1
|
João S, Quental R, Pinto J, Almeida C, Santos H, Dória S. Impact of copy number variants in epilepsy plus neurodevelopment disorders. Seizure 2024; 117:6-12. [PMID: 38277927 DOI: 10.1016/j.seizure.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
INTRODUCTION Epilepsy, a neurological disorder characterized by recurring unprovoked seizures due to excessive neuronal excitability, is primarily attributed to genetic factors, accounting for an estimated 70 % of cases. Array-comparative genomic hybridization (aCGH) is a crucial genetic test for detecting copy number variants (CNVs) associated with epilepsy. This study aimed to analyze a cohort of epilepsy patients with CNVs detected through aCGH to enhance our understanding of the genetic underpinnings of epilepsy. METHODS A retrospective cross-sectional study was conducted using the aCGH database from the Genetics Department of the Faculty of Medicine of the University of Porto, encompassing 146 patients diagnosed with epilepsy, epileptic encephalopathy, or seizures. Clinical data were collected, and aCGH was performed following established guidelines. CNVs were classified based on ACMG standards, and patients were categorized into four groups according to their clinical phenotype. RESULTS Among the 146 included patients, 94 (64 %) had at least one CNV, with 22 (15.1 %) classified as pathogenic or likely pathogenic. Chromosomes 1, 2, 16, and X were frequently implicated, with Xp22.33 being the most reported region (8 CNVs). The phenotype "Epilepsy and global developmental delay/intellectual disability" showed the highest prevalence of clinically relevant CNVs. Various CNVs were identified across different groups, suggesting potential roles in epilepsy. CONCLUSIONS This study highlights the significance of aCGH in unraveling the genetic basis of epilepsy and tailoring treatment strategies. It contributes valuable insights to the expanding knowledge in the field, emphasizing the need for research to elucidate the diverse genetic causes of epilepsy.
Collapse
Affiliation(s)
- Sofia João
- Department of Pathology - Genetics, Faculty of Medicine, University of Porto, Portugal.
| | - Rita Quental
- Medical Genetics Service, Centro Hospitalar Universitário de São João - CHUSJ, Porto, Portugal.
| | - Joel Pinto
- Department of Pathology - Genetics, Faculty of Medicine, University of Porto, Portugal; I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| | - Carolina Almeida
- Department of Pathology - Genetics, Faculty of Medicine, University of Porto, Portugal; I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| | - Helena Santos
- Child and Adolescent Neuroscience Unit, Centro Hospitalar Vila Nova de Gaia/Espinho - CHNVG, Vila Nova de Gaia, Portugal.
| | - Sofia Dória
- Department of Pathology - Genetics, Faculty of Medicine, University of Porto, Portugal; I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Ferrario A, Aliu N, Rieubland C, Vuilleumier S, Grabe HM, Escher P. Expanding Genotype/Phenotype Correlation in 2p11.2-p12 Microdeletion Syndrome. Genes (Basel) 2023; 14:2222. [PMID: 38137045 PMCID: PMC10742694 DOI: 10.3390/genes14122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Chromosomal abnormalities on the short arm of chromosome 2 in the region p11.2 have been associated with developmental delay, intellectual disability, facial anomalies, abnormal ears, skeletal and genital malformations. Here we describe a patient with a de novo interstitial heterozygous microdeletion on the short arm of chromosome 2 in the region p11.2-p12. He presents with facial dysmorphism characterized by a broad and low root of the nose and low-set protruding ears. Clinical examinations during follow-up visits revealed congenital pendular nystagmus, decreased visual acuity and psychomotor development disorder including intellectual disability. The heterozygous 5 Mb-microdeletion was characterized by an array CGH (Comparative Genomic Hybridization) analysis. In the past two decades, nine patients with microdeletions in this region have been identified by array CGH analysis and were reported in the literature. All these patients show psychomotor development disorder and outer and/or inner ear anomalies. In addition, most of the patients have mild to severe intellectual disability and show facial malformations. We reviewed the literature on PubMed and OMIM using the gene/loci names as search terms in an attempt to identify correlations between genes located within the heterozygous microdeletion and the clinical phenotype of the patient, in order to define a recognizable phenotype for the 2p11.2p12 microdeletion syndrome. We discuss additional symptoms that are not systematically present in all patients and contribute to a heterogeneous clinical presentation of this microdeletion syndrome.
