7q11.23 region in patients with Williams‐Beuren syndrome. Ann Hum Genet 2018; 82:469-476. [DOI: 10.1111/ahg.12278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/29/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Mahsa Ghaffari
- Departement of Medical Genetics, School of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Maryam Tahmasebi Birgani
- Departement of Medical Genetics, School of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | | | - Alihossein Saberi
- Departement of Medical Genetics, School of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
35
|
Castiglia L, Husain RA, Marquardt I, Fink C, Liehr T, Serino D, Elia M, Coci EG. 7q11.23 microduplication syndrome: neurophysiological and neuroradiological insights into a rare chromosomal disorder. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2018; 62:359-370. [PMID: 29266505 DOI: 10.1111/jir.12457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/09/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The phenotypical consequence of the heterozygous chromosome 7q11.23 interstitial microdeletion is the Williams-Beuren syndrome, a very well-known genetic multi-systemic disorder. Much less is known about the reverse condition, the heterozygous interstitial microduplication of 7q11.23 region. The first molecular cytogenetic description was published in 2005, and only after several years were the reported patients numerous enough to attempt a description of a common phenotype. METHOD By using a broad multidisciplinary approach, we investigated 12 patients with this rare genetic anomaly. Ten of them harboured the duplication of the classical Williams-Beuren syndrome region and two a slightly larger duplication. Upon a detailed description of the clinical and psychological features, we used electroencephalography and magnetic resonance imaging to explore neurophysiological function and brain structures. RESULTS We analysed the clinical, psychological, neuroradiological and neurophysiological features of 12 yet-unpublished individuals affected by this rare genetic anomaly, focusing specifically on the last two aspects. Several structural abnormalities of the central nervous system were detected, like ventriculomegaly, hypotrophic cerebellum, hypotrophic corpus callosum and hypoplastic temporal lobes. Although only one of 12 individuals suffered from seizures during childhood, three others had abnormal electroencephalography findings prominent in the anterior brain regions, without any visible seizures to date. CONCLUSION Taken together, we enlarged the yet-underrepresented cohort in the literature of patients affected by 7q11.23 microduplication syndrome and shed further light on neuroradiological and neurophysiological aspects of this rare genetic syndrome.
Collapse
Affiliation(s)
- L Castiglia
- Oasi Institute for Research on Mental Retardation and Brain, Troina, Enna, Italy
| | - R A Husain
- Department of Neuropediatrics, Universitätsklinikum Jena, Jena, Thuringia, Germany
| | - I Marquardt
- Department of Neuropediatrics, Klinikum Oldenburg, Oldenburg, Lower Saxony, Germany
| | - C Fink
- Department of Radiology, Allgemeines Krankenhaus Celle, Celle, Lower Saxony, Germany
| | - T Liehr
- Institute of Human Genetics, Friedrich-Schiller-Universität Jena, Jena, Thuringia, Germany
| | - D Serino
- Department of Pediatric Neuro-Psichiatry, ASL CN1, Cuneo, Piedmont, Italy
| | - M Elia
- Oasi Institute for Research on Mental Retardation and Brain, Troina, Enna, Italy
| | - E G Coci
- Department of Paediatrics, Städtisches Klinikum Braunschweig, Braunschweig, Lower Saxony, Germany
- Department of Neuropediatrics, Universitaetsklinikum Bochum, Ruhr-Universitaet Bochum, Bochum, North Rhine-Westphalia, Germany
| |
Collapse
|
36
|
Pauta M, Grande M, Rodriguez-Revenga L, Kolomietz E, Borrell A. Added value of chromosomal microarray analysis over karyotyping in early pregnancy loss: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 51:453-462. [PMID: 29055063 DOI: 10.1002/uog.18929] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To estimate the increased test success rate and incremental yield of chromosomal microarray analysis (CMA) over conventional karyotyping in detection of pathogenic copy number variants (CNVs) and variants of unknown significance (VOUS) in early pregnancy loss. METHOD This was a systematic review conducted in accordance with PRISMA criteria. All articles identified in PubMed, Ovid MEDLINE and Web of Science, between January 2000 and April 2017, that described CNVs in early pregnancy losses (up to 20 weeks) were included. Risk differences were pooled to