1
|
Mishra RK, Singh PP, Rai N, Desai S, Pandey P, Tiwary SK, Tamang R, Suravajhala P, Shrivastava P, Thangaraj K, van Driem G, Chaubey G. Reconstructing the population history of the Nicobarese. Eur J Hum Genet 2024:10.1038/s41431-024-01720-w. [PMID: 39639149 DOI: 10.1038/s41431-024-01720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
The Nicobarese are the major tribal groups in the Nicobar district, situated south of the Andaman group of Islands. Linguistic phylogeny suggests that the linguistic ancestors of the Nicobarese settled the Nicobar archipelago in the early Holocene. So far, genetic research on them is low-resolution and restricted to the haploid DNA markers. Therefore, in the present analysis, we have used the high-resolution biparental (1554 published and 5 newly genotyped Nicobarese individuals) and uniparental genetic markers and looked at the genetic association of Nicobarese with the South and Southeast Asian populations. We report a common ancestral component shared among the Austroasiatic of South and Southeast Asia. Our analyses have suggested that the Nicobarese peoples retain this ancestral Austroasiatic predominant component in their genomes in the highest proportion. On the Southeast Asian mainland, the Htin Mal, who speak an Austroasiatic language of the Khmuic branch, represent a population that has preserved their ethnic distinctness from other groups over time and consequently shown the highest drift with the Nicobarese. The analysis based on haplotypes indicated a significant level of genomic segment sharing across linguistic groups, indicating an ancient broader distribution of Austroasiatic populations in Southeast Asia. Based on the temporal analyses of haploid DNA, it is suggested that the forebears of the Nicobarese people may have arrived on the Nicobar Islands in the last 5000 YBP. Therefore, among the modern populations, the Nicobarese peoples and the Htin Mal language community represent good genetic proxies for ancient Austroasiatics.
Collapse
Affiliation(s)
- Rahul Kumar Mishra
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, India
| | - Prajjval Pratap Singh
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, India
| | - Niraj Rai
- Birbal Sahni Institute of Palaeosciences, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shailesh Desai
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, India
| | - Pratik Pandey
- Department of Ancient Indian History Culture and Archaeology, Faculty of Arts, Banaras Hindu University, Varanasi, India
| | - Sachin Kr Tiwary
- Department of Ancient Indian History Culture and Archaeology, Faculty of Arts, Banaras Hindu University, Varanasi, India
| | - Rakesh Tamang
- Department of Zoology, University of Calcutta, Kolkata, India
| | | | | | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
- Tata Institute for Genetics and Society, Bengaluru, India.
| | | | - Gyaneshwer Chaubey
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
2
|
Thao DH, Dinh TH, Mitsunaga S, Duy LD, Phuong NT, Anh NP, Anh NT, Duc BM, Hue HTT, Ha NH, Ton ND, Hübner A, Pakendorf B, Stoneking M, Inoue I, Duong NT, Hai NV. Investigating demic versus cultural diffusion and sex bias in the spread of Austronesian languages in Vietnam. PLoS One 2024; 19:e0304964. [PMID: 38885215 PMCID: PMC11182502 DOI: 10.1371/journal.pone.0304964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Austronesian (AN) is the second-largest language family in the world, particularly widespread in Island Southeast Asia (ISEA) and Oceania. In Mainland Southeast Asia (MSEA), groups speaking these languages are concentrated in the highlands of Vietnam. However, our knowledge of the spread of AN-speaking populations in MSEA remains limited; in particular, it is not clear if AN languages were spread by demic or cultural diffusion. In this study, we present and analyze new data consisting of complete mitogenomes from 369 individuals and 847 Y-chromosomal single nucleotide polymorphisms (SNPs) from 170 individuals from all five Vietnamese Austronesian groups (VN-AN) and five neighboring Vietnamese Austroasiatic groups (VN-AA). We found genetic signals consistent with matrilocality in some, but not all, of the VN-AN groups. Population affinity analyses indicated connections between the AN-speaking Giarai and certain Taiwanese AN groups (Rukai, Paiwan, and Bunun). However, overall, there were closer genetic affinities between VN-AN groups and neighboring VN-AA groups, suggesting language shifts. Our study provides insights into the genetic structure of AN-speaking communities in MSEA, characterized by some contact with Taiwan and language shift in neighboring groups, indicating that the expansion of AN speakers in MSEA was a combination of cultural and demic diffusion.
Collapse
Affiliation(s)
- Dinh Huong Thao
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tran Huu Dinh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Shigeki Mitsunaga
- Division of Human Genetics, National Institute of Genetics, Shizuoka, Japan
| | - La Duc Duy
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thanh Phuong
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Division of Human Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Nguyen Phuong Anh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Tho Anh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Bui Minh Duc
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Huynh Thi Thu Hue
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Hai Ha
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Dang Ton
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | | | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Nguyen Thuy Duong
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nong Van Hai
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
3
|
Liu D, Ko AMS, Stoneking M. The genomic diversity of Taiwanese Austronesian groups: Implications for the "Into- and Out-of-Taiwan" models. PNAS NEXUS 2023; 2:pgad122. [PMID: 37200801 PMCID: PMC10187666 DOI: 10.1093/pnasnexus/pgad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/20/2023]
Abstract
The origin and dispersal of the Austronesian language family, one of the largest and most widespread in the world, have long attracted the attention of linguists, archaeologists, and geneticists. Even though there is a growing consensus that Taiwan is the source of the spread of Austronesian languages, little is known about the migration patterns of the early Austronesians who settled in and left Taiwan, i.e. the "Into-Taiwan" and "out-of-Taiwan" events. In particular, the genetic diversity and structure within Taiwan and how this relates to the into-/out-of-Taiwan events are largely unexplored, primarily because most genomic studies have largely utilized data from just two of the 16 recognized Highland Austronesian groups in Taiwan. In this study, we generated the largest genome-wide data set of Taiwanese Austronesians to date, including six Highland groups and one Lowland group from across the island and two Taiwanese Han groups. We identified fine-scale genomic structure in Taiwan, inferred the ancestry profile of the ancestors of Austronesians, and found that the southern Taiwanese Austronesians show excess genetic affinities with the Austronesians outside of Taiwan. Our findings thus shed new light on the Into- and Out-of-Taiwan dispersals.
Collapse
Affiliation(s)
- Dang Liu
- To whom correspondence should be addressed: ;
| | | | | |
Collapse
|
4
|
Alva O, Leroy A, Heiske M, Pereda-Loth V, Tisseyre L, Boland A, Deleuze JF, Rocha J, Schlebusch C, Fortes-Lima C, Stoneking M, Radimilahy C, Rakotoarisoa JA, Letellier T, Pierron D. The loss of biodiversity in Madagascar is contemporaneous with major demographic events. Curr Biol 2022; 32:4997-5007.e5. [PMID: 36334586 DOI: 10.1016/j.cub.2022.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Only 400 km off the coast of East Africa, the island of Madagascar is one of the last large land masses to have been colonized by humans. While many questions surround the human occupation of Madagascar, recent studies raise the question of human impact on endemic biodiversity and landscape transformation. Previous genetic and linguistic analyses have shown that the Malagasy population has emerged from an admixture that happened during the last millennium, between Bantu-speaking African populations and Austronesian-speaking Asian populations. By studying the sharing of chromosome segments between individuals (IBD determination), local ancestry information, and simulated genetic data, we inferred that the Malagasy ancestral Asian population was isolated for more than 1,000 years with an effective size of just a few hundred individuals. This isolation ended around 1,000 years before present (BP) by admixture with a small African population. Around the admixture time, there was a rapid demographic expansion due to intrinsic population growth of the newly admixed population, which coincides with extensive changes in Madagascar's landscape and the extinction of all endemic large-bodied vertebrates. Therefore, our approach can provide new insights into past human demography and associated impacts on ecosystems.
Collapse
Affiliation(s)
- Omar Alva
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Anaïs Leroy
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Margit Heiske
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Veronica Pereda-Loth
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Lenka Tisseyre
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Anne Boland
- Commissariat à l'Energie Atomique, Institut Génomique, Centre National de Génotypage, 91000 Evry, France
| | - Jean-François Deleuze
- Commissariat à l'Energie Atomique, Institut Génomique, Centre National de Génotypage, 91000 Evry, France
| | - Jorge Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Carina Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Cesar Fortes-Lima
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany; Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Chantal Radimilahy
- Musée d'Art et d'Archéologie, University of Antananarivo, Antananarivo, Madagascar
| | | | - Thierry Letellier
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Denis Pierron
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France.
| |
Collapse
|
5
|
Yonezawa T, Nishibori M, Yamamoto Y, Sasaki T, Kudo K, Ogawa H, Endo H, Akishinonomiya F. Complete Mitochondrial Genome Analysis Clarifies the Enigmatic Origin of Haplogroup D in Japanese Native Chickens. J Poult Sci 2022; 59:316-322. [PMID: 36348651 PMCID: PMC9596293 DOI: 10.2141/jpsa.0220027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Japanese native chickens (JNCs) comprise approximately 50 breeds, making Japan a diversity hotspot for native chicken breeds. JNCs were established through the repeated introduction of chickens from foreign countries. Jidori, which is the generic name of JNC breeds whose ancestral morphology resembles that of their wild progenitor (red junglefowls), is generally thought to have propagated from north East Asia (Korea and north China) to ancient Japan. However, mitochondrial haplogroup D, which is abundant in Island Southeast Asia (ISEA) as well as the Pacific but relatively rare in other regions, can be observed in some Jidori breeds (e.g., Tosa-Jidori, Tokuji-Jidori) with high frequency, leading to speculation that chickens from ISEA or the Pacific also contributed genetically to JNCs. To test this hypothesis, we sequenced the mitochondrial genomes of Jidori breeds and conducted phylogeographic analysis. Our results indicate that the JNC Haplogroup D belongs to Sub-haplogroup D2, which is currently only observed in Xinjiang, northwest China, and not to Sub-haplogroup D1, which is widely distributed in the ISEA-Pacific region. The other mitochondrial haplogroups of Jidori examined in this study also showed affinity to those of chickens native to north East Asia. Therefore, our findings support the north East Asian origin hypothesis for Jidori.
Collapse
Affiliation(s)
- Takahiro Yonezawa
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi city, Kanagawa 243-0034, Japan
| | - Masahide Nishibori
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima city, Hiroshima 739-8528, Japan
| | - Yoshio Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima city, Hiroshima 739-8528, Japan
| | - Takeshi Sasaki
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi city, Kanagawa 243-0034, Japan
| | - Kohei Kudo
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi city, Kanagawa 243-0034, Japan
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Ogawa
- Yamashina Institute for Ornithology, Konoyama 115, Abiko city, Chiba 270-1145, Japan
| | - Hideki Endo
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumihito Akishinonomiya
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Yamashina Institute for Ornithology, Konoyama 115, Abiko city, Chiba 270-1145, Japan
| |
Collapse
|
6
|
Godinez CJP, Layos JKN, Yamamoto Y, Kunieda T, Duangjinda M, Liao LM, Huang XH, Nishibori M. Unveiling new perspective of phylogeography, genetic diversity, and population dynamics of Southeast Asian and Pacific chickens. Sci Rep 2022; 12:14609. [PMID: 36028749 PMCID: PMC9418149 DOI: 10.1038/s41598-022-18904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
The complex geographic and temporal origins of chicken domestication have attracted wide interest in molecular phylogeny and phylogeographic studies as they continue to be debated up to this day. In particular, the population dynamics and lineage-specific divergence time estimates of chickens in Southeast Asia (SEA) and the Pacific region are not well studied. Here, we analyzed 519 complete mitochondrial DNA control region sequences and identified 133 haplotypes with 70 variable sites. We documented 82.7% geographically unique haplotypes distributed across major haplogroups except for haplogroup C, suggesting high polymorphism among studied individuals. Mainland SEA (MSEA) chickens have higher overall genetic diversity than island SEA (ISEA) chickens. Phylogenetic trees and median-joining network revealed evidence of a new divergent matrilineage (i.e., haplogroup V) as a sister-clade of haplogroup C. The maximum clade credibility tree estimated the earlier coalescence age of ancestral D-lineage (i.e., sub-haplogroup D2) of continental chickens (3.7 kya; 95% HPD 1985-4835 years) while island populations diverged later at 2.1 kya (95% HPD 1467-2815 years). This evidence of earlier coalescence age of haplogroup D ancestral matriline exemplified dispersal patterns to the ISEA, and thereafter the island clade diversified as a distinct group.
Collapse
Affiliation(s)
- Cyrill John P Godinez
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Visca, Baybay City, Leyte, 6521, Philippines.
| | - John King N Layos
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
- College of Agriculture and Forestry, Capiz State University, Burias, Mambusao, Capiz, 5807, Philippines
| | - Yoshio Yamamoto
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Tetsuo Kunieda
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-8555, Japan
| | - Monchai Duangjinda
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Lawrence M Liao
- Laboratory of Aquatic Botany, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Xun-He Huang
- School of Life Sciences, Jiaying University, Meizhou, 514015, China
| | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Visca, Baybay City, Leyte, 6521, Philippines.
| |
Collapse
|
7
|
Aghakhanian F, Hoh BP, Yew CW, Kumar Subbiah V, Xue Y, Tyler-Smith C, Ayub Q, Phipps ME. Sequence analyses of Malaysian Indigenous communities reveal historical admixture between Hoabinhian hunter-gatherers and Neolithic farmers. Sci Rep 2022; 12:13743. [PMID: 35962005 PMCID: PMC9374673 DOI: 10.1038/s41598-022-17884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
Southeast Asia comprises 11 countries that span mainland Asia across to numerous islands that stretch from the Andaman Sea to the South China Sea and Indian Ocean. This region harbors an impressive diversity of history, culture, religion and biology. Indigenous people of Malaysia display substantial phenotypic, linguistic, and anthropological diversity. Despite this remarkable diversity which has been documented for centuries, the genetic history and structure of indigenous Malaysians remain under-studied. To have a better understanding about the genetic history of these people, especially Malaysian Negritos, we sequenced whole genomes of 15 individuals belonging to five indigenous groups from Peninsular Malaysia and one from North Borneo to high coverage (30X). Our results demonstrate that indigenous populations of Malaysia are genetically close to East Asian populations. We show that present-day Malaysian Negritos can be modeled as an admixture of ancient Hoabinhian hunter-gatherers and Neolithic farmers. We observe gene flow from South Asian populations into the Malaysian indigenous groups, but not into Dusun of North Borneo. Our study proposes that Malaysian indigenous people originated from at least three distinct ancestral populations related to the Hoabinhian hunter-gatherers, Neolithic farmers and Austronesian speakers.
Collapse
Affiliation(s)
- Farhang Aghakhanian
- MUM Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,TropMed and Biology Multidisciplinary Platform, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.,Department of Medicine, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Faculty of Medicine and Health Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, 56000, Cheras, Kuala Lumpur, Malaysia.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150, Bandar Sunway, Selangor, Malaysia
| | - Boon-Peng Hoh
- Faculty of Medicine and Health Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Chee-Wei Yew
- Biotechnology Research Institute, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Vijay Kumar Subbiah
- Biotechnology Research Institute, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Qasim Ayub
- MUM Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,TropMed and Biology Multidisciplinary Platform, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Maude E Phipps
- MUM Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
8
|
Hoh BP, Deng L, Xu S. The Peopling and Migration History of the Natives in Peninsular Malaysia and Borneo: A Glimpse on the Studies Over the Past 100 years. Front Genet 2022; 13:767018. [PMID: 35154269 PMCID: PMC8829068 DOI: 10.3389/fgene.2022.767018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/07/2022] [Indexed: 12/05/2022] Open
Abstract
Southeast Asia (SEA) has one of the longest records of modern human habitation out-of-Africa. Located at the crossroad of the mainland and islands of SEA, Peninsular Malaysia is an important piece of puzzle to the map of peopling and migration history in Asia, a question that is of interest to many anthropologists, archeologists, and population geneticists. This review aims to revisit our understanding to the population genetics of the natives from Peninsular Malaysia and Borneo over the past century based on the chronology of the technology advancement: 1) Anthropological and Physical Characterization; 2) Blood Group Markers; 3) Protein Markers; 4) Mitochondrial and Autosomal DNA Markers; and 5) Whole Genome Analysis. Subsequently some missing gaps of the study are identified. In the later part of this review, challenges of studying the population genetics of natives will be elaborated. Finally, we conclude our review by reiterating the importance of unveiling migration history and genetic diversity of the indigenous populations as a steppingstone towards comprehending disease evolution and etiology.
Collapse
Affiliation(s)
- Boon-Peng Hoh
- Faculty of Medicine and Health Sciences, UCSI University, UCSI Hospital, Port Dickson, Malaysia
| | - Lian Deng
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
9
|
Mitogenomics of modern Mongolic-speaking populations. Mol Genet Genomics 2021; 297:47-62. [PMID: 34757478 DOI: 10.1007/s00438-021-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Here, we present a comprehensive data set of 489 complete mitogenomes (211 of which are new) from four Mongolic-speaking populations (Mongols, Barghuts, Khamnigans, and Buryats) to investigate their matrilineal genetic structure, ancestry and relationship with other ethnic groups. We show that along with very high levels of genetic diversity and lack of genetic differentiation, Mongolic-speaking populations exhibit strong genetic resemblance to East Asian populations of Chinese, Japanese, and Uyghurs. Phylogeographic analysis of complete mitogenomes reveals the presence of different components in the gene pools of modern Mongolic-speaking populations-the main East Eurasian component is represented by mtDNA lineages of East Asian, Siberian and autochthonous (the Baikal region/Mongolian) ancestry, whereas the less pronounced West Eurasian component can be ascribed to Europe and West Asia/Caucasus. We also observed that up to one third of the mtDNA subhaplogroups identified in Mongolic-speaking populations can be considered as Mongolic-specific with the coalescence age of most of them not exceeding 1.7 kya. This coincides well with the population size growth which started around 1.1 kya and is detectable only in the Bayesian Skyline Plot constructed based on Mongolic-specific mitogenomes. Our data suggest that the genetic structure established during the Mongol empire is still retained in present-day Mongolic-speaking populations.
Collapse
|
10
|
Jinam TA, Hosomichi K, Nakaoka H, Phipps ME, Saitou N, Inoue I. Allelic and haplotypic HLA diversity in indigenous Malaysian populations explored using Next Generation Sequencing. Hum Immunol 2021; 83:17-26. [PMID: 34615609 DOI: 10.1016/j.humimm.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 11/04/2022]
Abstract
The heterogenous population of Malaysia includes more than 50 indigenous groups, and characterizing their HLA diversity would not only provide insights to their ancestry, but also on the effects of natural selection on their genome. We utilized hybridization-based sequence capture and short-read sequencing on the HLA region of 172 individuals representing seven indigenous groups in Malaysia (Jehai, Kintaq, Temiar, Mah Meri, Seletar, Temuan, Bidayuh). Allele and haplotype frequencies of HLA-A, -B, -C, -DRB1, -DQA1, -DQB1, -DPA1, and -DPB1 revealed several ancestry-informative markers. Using SNP-based heterozygosity and pairwise Fst, we observed signals of natural selection, particularly in HLA-A, -C and -DPB1 genes. Consequently, we showed the impact of natural selection on phylogenetic inference using HLA and non-HLA SNPs. We demonstrate the utility of Next Generation Sequencing for generating unambiguous, high-throughput, high-resolution HLA data that adds to our knowledge of HLA diversity and natural selection in indigenous minority groups.
Collapse
Affiliation(s)
- Timothy A Jinam
- Population Genetics Laboratory, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan.
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Chiyoda-ku, Tokyo, Japan
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Naruya Saitou
- Population Genetics Laboratory, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Ituro Inoue
- Human Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
11
|
Lo YH, Cheng HC, Hsiung CN, Yang SL, Wang HY, Peng CW, Chen CY, Lin KP, Kang ML, Chen CH, Chu HW, Lin CF, Lee MH, Liu Q, Satta Y, Lin CJ, Lin M, Chaw SM, Loo JH, Shen CY, Ko WY. Detecting Genetic Ancestry and Adaptation in the Taiwanese Han People. Mol Biol Evol 2021; 38:4149-4165. [PMID: 33170928 PMCID: PMC8476137 DOI: 10.1093/molbev/msaa276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Taiwanese people are composed of diverse indigenous populations and the Taiwanese Han. About 95% of the Taiwanese identify themselves as Taiwanese Han, but this may not be a homogeneous population because they migrated to the island from various regions of continental East Asia over a period of 400 years. Little is known about the underlying patterns of genetic ancestry, population admixture, and evolutionary adaptation in the Taiwanese Han people. Here, we analyzed the whole-genome single-nucleotide polymorphism genotyping data from 14,401 individuals of Taiwanese Han collected by the Taiwan Biobank and the whole-genome sequencing data for a subset of 772 people. We detected four major genetic ancestries with distinct geographic distributions (i.e., Northern, Southeastern, Japonic, and Island Southeast Asian ancestries) and signatures of population mixture contributing to the genomes of Taiwanese Han. We further scanned for signatures of positive natural selection that caused unusually long-range haplotypes and elevations of hitchhiked variants. As a result, we identified 16 candidate loci in which selection signals can be unambiguously localized at five single genes: CTNNA2, LRP1B, CSNK1G3, ASTN2, and NEO1. Statistical associations were examined in 16 metabolic-related traits to further elucidate the functional effects of each candidate gene. All five genes appear to have pleiotropic connections to various types of disease susceptibility and significant associations with at least one metabolic-related trait. Together, our results provide critical insights for understanding the evolutionary history and adaption of the Taiwanese Han population.