estimate the incremental yield of CMA over karyotyping overall, and after stratification. In addition, test success rate, defined as the proportion of informative results, was compared in series in which CMA and karyotyping were performed concurrently. RESULTS Twenty-three studies, reporting on 5507 pregnancy losses up to 20 weeks with full data available, met the inclusion criteria for analysis. In the series in which CMA and karyotyping were performed concurrently, CMA showed a significant improvement in success rate, providing informative results in 95% (95% CI, 94-96%) of cases compared with karyotyping in which informative results were provided in 68% (95% CI, 66-70%) of cases. Combined data from reviewed studies revealed that incremental yields of CMA over karyotyping were 2% (95% CI, 1-2%) for pathogenic CNVs and 4% (95% CI, 3-6%) for VOUS. The most common pathogenic CNVs reported were 22q11.21 and 1p36.33 deletion. CONCLUSION In comparison with conventional karyotyping, CMA provides a significant increase in test success rate and incremental diagnostic yield in early pregnancy loss. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- M Pauta
- BCNatal Hospital Clínic Barcelona and IDIBAPS, Barcelona, Spain
| | - M Grande
- BCNatal Hospital Clínic Barcelona and IDIBAPS, Barcelona, Spain
| | - L Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clínic Barcelona and IDIBAPS, Barcelona, Spain
| | - E Kolomietz
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Ontario, Canada
| | - A Borrell
- BCNatal Hospital Clínic Barcelona and IDIBAPS, Barcelona, Spain
| |
Collapse
|
37
|
Zhang L, Zhang X, You G, Yu Y, Fu Q. A novel dNTP-limited PCR and HRM assay to detect Williams-Beuren syndrome. Clin Chim Acta 2018; 481:171-176. [PMID: 29550276 DOI: 10.1016/j.cca.2018.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Williams-Beuren syndrome (WBS) is caused by a microdeletion of chromosome arm 7q11.23. A rapid and inexpensive genotyping method to detect microdeletion on 7q11.23 needs to be developed for the diagnosis of WBS. This study describes the development of a new type of molecular diagnosis method to detect microdeletion on 7q11.23 based upon high-resolution melting (HRM). METHODS Four genes on 7q11.23 were selected as the target genes for the deletion genotyping. dNTP-limited duplex PCR was used to amplify the reference gene, CFTR, and one of the four genes respectively on 7q11.23. An HRM assay was performed on the PCR products, and the height ratio of the negative derivative peaks between the target gene and reference gene was employed to analyze the copy number variation of the target region. RESULTS A new genotyping method for detecting 7q11.23 deletion was developed based upon dNTP-limited PCR and HRM, which cost only 96 min. Samples from 15 WBS patients and 12 healthy individuals were genotyped by this method in a blinded fashion, and the sensitivity and specificity was 100% (95% CI, 0.80-1, and 95% CI, 0.75-1, respectively) which was proved by CytoScan HD array. SIGNIFICANCE The HRM assay we developed is an rapid, inexpensive, and highly accurate method for genotyping 7q11.23 deletion. It is potentially useful in the clinical diagnosis of WBS.
Collapse
Affiliation(s)
- Lichen Zhang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Xiaoqing Zhang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Guoling You
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Yongguo Yu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Institute for Pediatric Research, Shanghai, China.
| | - Qihua Fu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China.
| |
Collapse
|
38
|
Duque Lasio ML, Kozel BA. Elastin-driven genetic diseases. Matrix Biol 2018; 71-72:144-160. [PMID: 29501665 DOI: 10.1016/j.matbio.2018.02.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
Abstract
Elastic fibers provide recoil to tissues that undergo repeated deformation, such as blood vessels, lungs and skin. Composed of elastin and its accessory proteins, the fibers are produced within a restricted developmental window and are stable for decades. Their eventual breakdown is associated with a loss of tissue resiliency and aging. Rare alteration of the elastin (ELN) gene produces disease by impacting protein dosage (supravalvar aortic stenosis, Williams Beuren syndrome and Williams Beuren region duplication syndrome) and protein function (autosomal dominant cutis laxa). This review highlights aspects of the elastin molecule and its assembly process that contribute to human disease and also discusses potential therapies aimed at treating diseases of elastin insufficiency.