Collapse
Affiliation(s)
- Yun-Hua Lo
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsueh-Chien Cheng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Show-Ling Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Han-Yu Wang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Wei Peng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yu Chen
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kung-Ping Lin
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Ling Kang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | | | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Quintin Liu
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Cheng-Jui Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Marie Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Jun-Hun Loo
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Wen-Ya Ko
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
Godinez CJP, Dadios PJD, Espina DM, Matsunaga M, Nishibori M. Population Genetic Structure and Contribution of Philippine Chickens to the Pacific Chicken Diversity Inferred From Mitochondrial DNA. Front Genet 2021; 12:698401. [PMID: 34367257 PMCID: PMC8340678 DOI: 10.3389/fgene.2021.698401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
The Philippines is considered one of the biodiversity hotspots for animal genetic resources. In spite of this, population genetic structure, genetic diversity, and past population history of Philippine chickens are not well studied. In this study, phylogeny reconstruction and estimation of population genetic structure were based on 107 newly generated mitochondrial DNA (mtDNA) complete D-loop sequences and 37 previously published sequences of Philippine chickens, consisting of 34 haplotypes. Philippine chickens showed high haplotypic diversity (Hd = 0.915 ± 0.011) across Southeast Asia and Oceania. The phylogenetic analysis and median-joining (MJ) network revealed predominant maternal lineage haplogroup D classified throughout the population, while support for Philippine-Pacific subclade was evident, suggesting a Philippine origin of Pacific chickens. Here, we observed Philippine red junglefowls (RJFs) at the basal position of the tree within haplogroup D indicating an earlier introduction into the Philippines potentially via mainland Southeast Asia (MSEA). Another observation was the significantly low genetic differentiation and high rate of gene flow of Philippine chickens into Pacific chicken population. The negative Tajima's D and Fu's Fs neutrality tests revealed that Philippine chickens exhibited an expansion signal. The analyses of mismatch distribution and neutrality tests were consistent with the presence of weak phylogeographic structuring and evident population growth of Philippine chickens (haplogroup D) in the islands of Southeast Asia (ISEA). Furthermore, the Bayesian skyline plot (BSP) analysis showed an increase in the effective population size of Philippine chickens, relating with human settlement, and expansion events. The high level of genetic variability of Philippine chickens demonstrates conservation significance, thus, must be explored in the future.
Collapse
Affiliation(s)
- Cyrill John P. Godinez
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | - Peter June D. Dadios
- College of Aquatic and Applied Life Sciences, Southern Leyte State University, Southern Leyte, Philippines
| | - Dinah M. Espina
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | - Megumi Matsunaga
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| |
Collapse
|
13
|
The first quantitative assessment of radiocarbon chronologies for initial pottery in Island Southeast Asia supports multi-directional Neolithic dispersal. PLoS One 2021; 16:e0251407. [PMID: 34077445 PMCID: PMC8171956 DOI: 10.1371/journal.pone.0251407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/27/2021] [Indexed: 11/29/2022] Open
Abstract
Neolithization, or the Holocene demographic expansion of farming populations, accounts for significant changes in human and animal biology, artifacts, languages, and cultures across the earth. For Island Southeast Asia, the orthodox Out of Taiwan hypothesis proposes that Neolithic expansion originated from Taiwan with populations moving south into Island Southeast Asia, while the Western Route Migration hypothesis suggests the earliest farming populations entered from Mainland Southeast Asia in the west. These hypotheses are also linked to competing explanations of the Austronesian expansion, one of the most significant population dispersals in the ancient world that influenced human and environmental diversity from Madagascar to Easter Island and Hawai‘i to New Zealand. The fundamental archaeological test of the Out of Taiwan and Western Route Migration hypotheses is the geographic and chronological distribution of initial pottery assemblages, but these data have never been quantitatively analyzed. Using radiocarbon determinations from 20 archaeological sites, we present a Bayesian chronological analysis of initial pottery deposition in Island Southeast Asia and western Near Oceania. Both site-scale and island-scale Bayesian models were produced in Oxcal using radiocarbon determinations that are most confidently associated with selected target events. Our results indicate multi-directional Neolithic dispersal in Island Southeast Asia, with the earliest pottery contemporaneously deposited in western Borneo and the northern Philippines. This work supports emerging research that identifies separate processes of biological, linguistic, and material culture change in Island Southeast Asia.
Collapse
|
14
|
Abstract
A key link to understand human history in Island Southeast Asia is the Philippine archipelago and its poorly investigated genetic diversity. We analyzed the most comprehensive set of population-genomic data for the Philippines: 1,028 individuals covering 115 indigenous communities. We demonstrate that the Philippines were populated by at least five waves of human migration. The Cordillerans migrated into the Philippines prior to the arrival of rice agriculture, where some remain as the least admixed East Asians carrying an ancestry shared by all Austronesian-speaking populations, thereby challenging an exclusive out-of-Taiwan model of joint farming–language–people dispersal. Altogether, our findings portray the Philippines as a crucial gateway, with a multilayered history, that ultimately changed the genetic landscape of the Asia-Pacific region. Island Southeast Asia has recently produced several surprises regarding human history, but the region’s complex demography remains poorly understood. Here, we report ∼2.3 million genotypes from 1,028 individuals representing 115 indigenous Philippine populations and genome-sequence data from two ∼8,000-y-old individuals from Liangdao in the Taiwan Strait. We show that the Philippine islands were populated by at least five waves of human migration: initially by Northern and Southern Negritos (distantly related to Australian and Papuan groups), followed by Manobo, Sama, Papuan, and Cordilleran-related populations. The ancestors of Cordillerans diverged from indigenous peoples of Taiwan at least ∼8,000 y ago, prior to the arrival of paddy field rice agriculture in the Philippines ∼2,500 y ago, where some of their descendants remain to be the least admixed East Asian groups carrying an ancestry shared by all Austronesian-speaking populations. These observations contradict an exclusive “out-of-Taiwan” model of farming–language–people dispersal within the last four millennia for the Philippines and Island Southeast Asia. Sama-related ethnic groups of southwestern Philippines additionally experienced some minimal South Asian gene flow starting ∼1,000 y ago. Lastly, only a few lowlanders, accounting for <1% of all individuals, presented a low level of West Eurasian admixture, indicating a limited genetic legacy of Spanish colonization in the Philippines. Altogether, our findings reveal a multilayered history of the Philippines, which served as a crucial gateway for the movement of people that ultimately changed the genetic landscape of the Asia-Pacific region.
Collapse
|
15
|
Yanagida T, Swastika K, Dharmawan NS, Sako Y, Wandra T, Ito A, Okamoto M. Origin of the pork tapeworm Taenia solium in Bali and Papua, Indonesia. Parasitol Int 2021; 83:102285. [PMID: 33486126 DOI: 10.1016/j.parint.2021.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 11/17/2022]
Abstract
Global distributions of zoonotic pathogens have been strongly affected by the history of human dispersal and domestication of livestock. The pork tapeworm Taenia solium is distributed worldwide as the cause of neurocysticercosis, one of the most serious neglected tropical diseases. T. solium has been reported in Indonesia but only endemic to restricted areas such as Bali and Papua. Previous studies indicated the distinctiveness of a mitochondrial haplotype confirmed in Papua, but only one isolate has been examined to date. In this study, genetic characterization of T. solium and pigs in Bali and Papua was conducted to clarify the distributional history of the parasite. Mitochondrial haplotype network analysis clearly showed that Indonesian T. solium comprises a unique haplogroup which was the first to diverge among Asian genotypes, indicating its single origin and the fact that it was not introduced in the recent past from other area in Asia in which it is endemic. Although phylogenetic analysis based on the mitochondrial D-loop revealed multiple origins of pigs in Bali and Papua, the majority of pigs belonged to the Pacific Clade, which is widely dispersed throughout the Island Southeast Asia (ISEA) and Oceania due to Neolithic human dispersal. Given the results of our network analysis, it is likely that the Pacific Clade pigs played a key role in the dispersal of T. solium. The data suggest that T. solium was introduced from mainland Asia into Western Indonesia, including Bali, by modern humans in the late Pleistocene, or in the early to middle Holocene along with the Pacific Clade pigs. Introduction into New Guinea most likely occurred in the late Holocene through the spread of Pacific Clade pigs. Over time, T. solium has been eradicated from most of Indonesia through the middle to modern ages owing to religious and cultural practices.
Collapse
Affiliation(s)
- Tetsuya Yanagida
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 1677-1, Japan
| | - Kadek Swastika
- Department of Parasitology, Faculty of Medicine Udayana University, Denpasar, Bali, Indonesia; Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
| | - Nyoman Sadra Dharmawan
- Department of Parasitology, Faculty of Veterinary Medicine Udayana University, Denpasar, Bali, Indonesia
| | - Yasuhito Sako
- Department of Parasitology, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Toni Wandra
- Directorate of Postgraduate, Sari Mutiara Indonesia University, Medan, North Sumatra, Indonesia
| | - Akira Ito
- Department of Parasitology, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Munehiro Okamoto
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan.
| |
Collapse
|
16
|
Hanis Zainal Abidin NW, Mohd Nor N, Sundararajulu P, Zafarina Z. Understanding the genetic history of Malay populations in Peninsular Malaysia via KIR genes diversity. Am J Hum Biol 2020; 33:e23545. [PMID: 33289243 DOI: 10.1002/ajhb.23545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Killer cell immunoglobulin-like receptor (KIR) genes with high polymorphism at genotypic levels are important in providing immune defense and have been expanded towards human population genetics. The aim of this study is to provide supporting information from this new biomarker to strengthen the comprehension of genetic history of the complex Malay population. METHODS KIR genotyping for 213 unadmixed Malay individuals from six subethnic groups (Acheh, Bugis, Champa, Mandailing, Minang and Kedah) was carried out using PCR-SSP (sequence specific primers) method in 16 independent reactions. RESULTS The most frequent KIR genotype observed is AA1, followed by AB4 and AB5. Five genotypes; AA1, AB4, AB5, AB7 and AB8 were shared among all Malay subethnic groups. The highest frequency of KIR haplotype A was observed in Minang Malays, whereas Acheh and Kedah Malays carry a balanced distribution of A and B KIR haplotypes. PCA for the KIR genes clearly illustrated six ethnogeographical population clusters; Africans, Amerindian, Northeast Asian, South Asian, Oceania and Southeast Asian populations. All six Malay subethnic groups fell within the Southeast Asian cluster. CONCLUSIONS The complex array of KIR genotypes observed in the Malays indicates their historical interactions with various populations, especially with the Chinese, Indians and Orang Asli. This study has demonstrated the potential of KIR genes as a genetic marker for deducing population structure and genetic relationship between populations.
Collapse
Affiliation(s)
| | - Norazmi Mohd Nor
- Human Identification/DNA Unit, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Panneerchelvam Sundararajulu
- Human Identification/DNA Unit, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zainuddin Zafarina
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| |
Collapse
|
17
|
Sun J, Wei LH, Wang LX, Huang YZ, Yan S, Cheng HZ, Ong RTH, Saw WY, Fan ZQ, Deng XH, Lu Y, Zhang C, Xu SH, Jin L, Teo YY, Li H. Paternal gene pool of Malays in Southeast Asia and its applications for the early expansion of Austronesians. Am J Hum Biol 2020; 33:e23486. [PMID: 32851723 DOI: 10.1002/ajhb.23486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/16/2020] [Accepted: 07/10/2020] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES The origin and differentiation of Austronesian populations and their languages have long fascinated linguists, archeologists, and geneticists. However, the founding process of Austronesians and when they separated from their close relatives, such as the Daic and Austro-Asiatic populations in the mainland of Asia, remain unclear. In this study, we explored the paternal origin of Malays in Southeast Asia and the early differentiation of Austronesians. MATERIALS AND METHODS We generated whole Y-chromosome sequences of 50 Malays and co-analyzed 200 sequences from other Austronesians and related populations. We generated a revised phylogenetic tree with time estimation. RESULTS We identified six founding paternal lineages among the studied Malays samples. These founding lineages showed a surprisingly coincident expansion age at 5000 to 6000 years ago. We also found numerous mostly close related samples of the founding lineages of Malays among populations from Mainland of Asia. CONCLUSION Our analyses provided a refined phylogenetic resolution for the dominant paternal lineages of Austronesians found by previous studies. We suggested that the co-expansion of numerous founding paternal lineages corresponds to the initial differentiation of the most recent common ancestor of modern Austronesians. The splitting time and divergence pattern in perspective of paternal Y-chromosome evidence are highly consistent with the previous theories of ethnologists, linguists, and archeologists.
Collapse
Affiliation(s)
- Jin Sun
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China.,B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| | | | - Yun-Zhi Huang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shi Yan
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hui-Zhen Cheng
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Woei-Yuh Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Zhi-Quan Fan
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Xiao-Hua Deng
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China.,Center for collation and studies of Fujian local literature, Fujian University of Technology, Fuzhou, China
| | - Yan Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Chao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Shu-Hua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Li Jin
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Hui Li
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China.,MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Ramani A, Shue BH, Tan SZ, Wong Y, Syn C. Differentiation of Asian population samples using the Illumina ForenSeq kit. Forensic Sci Int Genet 2020; 48:102318. [PMID: 32535326 DOI: 10.1016/j.fsigen.2020.102318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/18/2022]
Abstract
The Kidd set of ancestry informative SNPs are included in Illumina's ForenSeq DNA Signature Kit. We had previously reported on the capability of these SNPs together with some phenotypic SNPs with ancestry informative properties in differentiating individuals from the Chinese, Malay and Indian populations in Singapore. The Singapore population is primarily made up of Chinese, Malays and Indians, with individuals from other Asian countries making up the rest. In this study, we evaluated the ancestry prediction capabilities of the ForenSeq kit in 484 unrelated individuals of self-declared Bangladeshi, Burmese, Filipino, Indonesian and Vietnamese origin. 750 Chinese, Malay and Indian individuals previously reported were included in this study. 48 ancestry SNPs and 12 phenotypic SNPs with ancestry informative properties were selected for analyses. Ancestry modelling in STRUCTURE showed that the eight tested populations could be better classified as five. Principal component analysis also showed that the eight populations clustered in five groups based on general geographic location within Asia; with Chinese clustering with Vietnamese, Malays clustering with Indonesians, Indians clustering with Bangladeshi, and the Burmese and Filipino populations clustering in-between and overlapping with the Chinese and Malay populations. The 60 SNPs analysed could account for only 23 % of the variation between the populations. The lack of distinction between the populations resulted in poor (43 % correct self-classification) cross-validation using Snipper. While this was improved by merging the co-clustering populations into five groups (East, South-East, South Asian, Burmese & Filipino), successful self-classification was still relatively low (69 %). While the 60 tested ancestry informative markers were able to differentiate between individuals of East, South-East and South Asian origin, they are not sufficiently informative to effectively discriminate between Chinese, Malays and Indians, and Bangladeshi, Burmese, Filipino, Indonesian and Filipino populations in the country.
Collapse
Affiliation(s)
- Anantharaman Ramani
- Biology Division, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore 169078, Singapore.
| | - Bing Hong Shue
- Biology Division, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore 169078, Singapore
| | - Si Zhen Tan
- Biology Division, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore 169078, Singapore
| | - Yongxun Wong
- Biology Division, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore 169078, Singapore
| | - Christopher Syn
- Biology Division, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore 169078, Singapore
| |
Collapse
|
19
|
Li M, DeRosa KL, Mann H, Spathis R, Roome A, Castellanos D, Gowen K, de Smet TS, Echard J, Casey K, Shamoon-Pour M, Garruto RM, Lum K. Recent kuru-induced female gene flow disrupted the coevolution of genes and languages in the Papua New Guinea highlands. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:87-98. [PMID: 32150286 DOI: 10.1002/ajpa.24047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/06/2020] [Accepted: 02/28/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The island of New Guinea was settled by modern human over 50,000 years ago, and is currently characterized by a complex landscape and contains one-seventh of the world's languages. The Eastern Highlands of New Guinea were also the home to the devastating prion disease called kuru that primarily affected Fore-speaking populations, with some 68% of cases involving adult females. We characterized the mitochondrial DNA (mtDNA) diversity of highlanders from Papua New Guinea (PNG) to: (a) gain insight into the coevolution of genes and languages in situ over mountainous landscapes; and (b) evaluate the recent influence of kuru mortality on the pattern of female gene flow. MATERIALS AND METHODS We sequenced the mtDNA hypervariable segment 1 of 870 individuals from the Eastern and Southern Highlands of PNG using serums collected in the 1950s to 1960s. These highlanders were selected from villages representing 15 linguistic groups within the Trans-New Guinea phylum. Genetic, linguistic, and geographic distances were calculated separately and correlations among those distance matrices were assessed using the Mantel test. RESULTS Geographic, genetic, and linguistic patterns were independently correlated with each other (p < .05). Increased mtDNA diversity in kuru-affected populations and low Fst estimates between kuru-affected linguistic groups were observed. DISCUSSION In general, the genetic structure among the Highland populations was shaped by both geography and language, and language is a good predictor of mtDNA affinity in the PNG Highlands. High kuru female mortality increased female gene flow locally, disrupting coevolutionary pattern among genes, languages, and geography.
Collapse
Affiliation(s)
- Mian Li
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, New York, USA
| | - Kate L DeRosa
- Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, New York, USA
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| | - Hayley Mann
- Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, New York, USA
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| | - Rita Spathis
- Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, New York, USA
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- Laboratory of Biomedical Anthropology and Neurosciences, Binghamton University, Binghamton, NY, United States
| | - Amanda Roome
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- Laboratory of Biomedical Anthropology and Neurosciences, Binghamton University, Binghamton, NY, United States
- Bassett Healthcare Research Institute, Cooperstown, New York, United States
| | - Daniel Castellanos
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| | - Kyle Gowen
- Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, New York, USA
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| | - Timothy S de Smet
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- Department of Geological Sciences and Environmental Studies, Binghamton University, Binghamton, New York, USA
| | - Jessica Echard
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| | - Kalen Casey
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| | - Michel Shamoon-Pour
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| | - Ralph M Garruto
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- Laboratory of Biomedical Anthropology and Neurosciences, Binghamton University, Binghamton, NY, United States
| | - Koji Lum
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, New York, USA
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
20
|
The paternal and maternal genetic history of Vietnamese populations. Eur J Hum Genet 2019; 28:636-645. [PMID: 31827276 PMCID: PMC7171127 DOI: 10.1038/s41431-019-0557-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/14/2019] [Accepted: 11/17/2019] [Indexed: 11/08/2022] Open
Abstract
Vietnam exhibits great cultural and linguistic diversity, yet the genetic history of Vietnamese populations remains poorly understood. Previous studies focused mostly on the majority Kinh group, and thus the genetic diversity of the many other groups has not yet been investigated. Here we analyze complete mtDNA genome sequences and ~2.3 Mb sequences of the male-specific portion of the Y chromosome from the Kinh and 16 minority populations, encompassing all five language families present in Vietnam. We find highly variable levels of diversity within and between groups that do not correlate with either geography or language family. In particular, the Mang and Sila have undergone recent, independent bottlenecks, while the majority group, Kinh, exhibits low levels of differentiation with other groups. The two Austronesian-speaking groups, Giarai and Ede, show a potential impact of matrilocality on their patterns of variation. Overall, we find that isolation, coupled with limited contact involving some groups, has been the major factor influencing the genetic structure of Vietnamese populations, and that there is substantial genetic diversity that is not represented by the Kinh.