Collapse
Affiliation(s)
| | - Beth A Kozel
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
39
|
Lew CH, Groeniger KM, Bellugi U, Stefanacci L, Schumann CM, Semendeferi K. A postmortem stereological study of the amygdala in Williams syndrome. Brain Struct Funct 2017; 223:1897-1907. [PMID: 29270815 DOI: 10.1007/s00429-017-1592-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/25/2017] [Indexed: 01/06/2023]
Abstract
Perturbations to the amygdala have been observed in neurological disorders characterized by abnormalities in social behavior, such as autism and schizophrenia. Here, we quantitatively examined the amygdala in the postmortem human brains of male and female individuals diagnosed with Williams Syndrome (WS), a neurodevelopmental disorder caused by a well-defined deletion of ~ 26 genes, and accompanied by a consistent behavioral profile that includes profound hypersociability. Using unbiased stereological sampling, we estimated nucleus volume, number of neurons, neuron density, and neuron soma area in four major amygdaloid nuclei- the lateral nucleus, basal nucleus, accessory basal nucleus, and central nucleus- in a sample of five adult and two infant WS brains and seven age-, sex- and hemisphere-matched typically developing control (TD) brains. Boundaries of the four nuclei examined were drawn on Nissl-stained coronal sections as four separate regions of interest for data collection. We found that the lateral nucleus contains significantly more neurons in WS compared to TD. WS and TD do not demonstrate significant differences in neuron number in the basal, accessory basal, or central nuclei, and there are no significant differences between WS and TD in nuclei volume, neuron density, and neuron soma area in any of the four nuclei. A similarly designed study reported a decrease in lateral nucleus neuron number in autism, mirroring the opposing extremes of the two disorders in the social domain. These results suggest that the number of neurons in the lateral nucleus may contribute to pathological disturbances in amygdala function and sociobehavioral phenotype.
Collapse
Affiliation(s)
- Caroline H Lew
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0532, USA
| | - Kimberly M Groeniger
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0532, USA
| | - Ursula Bellugi
- Laboratory for Cognitive Neuroscience, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Lisa Stefanacci
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0532, USA
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Katerina Semendeferi
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0532, USA. .,Kavli Institute for Brain and Mind, University of California, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
40
|
Chiariello AM, Esposito A, Annunziatella C, Bianco S, Fiorillo L, Prisco A, Nicodemi M. A Polymer Physics Investigation of the Architecture of the Murine Orthologue of the 7q11.23 Human Locus. Front Neurosci 2017; 11:559. [PMID: 29066944 PMCID: PMC5641313 DOI: 10.3389/fnins.2017.00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
In the last decade, the developments of novel technologies, such as Hi-C or GAM methods, allowed to discover that chromosomes in the nucleus of mammalian cells have a complex spatial organization, encompassing the functional contacts between genes and regulators. In this work, we review recent progresses in chromosome modeling based on polymer physics to understand chromatin structure and folding mechanisms. As an example, we derive in mouse embryonic stem cells the full 3D structure of the Bmp7 locus, a genomic region that plays a key role in osteoblastic differentiation. Next, as an application to Neuroscience, we present the first 3D model for the mouse orthologoue of the Williams-Beuren syndrome 7q11.23 human locus. Deletions and duplications of the 7q11.23 region generate neurodevelopmental disorders with multi-system involvement and variable expressivity, and with autism. Understanding the impact of such mutations on the rewiring of the interactions of genes and regulators could be a new key to make sense of their related diseases, with potential applications in biomedicine.