Collapse
|
21
|
Affiliation(s)
- Hao-Li Lin
- Institute of Anthropology, National Tsing Hua University, Hsinchu, Taiwan
| | - Richard Scaglion
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Trejaut JA, Muyard F, Lai YH, Chen LR, Chen ZS, Loo JH, Huang JY, Lin M. Genetic diversity of the Thao people of Taiwan using Y-chromosome, mitochondrial DNA and HLA gene systems. BMC Evol Biol 2019; 19:64. [PMID: 30813905 PMCID: PMC6391829 DOI: 10.1186/s12862-019-1389-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 02/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite attempts in retracing the history of the Thao people in Taiwan using folktales, linguistics, physical anthropology, and ethnic studies, their history remains incomplete. The heritage of Thao has been associated with the Pazeh Western plains peoples and several other mountain peoples of Taiwan. In the last 400 years, their culture and genetic profile have been reshaped by East Asian migrants. They were displaced by the Japanese and the construction of a dam and almost faced extinction. In this paper, genetic information from mitochondrial DNA (mtDNA), Histoleucocyte antigens (HLA), and the non-recombining Y chromosome of 30 Thao individuals are compared to 836 other Taiwan Mountain and Plains Aborigines (TwrIP & TwPp), 384 Non-Aboriginal Taiwanese (non-TwA) and 149 Continental East Asians. RESULTS The phylogeographic analyses of mtDNA haplogroups F4b and B4b1a2 indicated gene flow between Thao, Bunun, and Tsou, and suggested a common ancestry from 10,000 to 3000 years ago. A claim of close contact with the heavily Sinicized Pazeh of the plains was not rejected and suggests that the plains and mountain peoples most likely shared the same Austronesian agriculturist gene pool in the Neolithic. CONCLUSIONS Having been moving repeatedly since their arrival in Taiwan between 6000 and 4500 years ago, the Thao finally settled in the central mountain range. They represent the last plains people whose strong bonds with their original culture allowed them to preserve their genetic heritage, despite significant gene flow from the mainland of Asia. Representing a considerable contribution to the genealogical history of the Thao people, the findings of this study bear on ongoing anthropological and linguistic debates on their origin.
Collapse
Affiliation(s)
- Jean A Trejaut
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Frank Muyard
- Department of French Studies, National Central University, Taoyuan Taiwan & French School of Asian Studies (EFEO), Taoyuan, Taiwan
| | - Ying-Hui Lai
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Lan-Rong Chen
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Zong-Sian Chen
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jun-Hun Loo
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jin-Yuan Huang
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Marie Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
23
|
Macaulay V, Soares P, Richards MB. Rectifying long-standing misconceptions about the ρ statistic for molecular dating. PLoS One 2019; 14:e0212311. [PMID: 30779770 PMCID: PMC6380571 DOI: 10.1371/journal.pone.0212311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 01/19/2019] [Indexed: 01/01/2023] Open
Abstract
When divided by a given mutation rate, the ρ (rho) statistic provides a simple estimator of the age of a clade within a phylogenetic tree by averaging the number of mutations from each sample in the clade to its root. However, a long-standing critique of the use of ρ in genetic dating has been quite often cited. Here we show that the critique is unfounded. We demonstrate by a formal mathematical argument and illustrate with a simulation study that ρ estimates are unbiased and also that ρ and maximum likelihood estimates do not differ in any systematic fashion. We also demonstrate that the claim that the associated confidence intervals commonly estimate the uncertainty inappropriately is flawed since it relies on a means of calculating standard errors that is not used by any other researchers, whereas an established expression for the standard error is largely unproblematic. We conclude that ρ dating, alongside approaches such as maximum likelihood (ML) and Bayesian inference, remains a useful tool for genetic dating.
Collapse
Affiliation(s)
- Vincent Macaulay
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- * E-mail:
| | - Martin B. Richards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| |
Collapse
|
24
|
Oliveira M, Ferreira J, Fernandes V, Sakuntabhai A, Pereira L. Host ancestry and dengue fever: from mapping of candidate genes to prediction of worldwide genetic risk. Future Virol 2018. [DOI: 10.2217/fvl-2018-0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prevalence of many complex diseases, including dengue disease, is not even across the world. Dengue is endemic in several overpopulated urban centers in poor Asian and American countries, representing a risk to two-thirds of the human population. High-throughput genomic screenings and new algorithms of admixture mapping are allowing confirming that ancestry plays a major role in dengue disease. Allele and haplotype candidate frequencies display high heterogeneity between population groups, especially in comparison with Africans. Genetic risk evaluation testifies African ancestry protection against the more severe forms of the disease, most probably due to natural selection of protective variants. European genetic predisposition is identical to the Asian for severer forms, but lower for mild dengue fever.
Collapse
Affiliation(s)
- Marisa Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
- Institut Pasteur, Functional Genetics of Infectious Diseases Unit, 75015 Paris, France
| | - Joana Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Verónica Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Anavaj Sakuntabhai
- Institut Pasteur, Functional Genetics of Infectious Diseases Unit, 75015 Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- CNRS, Unité de Recherche Associée 3012, 75015 Paris, France
| | - Luisa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
25
|
Palittapongarnpim P, Ajawatanawong P, Viratyosin W, Smittipat N, Disratthakit A, Mahasirimongkol S, Yanai H, Yamada N, Nedsuwan S, Imasanguan W, Kantipong P, Chaiyasirinroje B, Wongyai J, Toyo-Oka L, Phelan J, Parkhill J, Clark TG, Hibberd ML, Ruengchai W, Palittapongarnpim P, Juthayothin T, Tongsima S, Tokunaga K. Evidence for Host-Bacterial Co-evolution via Genome Sequence Analysis of 480 Thai Mycobacterium tuberculosis Lineage 1 Isolates. Sci Rep 2018; 8:11597. [PMID: 30072734 PMCID: PMC6072702 DOI: 10.1038/s41598-018-29986-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis presents a global health challenge. Mycobacterium tuberculosis is divided into several lineages, each with a different geographical distribution. M. tuberculosis lineage 1 (L1) is common in the high-burden areas in East Africa and Southeast Asia. Although the founder effect contributes significantly to the phylogeographic profile, co-evolution between the host and M. tuberculosis may also play a role. Here, we reported the genomic analysis of 480 L1 isolates from patients in northern Thailand. The studied bacterial population was genetically diverse, allowing the identification of a total of 18 sublineages distributed into three major clades. The majority of isolates belonged to L1.1 followed by L1.2.1 and L1.2.2. Comparison of the single nucleotide variant (SNV) phylogenetic tree and the clades defined by spoligotyping revealed some monophyletic clades representing EAI2_MNL, EAI2_NTM and EAI6_BGD1 spoligotypes. Our work demonstrates that ambiguity in spoligotype assignment could be partially resolved if the entire DR region is investigated. Using the information to map L1 diversity across Southeast Asia highlighted differences in the dominant strain-types in each individual country, despite extensive interactions between populations over time. This finding supported the hypothesis that there is co-evolution between the bacteria and the host, and have implications for tuberculosis disease control.
Collapse
Affiliation(s)
- Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand.
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand.
| | - Pravech Ajawatanawong
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | - Wasna Viratyosin
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Nat Smittipat
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Areeya Disratthakit
- Department of Medical Sciences, Ministry of Public Health, Tiwanon Road, Nonthaburi, Thailand
| | | | - Hideki Yanai
- TB-HIV Research Foundation, Chiangrai, Thailand
- Fukujuji Hospital, Japan Anti-tuberculosis Association (JATA), Kiyose, Japan
| | - Norio Yamada
- Research Institute of Tuberculosis, JATA, Kiyose, Japan
| | - Supalert Nedsuwan
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | - Worarat Imasanguan
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | - Pacharee Kantipong
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | | | | | - Licht Toyo-Oka
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Jody Phelan
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Taane G Clark
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Wuthiwat Ruengchai
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | | | - Tada Juthayothin
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Sissades Tongsima
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Yew CW, Hoque MZ, Pugh-Kitingan J, Minsong A, Voo CLY, Ransangan J, Lau STY, Wang X, Saw WY, Ong RTH, Teo YY, Xu S, Hoh BP, Phipps ME, Kumar SV. Genetic relatedness of indigenous ethnic groups in northern Borneo to neighboring populations from Southeast Asia, as inferred from genome-wide SNP data. Ann Hum Genet 2018. [PMID: 29521412 DOI: 10.1111/ahg.12246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The region of northern Borneo is home to the current state of Sabah, Malaysia. It is located closest to the southern Philippine islands and may have served as a viaduct for ancient human migration onto or off of Borneo Island. In this study, five indigenous ethnic groups from Sabah were subjected to genome-wide SNP genotyping. These individuals represent the "North Borneo"-speaking group of the great Austronesian family. They have traditionally resided in the inland region of Sabah. The dataset was merged with public datasets, and the genetic relatedness of these groups to neighboring populations from the islands of Southeast Asia, mainland Southeast Asia and southern China was inferred. Genetic structure analysis revealed that these groups formed a genetic cluster that was independent of the clusters of neighboring populations. Additionally, these groups exhibited near-absolute proportions of a genetic component that is also common among Austronesians from Taiwan and the Philippines. They showed no genetic admixture with Austro-Melanesian populations. Furthermore, phylogenetic analysis showed that they are closely related to non-Austro-Melansian Filipinos as well as to Taiwan natives but are distantly related to populations from mainland Southeast Asia. Relatively lower heterozygosity and higher pairwise genetic differentiation index (FST ) values than those of nearby populations indicate that these groups might have experienced genetic drift in the past, resulting in their differentiation from other Austronesians. Subsequent formal testing suggested that these populations have received no gene flow from neighboring populations. Taken together, these results imply that the indigenous ethnic groups of northern Borneo shared a common ancestor with Taiwan natives and non-Austro-Melanesian Filipinos and then isolated themselves on the inland of Sabah. This isolation presumably led to no admixture with other populations, and these individuals therefore underwent strong genetic differentiation. This report contributes to addressing the paucity of genetic data on representatives from this strategic region of ancient human migration event(s).
Collapse
Affiliation(s)
- Chee Wei Yew
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| | - Mohd Zahirul Hoque
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| | | | - Alexander Minsong
- Faculty of Humanities, Arts & Heritage, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| | | | - Julian Ransangan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| | - Sophia Tiek Ying Lau
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| | - Xu Wang
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore
| | - Woei Yuh Saw
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore
| | - Rick Twee-Hee Ong
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Yik-Ying Teo
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Shuhua Xu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology (PICB), Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTec University, Shanghai, China.,Collaborative Innovation Centre of Genetics and Development, Shanghai, China
| | - Boon-Peng Hoh
- Institute for Molecular Medical Biotechnology, Universiti Teknologi MARA, Selangor, Malaysia.,Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - S Vijay Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| |
Collapse
|
27
|
New insights from Thailand into the maternal genetic history of Mainland Southeast Asia. Eur J Hum Genet 2018; 26:898-911. [PMID: 29483671 PMCID: PMC5974021 DOI: 10.1038/s41431-018-0113-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 12/27/2022] Open
Abstract
Tai-Kadai (TK) is one of the major language families in Mainland Southeast Asia (MSEA), with a concentration in the area of Thailand and Laos. Our previous study of 1234 mtDNA genome sequences supported a demic diffusion scenario in the spread of TK languages from southern China to Laos as well as northern and northeastern Thailand. Here we add an additional 560 mtDNA genomes from 22 groups, with a focus on the TK-speaking central Thai people and the Sino-Tibetan speaking Karen. We find extensive diversity, including 62 haplogroups not reported previously from this region. Demic diffusion is still a preferable scenario for central Thais, emphasizing the expansion of TK people through MSEA, although there is also some support for gene flow between central Thai and native Austroasiatic speaking Mon and Khmer. We also tested competing models concerning the genetic relationships of groups from the major MSEA languages, and found support for an ancestral relationship of TK and Austronesian-speaking groups.