Collapse
Affiliation(s)
- Andrea M. Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Antonella Prisco
- Institute of Genetics and Biophysics, Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
41
|
Nattel SN, Adrianzen L, Kessler EC, Andelfinger G, Dehaes M, Côté-Corriveau G, Trelles MP. Congenital Heart Disease and Neurodevelopment: Clinical Manifestations, Genetics, Mechanisms, and Implications. Can J Cardiol 2017; 33:1543-1555. [PMID: 29173597 DOI: 10.1016/j.cjca.2017.09.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022] Open
Abstract
Children with congenital heart disease (CHD) are at increased risk of neurodevelopmental disorders (NDDs) and psychiatric conditions. These include cognitive, adaptive, motor, speech, behavioural, and executive functioning deficits, as well as autism spectrum disorder and psychiatric conditions. Structural and functional neuroimaging have demonstrated brain abnormalities in young children with CHD before undergoing surgical repair, likely as a result of an in utero developmental insult. Surgical factors do not seem to play a significant role in neurodevelopmental outcomes. Specific genetic abnormalities, particularly copy number variants, have been increasingly implicated in both CHD and NDDs. Variations in genes involved in apolipoprotein E (APOE) production, the Wnt signalling pathway, and histone modification, as well as in the 1q21.1, 16p13.1-11, and 8p23.1 genetic loci, have been associated with CHD and NDDs and are important targets for future research. Understanding these associations is important for risk stratification, disease classification, improved screening, and pharmacologic management of individuals with CHD.
Collapse
Affiliation(s)
- Sarah N Nattel
- Department of Psychiatry, Albert Einstein College of Medicine and Seaver Autism Center at Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Laura Adrianzen
- Department of Psychiatry, Seaver Autism Center at Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Gregor Andelfinger
- Department of Pediatrics, University of Montreal and Ste-Justine Hospital University Centre, Montreal, Quebec, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology, and Nuclear Medicine, University of Montreal and Ste-Justine Hospital University Centre, Montreal, Quebec, Canada
| | - Gabriel Côté-Corriveau
- Department of Radiology, Radio-oncology, and Nuclear Medicine, University of Montreal and Ste-Justine Hospital University Centre, Montreal, Quebec, Canada
| | - M Pilar Trelles
- Department of Psychiatry, Seaver Autism Center at Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
42
|
Williams-Beuren Syndrome and Congenital Lobar Emphysema: Uncommon Association with Common Pathology? Case Rep Pediatr 2017. [PMID: 28626595 PMCID: PMC5463103 DOI: 10.1155/2017/3480980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Congenital lobar emphysema (CLE) and Williams-Beuren Syndrome are two rare conditions that have only been reported together in a single case study. CASE PRESENTATION We report another case of a male Caucasian newborn with nonspecific initial respiratory distress, with detection of CLE on repeat chest X-ray on Day 25 of life and concurrent ventricular septal defect, supravalvular aortic stenosis, and branch pulmonary stenosis, in whom a 7q11.23 deletion consistent with Williams-Beuren Syndrome was made. CONCLUSION A diagnosis of congenital lobar emphysema should prompt further screening for congenital heart disease and genetic deletion, and further research is needed to investigate the role of elastin gene mutation in the development of the neonatal lung.
Collapse
|
43
|
Mastrototaro G, Zaghi M, Sessa A. Epigenetic Mistakes in Neurodevelopmental Disorders. J Mol Neurosci 2017; 61:590-602. [DOI: 10.1007/s12031-017-0900-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
|
44
|
Role of Splice Variants of Gtf2i, a Transcription Factor Localizing at Postsynaptic Sites, and Its Relation to Neuropsychiatric Diseases. Int J Mol Sci 2017; 18:ijms18020411. [PMID: 28212274 PMCID: PMC5343945 DOI: 10.3390/ijms18020411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 12/17/2022] Open
Abstract
We previously reported that various mRNAs were associated with postsynaptic density (PSD) purified from rat forebrain. Among the thousands of PSD-associated mRNAs, we highlight the biology of the general transcription factor II-I (Gtf2i) mRNA, focusing on the significance of its versatile splicing for targeting its own mRNA into dendrites, regulation of translation, and the effects of Gtf2i expression level as well as its relationship with neuropsychiatric disorders.
Collapse
|
45
|
Wang Y, Cheng Q, Meng L, Luo C, Hu H, Zhang J, Cheng J, Xu T, Jiang T, Liang D, Hu P, Xu Z. Clinical application of SNP array analysis in first-trimester pregnancy loss: a prospective study. Clin Genet 2016; 91:849-858. [DOI: 10.1111/cge.12926] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Y. Wang
- State Key Laboratory of Reproductive Medicine; Department of Prenatal Diagnosis; Nanjing China
| | - Q. Cheng
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics; Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University; Nanjing China
| | - L. Meng
- State Key Laboratory of Reproductive Medicine; Department of Prenatal Diagnosis; Nanjing China
| | - C. Luo
- State Key Laboratory of Reproductive Medicine; Department of Prenatal Diagnosis; Nanjing China
| | - H. Hu
- State Key Laboratory of Reproductive Medicine; Department of Prenatal Diagnosis; Nanjing China
| | - J. Zhang
- State Key Laboratory of Reproductive Medicine; Department of Prenatal Diagnosis; Nanjing China
| | - J. Cheng
- State Key Laboratory of Reproductive Medicine; Department of Prenatal Diagnosis; Nanjing China
| | - T. Xu
- State Key Laboratory of Reproductive Medicine; Department of Prenatal Diagnosis; Nanjing China
| | - T. Jiang
- State Key Laboratory of Reproductive Medicine; Department of Prenatal Diagnosis; Nanjing China
| | - D. Liang
- State Key Laboratory of Reproductive Medicine; Department of Prenatal Diagnosis; Nanjing China
| | - P. Hu
- State Key Laboratory of Reproductive Medicine; Department of Prenatal Diagnosis; Nanjing China
| | - Z. Xu
- State Key Laboratory of Reproductive Medicine; Department of Prenatal Diagnosis; Nanjing China
| |
Collapse
|
46
|
Earhart BA, Williams ME, Zamora I, Randolph LM, Votava-Smith JK, Marcy SN. Phenotype of 7q11.23 duplication: A family clinical series. Am J Med Genet A 2016; 173:114-119. [DOI: 10.1002/ajmg.a.37966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/04/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Beth A. Earhart
- USC University Center for Excellence in Developmental Disabilities; Children's Hospital Los Angeles; Los Angeles California
| | - Marian E. Williams
- Department of Pediatrics, USC University Center for Excellence in Developmental Disabilities; University of Southern California Keck School of Medicine of USC, Children's Hospital Los Angeles; Los Angeles California
| | - Irina Zamora
- Department of Pediatrics, USC University Center for Excellence in Developmental Disabilities; University of Southern California Keck School of Medicine of USC, Children's Hospital Los Angeles; Los Angeles California
| | - Linda Marie Randolph
- Division of Medical Genetics, Department of Pediatrics; University of Southern California, Children's Hospital Los Angeles; Los Angeles California
| | - Jodie K. Votava-Smith
- Division of Cardiology, Department of Pediatrics; University of Southern California, Children's Hospital Los Angeles; Los Angeles California
| | - Stephanie N. Marcy
- Department of Pediatrics, USC University Center for Excellence in Developmental Disabilities; University of Southern California Keck School of Medicine of USC, Children's Hospital Los Angeles; Los Angeles California
| |
Collapse
|
47
|
Hussein IR, Magbooli A, Huwait E, Chaudhary A, Bader R, Gari M, Ashgan F, Alquaiti M, Abuzenadah A, AlQahtani M. Genome wide array-CGH and qPCR analysis for the identification of genome defects in Williams' syndrome patients in Saudi Arabia. Mol Cytogenet 2016; 9:65. [PMID: 27525043 PMCID: PMC4981984 DOI: 10.1186/s13039-016-0266-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/19/2016] [Indexed: 11/27/2022] Open
Abstract