Collapse
|
28
|
Yew CW, Lu D, Deng L, Wong LP, Ong RTH, Lu Y, Wang X, Yunus Y, Aghakhanian F, Mokhtar SS, Hoque MZ, Voo CLY, Abdul Rahman T, Bhak J, Phipps ME, Xu S, Teo YY, Kumar SV, Hoh BP. Genomic structure of the native inhabitants of Peninsular Malaysia and North Borneo suggests complex human population history in Southeast Asia. Hum Genet 2018; 137:161-173. [DOI: 10.1007/s00439-018-1869-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/22/2018] [Indexed: 11/28/2022]
|
29
|
Investigating the origins of eastern Polynesians using genome-wide data from the Leeward Society Isles. Sci Rep 2018; 8:1823. [PMID: 29379068 PMCID: PMC5789021 DOI: 10.1038/s41598-018-20026-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
The debate concerning the origin of the Polynesian speaking peoples has been recently reinvigorated by genetic evidence for secondary migrations to western Polynesia from the New Guinea region during the 2nd millennium BP. Using genome-wide autosomal data from the Leeward Society Islands, the ancient cultural hub of eastern Polynesia, we find that the inhabitants' genomes also demonstrate evidence of this episode of admixture, dating to 1,700-1,200 BP. This supports a late settlement chronology for eastern Polynesia, commencing ~1,000 BP, after the internal differentiation of Polynesian society. More than 70% of the autosomal ancestry of Leeward Society Islanders derives from Island Southeast Asia with the lowland populations of the Philippines as the single largest potential source. These long-distance migrants into Polynesia experienced additional admixture with northern Melanesians prior to the secondary migrations of the 2nd millennium BP. Moreover, the genetic diversity of mtDNA and Y chromosome lineages in the Leeward Society Islands is consistent with linguistic evidence for settlement of eastern Polynesia proceeding from the central northern Polynesian outliers in the Solomon Islands. These results stress the complex demographic history of the Leeward Society Islands and challenge phylogenetic models of cultural evolution predicated on eastern Polynesia being settled from Samoa.
Collapse
|
30
|
Pereira JB, Costa MD, Vieira D, Pala M, Bamford L, Harich N, Cherni L, Alshamali F, Hatina J, Rychkov S, Stefanescu G, King T, Torroni A, Soares P, Pereira L, Richards MB. Reconciling evidence from ancient and contemporary genomes: a major source for the European Neolithic within Mediterranean Europe. Proc Biol Sci 2018; 284:rspb.2016.1976. [PMID: 28330913 DOI: 10.1098/rspb.2016.1976] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2017] [Indexed: 11/12/2022] Open
Abstract
Important gaps remain in our understanding of the spread of farming into Europe, due partly to apparent contradictions between studies of contemporary genetic variation and ancient DNA. It seems clear that farming was introduced into central, northern, and eastern Europe from the south by pioneer colonization. It is often argued that these dispersals originated in the Near East, where the potential source genetic pool resembles that of the early European farmers, but clear ancient DNA evidence from Mediterranean Europe is lacking, and there are suggestions that Mediterranean Europe may have resembled the Near East more than the rest of Europe in the Mesolithic. Here, we test this proposal by dating mitogenome founder lineages from the Near East in different regions of Europe. We find that whereas the lineages date mainly to the Neolithic in central Europe and Iberia, they largely date to the Late Glacial period in central/eastern Mediterranean Europe. This supports a scenario in which the genetic pool of Mediterranean Europe was partly a result of Late Glacial expansions from a Near Eastern refuge, and that this formed an important source pool for subsequent Neolithic expansions into the rest of Europe.
Collapse
Affiliation(s)
- Joana B Pereira
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Instituto de Investigacão e Inovacão em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-465, Portugal
| | - Marta D Costa
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-465, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniel Vieira
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - Maria Pala
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Lisa Bamford
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nourdin Harich
- Laboratoire d'Anthropogenetique, Department de Biologie, Universite Chouaib Doukkali, El Jadida 24000, Morocco
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia.,Tunis and High Institute of Biotechnology, University of Monastir, 5000 Monastir, Tunisia
| | - Farida Alshamali
- General Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai 1493, United Arab Emirates
| | - Jiři Hatina
- Medical Faculty in Pilsen, Institute of Biology, Charles University, Pilsen, Czech Republic
| | | | | | - Turi King
- Department of Genetics, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, UK
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie 'L. Spallanzani', Università di Pavia, Pavia, Italy
| | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-465, Portugal.,Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - Luísa Pereira
- Instituto de Investigacão e Inovacão em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-465, Portugal.,Faculdade de Medicina da Universidade do Porto, Porto 4200-319, Portugal
| | - Martin B Richards
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK .,Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| |
Collapse
|
31
|
Hudjashov G, Karafet TM, Lawson DJ, Downey S, Savina O, Sudoyo H, Lansing JS, Hammer MF, Cox MP. Complex Patterns of Admixture across the Indonesian Archipelago. Mol Biol Evol 2017; 34:2439-2452. [PMID: 28957506 PMCID: PMC5850824 DOI: 10.1093/molbev/msx196] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Indonesia, an island nation as large as continental Europe, hosts a sizeable proportion of global human diversity, yet remains surprisingly undercharacterized genetically. Here, we substantially expand on existing studies by reporting genome-scale data for nearly 500 individuals from 25 populations in Island Southeast Asia, New Guinea, and Oceania, notably including previously unsampled islands across the Indonesian archipelago. We use high-resolution analyses of haplotype diversity to reveal fine detail of regional admixture patterns, with a particular focus on the Holocene. We find that recent population history within Indonesia is complex, and that populations from the Philippines made important genetic contributions in the early phases of the Austronesian expansion. Different, but interrelated processes, acted in the east and west. The Austronesian migration took several centuries to spread across the eastern part of the archipelago, where genetic admixture postdates the archeological signal. As with the Neolithic expansion further east in Oceania and in Europe, genetic mixing with local inhabitants in eastern Indonesia lagged behind the arrival of farming populations. In contrast, western Indonesia has a more complicated admixture history shaped by interactions with mainland Asian and Austronesian newcomers, which for some populations occurred more than once. Another layer of complexity in the west was introduced by genetic contact with South Asia and strong demographic events in isolated local groups.
Collapse
Affiliation(s)
- Georgi Hudjashov
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Estonian Biocentre, 51010 Tartu, Estonia
| | | | - Daniel J Lawson
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Sean Downey
- Department of Anthropology, University of Maryland, College Park, MD
| | - Olga Savina
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ
| | - Herawati Sudoyo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia.,Department of Medical Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | | | - Murray P Cox
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
32
|
Corny J, Galland M, Arzarello M, Bacon AM, Demeter F, Grimaud-Hervé D, Higham C, Matsumura H, Nguyen LC, Nguyen TKT, Nguyen V, Oxenham M, Sayavongkhamdy T, Sémah F, Shackelford LL, Détroit F. Dental phenotypic shape variation supports a multiple dispersal model for anatomically modern humans in Southeast Asia. J Hum Evol 2017; 112:41-56. [PMID: 29037415 DOI: 10.1016/j.jhevol.2017.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023]
Abstract
The population history of anatomically modern humans (AMH) in Southeast Asia (SEA) is a highly debated topic. The impact of sea level variations related to the Last Glacial Maximum (LGM) and the Neolithic diffusion on past population dispersals are two key issues. We have investigated competing AMH dispersal hypotheses in SEA through the analysis of dental phenotype shape variation on the basis of very large archaeological samples employing two complementary approaches. We first explored the structure of between- and within-group shape variation of permanent human molar crowns. Second, we undertook a direct test of competing hypotheses through a modeling approach. Our results identify a significant LGM-mediated AMH expansion and a strong biological impact of the spread of Neolithic farmers into SEA during the Holocene. The present work thus favors a "multiple AMH dispersal" hypothesis for the population history of SEA, reconciling phenotypic and recent genomic data.
Collapse
Affiliation(s)
- Julien Corny
- Aix Marseille Université, CNRS, EFS, ADES UMR 7268, 13916, Marseille, France.
| | - Manon Galland
- University College Dublin, School of Archaeology, Belfield, Dublin 4, Ireland; Muséum national d'Histoire naturelle, Musée de l'Homme, Département Homme et environnement, CNRS, UMR 7206, 75116, Paris, France
| | - Marta Arzarello
- Università degli Studi di Ferrara, Dipartimento Studi Umanistici, 44121, Ferrara, Italy
| | - Anne-Marie Bacon
- Université Paris-Descartes, Faculté de chirurgie dentaire, UMR 5288 CNRS, AMIS, 92120, Montrouge, France
| | - Fabrice Demeter
- Muséum national d'Histoire naturelle, Musée de l'Homme, Département Homme et environnement, CNRS, UMR 7206, 75116, Paris, France; Center for GeoGenetics, Copenhagen, Denmark
| | - Dominique Grimaud-Hervé
- Muséum national d'Histoire naturelle, Musée de l'Homme, Département Homme et environnement, CNRS, UMR 7194, 75116, Paris, France
| | - Charles Higham
- University of Otago, Department of Anthropology and Archaeology, Dunedin 9054, New Zealand
| | - Hirofumi Matsumura
- Sapporo Medical University, School of Health Science, Sapporo 060-8556, Japan
| | | | | | - Viet Nguyen
- Center for Southeast Asian Prehistory, 96/203 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Marc Oxenham
- Australian National University, School of Archaeology and Anthropology, Canberra ACT 0200, Australia
| | - Thongsa Sayavongkhamdy
- Department of National Heritage, Ministry of Information and Culture, Vientiane, Lao People's Democratic Republic
| | - François Sémah
- Muséum national d'Histoire naturelle, Musée de l'Homme, Département Homme et environnement, CNRS, UMR 7194, 75116, Paris, France
| | | | - Florent Détroit
- Muséum national d'Histoire naturelle, Musée de l'Homme, Département Homme et environnement, CNRS, UMR 7194, 75116, Paris, France
| |
Collapse
|
33
|
Olivieri A, Sidore C, Achilli A, Angius A, Posth C, Furtwängler A, Brandini S, Capodiferro MR, Gandini F, Zoledziewska M, Pitzalis M, Maschio A, Busonero F, Lai L, Skeates R, Gradoli MG, Beckett J, Marongiu M, Mazzarello V, Marongiu P, Rubino S, Rito T, Macaulay V, Semino O, Pala M, Abecasis GR, Schlessinger D, Conde-Sousa E, Soares P, Richards MB, Cucca F, Torroni A. Mitogenome Diversity in Sardinians: A Genetic Window onto an Island's Past. Mol Biol Evol 2017; 34:1230-1239. [PMID: 28177087 PMCID: PMC5400395 DOI: 10.1093/molbev/msx082] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sardinians are "outliers" in the European genetic landscape and, according to paleogenomic nuclear data, the closest to early European Neolithic farmers. To learn more about their genetic ancestry, we analyzed 3,491 modern and 21 ancient mitogenomes from Sardinia. We observed that 78.4% of modern mitogenomes cluster into 89 haplogroups that most likely arose in situ. For each Sardinian-specific haplogroup (SSH), we also identified the upstream node in the phylogeny, from which non-Sardinian mitogenomes radiate. This provided minimum and maximum time estimates for the presence of each SSH on the island. In agreement with demographic evidence, almost all SSHs coalesce in the post-Nuragic, Nuragic and Neolithic-Copper Age periods. For some rare SSHs, however, we could not dismiss the possibility that they might have been on the island prior to the Neolithic, a scenario that would be in agreement with archeological evidence of a Mesolithic occupation of Sardinia.