Background Williams-Beuren Syndrome (WBS) is a rare neurodevelopmental disorder characterized by dysmorphic features, cardiovascular defects, cognitive deficits and developmental delay. WBS is caused by a segmental aneuploidy of chromosome 7 due to heterozygous deletion of contiguous genes at the long arm of chromosome 7q11.23. We aimed to apply array-CGH technique for the detection of copy number variants in suspected WBS patients and to determine the size of the deleted segment at chromosome 7q11.23 in correlation with the phenotype. The study included 24 patients referred to the CEGMR with the provisional diagnosis of WBS and 8 parents. The patients were subjected to conventional Cytogenetic (G-banding) analysis, Molecular Cytogenetic (Fluorescent In-Situ Hybridization), array-based Comparative Genomic Hybridization (array-CGH) and quantitative Real time PCR (qPCR) Techniques. Results No deletions were detected by Karyotyping, however, one patient showed unbalanced translocation between chromosome 18 and 19, the karyotype was 45,XX, der(19) t(18;19)(q11.1;p13.3)-18. FISH technique could detect microdeletion in chromosome 7q11.23 in 10/24 patients. Array-CGH and qPCR confirmed the deletion in all samples, and could detect duplication of 7q11.23 in three patients and two parents. Furthermore, the size of the deletion could be detected accurately by both array-CGH and qPCR techniques. Three patients not showing the 7q11.23 deletion were diagnosed by array-CGH to have deletion in chr9p13.1-p11.2, chr18p11.32-p11.21 and chr1p36.13. Conclusion Both FISH and array-CGH are reliable methods for the diagnosis of WBS; however, array-CGH has the advantage of detection of genome deletions/ duplications that cannot otherwise be detected by conventional cytogenetic techniques. Array-CGH and qPCR are useful for detection of deletion sizes and prediction of the interrupted genes and their impact on the disease phenotype. Further investigations are needed for studying the impact of deletion sizes and function of the deleted genes on chromosome 7q11.23. Trial registration ISRCTN ISRCTN73824458. MOCY-D-16-00041R1. Registered 28 September 2014. Retrospectively registered.
Collapse
Affiliation(s)
- I R Hussein
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia
| | - A Magbooli
- Diagnostic Genomic Medicine Unit (DGMU), King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - E Huwait
- Faculty of Science, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - A Chaudhary
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia.,Faculty of Medical Sciences, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - R Bader
- Pediatric Cardiology Department, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - M Gari
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia.,Faculty of Medical Sciences, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - F Ashgan
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia
| | - M Alquaiti
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia
| | - A Abuzenadah
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia.,Faculty of Medical Sciences, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - M AlQahtani
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia.,Diagnostic Genomic Medicine Unit (DGMU), King Abdulaziz University, Jeddah, KSA Saudi Arabia.,Faculty of Medical Sciences, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| |
Collapse
|
48
|
Lew CH, Brown C, Bellugi U, Semendeferi K. Neuron density is decreased in the prefrontal cortex in Williams syndrome. Autism Res 2016; 10:99-112. [PMID: 27520580 DOI: 10.1002/aur.1677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022]
Abstract
Williams Syndrome (WS) is a rare neurodevelopmental disorder associated with a hemideletion in chromosome 7, which manifests a distinct behavioral phenotype characterized by a hyperaffiliative social drive, in striking contrast to the social avoidance behaviors that are common in Autism Spectrum Disorder (ASD). MRI studies have observed structural and functional abnormalities in WS cortex, including the prefrontal cortex (PFC), a region implicated in social cognition. This study utilizes the Bellugi Williams Syndrome Brain Collection, a unique resource that comprises the largest WS postmortem brain collection in existence, and is the first to quantitatively examine WS PFC cytoarchitecture. We measured neuron density in layers II/III and V/VI of five cortical areas: PFC areas BA 10 and BA 11, primary motor BA 4, primary somatosensory BA 3, and visual area BA 18 in six matched pairs of WS and typically developing (TD) controls. Neuron density in PFC was lower in WS relative to TD, with layers V/VI demonstrating the largest decrease in density, reaching statistical significance in BA 10. In contrast, BA 3 and BA 18 demonstrated a higher density in WS compared to TD, although this difference was not statistically significant. Neuron density in BA 4 was similar in WS and TD. While other cortical areas were altered in WS, prefrontal areas appeared to be most affected. Neuron density is also altered in the PFC of individuals with ASD. Together these findings suggest that the PFC is targeted in neurodevelopmental disorders associated with sociobehavioral alterations. Autism Res 2017, 10: 99-112. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caroline Horton Lew
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093
| | - Chelsea Brown
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093.,Graduate Program in Neuroscience and Behavior, Building 251, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Ursula Bellugi
- Laboratory for Cognitive Neuroscience, Salk Institute for Biological Studies, 10010 N, Torrey Pines Rd, La Jolla, CA, 92037
| | - Katerina Semendeferi
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093
| |
Collapse
|
49
|
Mohan S, Nampoothiri S, Yesodharan D, Venkatesan V, Koshy T, Paul SFD, Perumal V. Reciprocal Microduplication of the Williams-Beuren Syndrome Chromosome Region in a 9-Year-Old Omani Boy. Lab Med 2016; 47:171-5. [PMID: 27069036 DOI: 10.1093/labmed/lmw005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Microdeletions of the 7q11.23 Williams-Beuren syndrome chromosome region (WBSCR) are reported with a frequency of 1 in 10,000, whereas microduplications of the region, although expected to occur at the same frequency, are not widely reported. METHOD We evaluated a 9-year old Omani boy for idiopathic intellectual disability using genetic methods, including multiplex ligation-dependent probe amplification (MLPA), for detection of microdeletions (P064-B3). RESULTS MLPA analysis revealed that the boy has a rare microduplication of the WBSCR. Prominent clinical features include global developmental delay with pronounced speech delay, dysmorphic facies, and autistic features. CONCLUSION Microduplications, in general, are reported at a lesser frequency, perhaps owing to their milder phenotype. Complete genetic assessment in children with idiopathic intellectual disability would help in identifying rare conditions such as duplication of the WBSCR.
Collapse
Affiliation(s)
- Shruthi Mohan
- Department of Human Genetics, Sri Ramachandra University, Chennai, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Center, Kochi, India
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Center, Kochi, India
| | | | - Teena Koshy
- Department of Human Genetics, Sri Ramachandra University, Chennai, India
| | - Solomon F D Paul
- Department of Human Genetics, Sri Ramachandra University, Chennai, India
| | | |
Collapse
|
50
|
Array CGH - A Powerful Tool in Molecular Diagnostic of Pathogenic Microdeletions - Williams-Beuren Syndrome - A Case Report. CURRENT HEALTH SCIENCES JOURNAL 2016; 42:207-212. [PMID: 30568834 PMCID: PMC6256167 DOI: 10.12865/chsj.42.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
ABSTRACT: Williams-Beuren syndrome (WBS) (OMIM 194050) is caused by interstitial deletions or duplications of the 7q11.23 chromosomal region and characterised through a complex phenotype. We described a case diagnosed clinically and genetically confirmed through aCGH. Genetic assessment identified three microdeletions with a total size of 1.35 Mb located at 7q11.23. The deleted regions encompasses more than 30 genes including several protein coding genes such as ELN, LIMK1, FZDS, WBSCR22, WBSCR27, WBSCR28, STX1A, CLDN3, CLDN4, LAT2, ABHD11 or EIF4H .
Collapse
|