Collapse
Affiliation(s)
- Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI.,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy.,Center for Advanced Studies, Research and Development in Sardinia (CRS4), AGCT Program, Parco Scientifico e Tecnologico della Sardegna, Pula, Italy
| | - Cosimo Posth
- Max Planck Institute for the Science of Human History, Jena, Germany.,Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Anja Furtwängler
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Stefania Brandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | | | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy.,Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, Queensgate, United Kingdom
| | | | | | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Luca Lai
- Department of Anthropology, University of South Florida, Tampa, FL
| | - Robin Skeates
- Department of Archaeology, Durham University, Durham, United Kingdom
| | | | | | - Michele Marongiu
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | | | - Patrizia Marongiu
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Salvatore Rubino
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences & ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga, Portugal
| | - Vincent Macaulay
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Maria Pala
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, Queensgate, United Kingdom
| | - Gonçalo R Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging US National Institutes of Health, Baltimore, Maryland, MD
| | - Eduardo Conde-Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Martin B Richards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, Queensgate, United Kingdom
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| |
Collapse
|
34
|
Floyd B. How much impact do gains in height have on shoulder breadths within Taiwanese families? Am J Hum Biol 2017; 29. [PMID: 28266086 DOI: 10.1002/ajhb.22991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/10/2017] [Accepted: 02/11/2017] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES This study investigates allometric changes in shoulder breadths relative to changes in stature arising from rapidly changing developmental circumstances within 107 Taiwanese families. It speaks to broader issues related to the extent of phenotypic plasticity of body breadths humans are capable of in response to reductions in developmental stressors. METHODS An examination of relationships between shoulder breadth and height within individuals in each generation was followed by evaluation of patterns of difference between same-sex parent-offspring pairs in height and shoulder breadth. RESULTS Height was similarly positively correlated with shoulder breadth within fathers, mothers, sons, and daughters (P ≤ 0.002). Variance accounted for ranged from an adjusted R2 of 0.201 among fathers to 0.151 for sons, with mothers' and daughters' values being 0.187 and 0.181, respectively. Comparisons of differences within families indicate that parents who were shorter than their same-sex offspring also tended to have modestly narrower biacromial breadths (father-son pairs: adjusted R2 = 0.112; t = 2.82, P = .007; mother-daughter pairs: adjusted R2 = 0.135; t = 2.97, P = 0.005). CONCLUSIONS Taken as a whole, results here support the view that secular changes in stature are not accompanied by similar changes in body breadths, perhaps so that responses to developmental environmental improvements do not alter thermoregulatory equilibria that reflect long-term evolutionary processes. These results indirectly constrain plausible hypotheses about how ancestors of Austronesian speakers altered their body size and shape as they voyaged to Fiji, Western Polynesia, and beyond.
Collapse
Affiliation(s)
- Bruce Floyd
- Anthropology, School of Social Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Wei LH, Yan S, Teo YY, Huang YZ, Wang LX, Yu G, Saw WY, Ong RTH, Lu Y, Zhang C, Xu SH, Jin L, Li H. Phylogeography of Y-chromosome haplogroup O3a2b2-N6 reveals patrilineal traces of Austronesian populations on the eastern coastal regions of Asia. PLoS One 2017; 12:e0175080. [PMID: 28380021 PMCID: PMC5381892 DOI: 10.1371/journal.pone.0175080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/20/2017] [Indexed: 12/31/2022] Open
Abstract
Austronesian diffusion is considered one of the greatest dispersals in human history; it led to the peopling of an extremely vast region, ranging from Madagascar in the Indian Ocean to Easter Island in Remote Oceania. The Y-chromosome haplogroup O3a2b*-P164(xM134), a predominant paternal lineage of Austronesian populations, is found at high frequencies in Polynesian populations. However, the internal phylogeny of this haplogroup remains poorly investigated. In this study, we analyzed -seventeen Y-chromosome sequences of haplogroup O3a2b*-P164(xM134) and generated a revised phylogenetic tree of this lineage based on 310 non-private Y-chromosome polymorphisms. We discovered that all available O3a2b*-P164(xM134) samples belong to the newly defined haplogroup O3a2b2-N6 and samples from Austronesian populations belong to the sublineage O3a2b2a2-F706. Additionally, we genotyped a series of Y-chromosome polymorphisms in a large collection of samples from China. We confirmed that the sublineage O3a2b2a2b-B451 is unique to Austronesian populations. We found that O3a2b2-N6 samples are widely distributed on the eastern coastal regions of Asia, from Korea to Vietnam. Furthermore, we propose- that the O3a2b2a2b-B451 lineage represents a genetic connection between ancestors of Austronesian populations and ancient populations in North China, where foxtail millet was domesticated about 11,000 years ago. The large number of newly defined Y-chromosome polymorphisms and the revised phylogenetic tree of O3a2b2-N6 will be helpful to explore the origin of proto-Austronesians and the early diffusion process of Austronesian populations.
Collapse
Affiliation(s)
- Lan-Hai Wei
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Institut National des Langues et Civilisations Orientales, Paris, France
| | - Shi Yan
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yun-Zhi Huang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ling-Xiang Wang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ge Yu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Woei-Yuh Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yan Lu
- Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Zhang
- Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Hua Xu
- Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Li Jin
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Silva M, Oliveira M, Vieira D, Brandão A, Rito T, Pereira JB, Fraser RM, Hudson B, Gandini F, Edwards C, Pala M, Koch J, Wilson JF, Pereira L, Richards MB, Soares P. A genetic chronology for the Indian Subcontinent points to heavily sex-biased dispersals. BMC Evol Biol 2017; 17:88. [PMID: 28335724 PMCID: PMC5364613 DOI: 10.1186/s12862-017-0936-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND India is a patchwork of tribal and non-tribal populations that speak many different languages from various language families. Indo-European, spoken across northern and central India, and also in Pakistan and Bangladesh, has been frequently connected to the so-called "Indo-Aryan invasions" from Central Asia ~3.5 ka and the establishment of the caste system, but the extent of immigration at this time remains extremely controversial. South India, on the other hand, is dominated by Dravidian languages. India displays a high level of endogamy due to its strict social boundaries, and high genetic drift as a result of long-term isolation which, together with a very complex history, makes the genetic study of Indian populations challenging. RESULTS We have combined a detailed, high-resolution mitogenome analysis with summaries of autosomal data and Y-chromosome lineages to establish a settlement chronology for the Indian Subcontinent. Maternal lineages document the earliest settlement ~55-65 ka (thousand years ago), and major population shifts in the later Pleistocene that explain previous dating discrepancies and neutrality violation. Whilst current genome-wide analyses conflate all dispersals from Southwest and Central Asia, we were able to tease out from the mitogenome data distinct dispersal episodes dating from between the Last Glacial Maximum to the Bronze Age. Moreover, we found an extremely marked sex bias by comparing the different genetic systems. CONCLUSIONS Maternal lineages primarily reflect earlier, pre-Holocene processes, and paternal lineages predominantly episodes within the last 10 ka. In particular, genetic influx from Central Asia in the Bronze Age was strongly male-driven, consistent with the patriarchal, patrilocal and patrilineal social structure attributed to the inferred pastoralist early Indo-European society. This was part of a much wider process of Indo-European expansion, with an ultimate source in the Pontic-Caspian region, which carried closely related Y-chromosome lineages, a smaller fraction of autosomal genome-wide variation and an even smaller fraction of mitogenomes across a vast swathe of Eurasia between 5 and 3.5 ka.
Collapse
Affiliation(s)
- Marina Silva
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Marisa Oliveira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Daniel Vieira
- Department of Informatics, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andreia Brandão
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Teresa Rito
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana B Pereira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Ross M Fraser
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.,Synpromics Ltd, Nine Edinburgh Bioquarter, Edinburgh, EH16 4UX, UK
| | - Bob Hudson
- Archaeology Department, University of Sydney, Sydney, NSW, 2006, Australia
| | - Francesca Gandini
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Ceiridwen Edwards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Maria Pala
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - John Koch
- University of Wales Centre for Advanced Welsh and Celtic Studies, National Library of Wales, Aberystwyth, SY23 3HH, Wales, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, Scotland, UK
| | - Luísa Pereira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Martin B Richards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Pedro Soares
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
37
|
Nagle N, van Oven M, Wilcox S, van Holst Pellekaan S, Tyler-Smith C, Xue Y, Ballantyne KN, Wilcox L, Papac L, Cooke K, van Oorschot RAH, McAllister P, Williams L, Kayser M, Mitchell RJ. Aboriginal Australian mitochondrial genome variation - an increased understanding of population antiquity and diversity. Sci Rep 2017; 7:43041. [PMID: 28287095 PMCID: PMC5347126 DOI: 10.1038/srep43041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ~55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia's first settlers.
Collapse
Affiliation(s)
- Nano Nagle
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Stephen Wilcox
- Australian Genome Research Facility, Melbourne, Victoria, Australia
| | - Sheila van Holst Pellekaan
- Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Kaye N. Ballantyne
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | - Leah Wilcox
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Luka Papac
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Karen Cooke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Roland A. H. van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | | | - Lesley Williams
- Community Elder and Cultural Advisor, Brisbane, Queensland, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - R. John Mitchell
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Furusawa T, Naka I, Yamauchi T, Natsuhara K, Eddie R, Kimura R, Nakazawa M, Ishida T, Ohtsuka R, Ohashi J. Polymorphisms associated with a tropical climate and root crop diet induce susceptibility to metabolic and cardiovascular diseases in Solomon Islands. PLoS One 2017; 12:e0172676. [PMID: 28253292 PMCID: PMC5333831 DOI: 10.1371/journal.pone.0172676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/08/2017] [Indexed: 01/19/2023] Open
Abstract
The people of the Solomon Islands represent an Austronesian (AN)-speaking population's adaptation to a humid tropical environment and subsistence of tuberous crops. Genome-wide association studies (GWASs) of other populations (e.g. the Human Genome Diversity Project [HGDP]) have suggested the existence of genotypes adaptive to ecoregion, diet, and subsistence, and that those genotypes are also associated with metabolic and cardiovascular diseases. Recently, the incidence of non-communicable diseases has been increasing in the Solomon Islands. In the present study, we explored the association of genotypes adaptive to a tropical environment and tuberous crop diet with metabolic and cardiovascular conditions in rural and urban AN-speaking Melanesian and Micronesian populations of the Solomon Islands. A total of 561 participants were genotyped for single nucleotide polymorphisms (SNPs) potentially associated with a tropical environment (rs174570 and rs2237892) and a tuberous crop diet (rs162036, rs185819, and rs2722425). The results showed that the allele frequencies of the Solomon Islands populations adopted patterns similar to those in populations from other hot, tropical areas with a tuberous crop diet in previous studies. Furthermore, rs162036, rs185819, rs2237892, and rs2722425 were all strongly associated with one or more metabolic and cardiovascular conditions. The derived allele of rs2722425 (i.e. rs2722425-G) was significantly associated with an elevated LDL level (P = 0.000264) even after the significance level was adjusted for multiple testing (i.e., α = 0.0005). Our results suggest that the inhabitants of the Solomon Islands exhibit the effects of the tropical environment and tuberous crop diet on their allele frequencies, and that their susceptibility to metabolic and cardiovascular diseases is therefore considered to be associated with their environment and diet.
Collapse
Affiliation(s)
- Takuro Furusawa
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, Japan
| | - Izumi Naka
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Taro Yamauchi
- Graduate School of Health Sciences, Hokkaido University, Hokkaido, Japan
| | | | - Ricky Eddie
- National Gizo Hospital, Ministry of Health and Medical Services, Gizo, Solomon Islands
| | - Ryosuke Kimura
- Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Minato Nakazawa
- Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Takafumi Ishida
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Jun Ohashi
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Genetic analysis of the M2/ANXA5 haplotype as recurrent pregnancy loss predisposition in the Malay population. J Assist Reprod Genet 2017; 34:517-524. [PMID: 28108842 DOI: 10.1007/s10815-017-0871-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate a new predisposition factor, M2/ANXA5 (RPRGL3), in recurrent pregnancy loss (RPL) patients of Malay origin, since it was previously known that the prevalence of this condition is relatively high among the Malay population of Malaysia, where conventional hereditary thrombophilia factors have been generally ruled out. METHODS A total of 232 women who had experienced ≥2 unexplained RPL and 141 available male partners were recruited, with 360 healthy Malay and 166 parous female controls. Prevalence of M2 carriage and RPL odds ratios were calculated in (a) control and patient groups; (b) clinically defined subgroups in categories of pregnancy loss, primary, secondary, and tertiary; and (c) timing of pregnancy loss in early, ≤15th gestation week and "late" fetal losses, and >15th gestation week subgroups. RESULTS Both male and female subjects had similar M2/ANXA5 allele frequencies. The carrier rate of M2/ANXA5 for the general Malay population was 42.2 and 34.9% for parous controls. These carrier rates compared to Malay RPL subjects (52% M2 carriers) resulted in elevated odds ratios (95% confidence interval) of 1.53 (1.1 to 2.1) and 1.97 (1.3 to 3.1) accordingly for early fetal losses. Moreover, exceeding copy numbers of M2/ANXA5 alleles seemed to afflict a greater chance of RPL in couples, especially when both partners were M2 carriers. CONCLUSION This study confirmed the proposed role of M2/ANXA5 as embryonic, genetically associated thrombophilia predisposition factor for early RPL among ethnic Malay of Malaysia.
Collapse
|
40
|
Cox MP, Hudjashov G, Sim A, Savina O, Karafet TM, Sudoyo H, Lansing JS. Small Traditional Human Communities Sustain Genomic Diversity over Microgeographic Scales despite Linguistic Isolation. Mol Biol Evol 2016; 33:2273-84. [PMID: 27274003 PMCID: PMC4989104 DOI: 10.1093/molbev/msw099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
At least since the Neolithic, humans have largely lived in networks of small, traditional communities. Often socially isolated, these groups evolved distinct languages and cultures over microgeographic scales of just tens of kilometers. Population genetic theory tells us that genetic drift should act quickly in such isolated groups, thus raising the question: do networks of small human communities maintain levels of genetic diversity over microgeographic scales? This question can no longer be asked in most parts of the world, which have been heavily impacted by historical events that make traditional society structures the exception. However, such studies remain possible in parts of Island Southeast Asia and Oceania, where traditional ways of life are still practiced. We captured genome-wide genetic data, together with linguistic records, for a case-study system-eight villages distributed across Sumba, a small, remote island in eastern Indonesia. More than 4,000 years after these communities were established during the Neolithic period, most speak different languages and can be distinguished genetically. Yet their nuclear diversity is not reduced, instead being comparable to other, even much larger, regional groups. Modeling reveals a separation of time scales: while languages and culture can evolve quickly, creating social barriers, sporadic migration averaged over many generations is sufficient to keep villages linked genetically. This loosely-connected network structure, once the global norm and still extant on Sumba today, provides a living proxy to explore fine-scale genome dynamics in the sort of small traditional communities within which the most recent episodes of human evolution occurred.
Collapse
Affiliation(s)
- Murray P Cox
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Georgi Hudjashov
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Andre Sim
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Olga Savina
- ARL Division of Biotechnology, University of Arizona
| | | | | | | |
Collapse
|
41
|
Curnoe D, Datan I, Taçon PSC, Leh Moi Ung C, Sauffi MS. Deep Skull from Niah Cave and the Pleistocene Peopling of Southeast Asia. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
42
|
Brandão A, Eng KK, Rito T, Cavadas B, Bulbeck D, Gandini F, Pala M, Mormina M, Hudson B, White J, Ko TM, Saidin M, Zafarina Z, Oppenheimer S, Richards MB, Pereira L, Soares P. Quantifying the legacy of the Chinese Neolithic on the maternal genetic heritage of Taiwan and Island Southeast Asia. Hum Genet 2016; 135:363-376. [PMID: 26875094 PMCID: PMC4796337 DOI: 10.1007/s00439-016-1640-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 12/30/2022]
Abstract
There has been a long-standing debate concerning the extent to which the spread of Neolithic ceramics and Malay-Polynesian languages in Island Southeast Asia (ISEA) were coupled to an agriculturally driven demic dispersal out of Taiwan 4000 years ago (4 ka). We previously addressed this question using founder analysis of mitochondrial DNA (mtDNA) control-region sequences to identify major lineage clusters most likely to have dispersed from Taiwan into ISEA, proposing that the dispersal had a relatively minor impact on the extant genetic structure of ISEA, and that the role of agriculture in the expansion of the Austronesian languages was therefore likely to have been correspondingly minor. Here we test these conclusions by sequencing whole mtDNAs from across Taiwan and ISEA, using their higher chronological precision to resolve the overall proportion that participated in the "out-of-Taiwan" mid-Holocene dispersal as opposed to earlier, postglacial expansions in the Early Holocene. We show that, in total, about 20% of mtDNA lineages in the modern ISEA pool result from the "out-of-Taiwan" dispersal, with most of the remainder signifying earlier processes, mainly due to sea-level rises after the Last Glacial Maximum. Notably, we show that every one of these founder clusters previously entered Taiwan from China, 6-7 ka, where rice-farming originated, and remained distinct from the indigenous Taiwanese population until after the subsequent dispersal into ISEA.
Collapse
Affiliation(s)
- Andreia Brandão
- IPATIMUP (Institute of Molecular Pathology and Immunology of the University of Porto), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200, Porto, Portugal
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield Queensgate, Huddersfield, HD1 3DH, UK
- ICBAS (Instituto Ciências Biomédicas Abel Salazar), Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Ken Khong Eng
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Centre for Global Archaeological Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Teresa Rito
- IPATIMUP (Institute of Molecular Pathology and Immunology of the University of Porto), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Cavadas
- IPATIMUP (Institute of Molecular Pathology and Immunology of the University of Porto), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200, Porto, Portugal
| | - David Bulbeck
- Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Acton ACT, Canberra, 2601, Australia
| | - Francesca Gandini
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield Queensgate, Huddersfield, HD1 3DH, UK
| | - Maria Pala
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield Queensgate, Huddersfield, HD1 3DH, UK
| | - Maru Mormina
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Department of Applied Social Studies, University of Winchester, Sparkford Road, Winchester, SO22 4NR, UK
| | - Bob Hudson
- Archaeology Department, University of Sydney, New South Wales, 2006, Australia
| | - Joyce White
- Department of Anthropology, University of Pennsylvania Museum, 3260 South St., Philadelphia, USA
| | - Tsang-Ming Ko
- Department of Obstetrics and Gynecology, National Taiwan University, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Mokhtar Saidin
- Centre for Global Archaeological Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Zainuddin Zafarina
- Malaysian Institute of Pharmaceuticals and Nutraceuticals Malaysia, National Institutes of Biotechnology Malaysia, Penang, Malaysia
- Human Identification Unit, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Stephen Oppenheimer
- School of Anthropology, Institute of Human Sciences, The Pauling Centre, University of Oxford, 58a Banbury Road, Oxford, OX2 6QS, UK
| | - Martin B Richards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield Queensgate, Huddersfield, HD1 3DH, UK.
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Luísa Pereira
- IPATIMUP (Institute of Molecular Pathology and Immunology of the University of Porto), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200, Porto, Portugal
- Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Pedro Soares
- IPATIMUP (Institute of Molecular Pathology and Immunology of the University of Porto), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200, Porto, Portugal
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|