Collapse
Affiliation(s)
- Alessandra Ferrario
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.F.); (S.V.); (H.M.G.)
| | - Nijas Aliu
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (N.A.)
| | - Claudine Rieubland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (N.A.)
| | - Sébastian Vuilleumier
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.F.); (S.V.); (H.M.G.)
| | - Hilary M. Grabe
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.F.); (S.V.); (H.M.G.)
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.F.); (S.V.); (H.M.G.)
- Department of BioMedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
3
|
Liu X, Wen J, Liu X, Chen A, Li S, Liu J, Sun J, Gong W, Kang X, Feng Z, He C, Mei L, Ling J, Feng Y. Gene regulation analysis of patient-derived iPSCs and its CRISPR-corrected control provides a new tool for studying perturbations of ELMOD3 c.512A>G mutation during the development of inherited hearing loss. PLoS One 2023; 18:e0288640. [PMID: 37708136 PMCID: PMC10501637 DOI: 10.1371/journal.pone.0288640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/30/2023] [Indexed: 09/16/2023] Open
Abstract
The ELMOD3 gene is implicated in causing autosomal recessive/dominant non-syndromic hearing loss in humans. However, the etiology has yet to be completely elucidated. In this study, we generated a patient-derived iPSC line carrying ELMOD3 c.512A>G mutation. In addition, the patient-derived iPSC line was corrected by CRISPR/Cas9 genome editing system. Then we applied RNA sequencing profiling to compare the patient-derived iPSC line with different controls, respectively (the healthy sibling-derived iPSCs and the CRISPR/Cas9 corrected iPSCs). Functional enrichment and PPI network analysis revealed that differentially expressed genes (DEGs) were enriched in the gene ontology, such as sensory epithelial development, intermediate filament cytoskeleton organization, and the regulation of ion transmembrane transport. Our current work provided a new tool for studying how disruption of ELMOD3 mechanistically drives hearing loss.
Collapse
Affiliation(s)
- Xianlin Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jie Wen
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Anhai Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Sijun Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jing Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jie Sun
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Futian District, Shenzhen, China
| | - Wei Gong
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Xiaoming Kang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Zhili Feng
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| |
Collapse
|
4
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
5
|
Wu J, Tao Y, Deng D, Meng Z, Zhao Y. The applications of CRISPR/Cas-mediated genome editing in genetic hearing loss. Cell Biosci 2023; 13:93. [PMID: 37210555 DOI: 10.1186/s13578-023-01021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/25/2023] [Indexed: 05/22/2023] Open
Abstract
Hearing loss (HL) can be caused by a number of different genetic factors. Non-syndromic HL refers that HL occurs as an isolated symptom in an individual, whereas syndromic HL refers that HL is associated with other symptoms or abnormalities. To date, more than 140 genes have been identified as being associated with non-syndromic HL, and approximately 400 genetic syndromes can include HL as one of the clinical symptoms. However, no gene therapeutic approaches are currently available to restore or improve hearing. Therefore, there is an urgent necessity to elucidate the possible pathogenesis of specific mutations in HL-associated genes and to investigate the promising therapeutic strategies for genetic HL. The development of the CRISPR/Cas system has revolutionized the field of genome engineering, which has become an efficacious and cost-effective tool to foster genetic HL research. Moreover, several in vivo studies have demonstrated the therapeutic efficacy of the CRISPR/Cas-mediated treatments for specific genetic HL. In this review, we briefly introduce the progress in CRISPR/Cas technique as well as the understanding of genetic HL, and then we detail the recent achievements of CRISPR/Cas technique in disease modeling and therapeutic strategies for genetic HL. Furthermore, we discuss the challenges for the application of CRISPR/Cas technique in future clinical treatments.
Collapse
Affiliation(s)
- Junhao Wu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Tao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Di Deng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhaoli Meng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Liu A, Ouyang X, Wang Z, Dong B. ELMOD3-Rab1A-Flotillin2 cascade regulates lumen formation via vesicle trafficking in Ciona notochord. Open Biol 2023; 13:220367. [PMID: 36918025 PMCID: PMC10014252 DOI: 10.1098/rsob.220367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Lumen development is a crucial phase in tubulogenesis, although its molecular mechanisms are largely unknown. In this study, we discovered an ELMO domain-containing 3 (ELMOD3), which belongs to ADP-ribosylation factor GTPase-activating protein family, was necessary to form the notochord lumen in Ciona larvae. We demonstrated that ELMOD3 interacted with lipid raft protein Flotillin2 and regulated its subcellular localization. The loss-of-function of Flotillin2 prevented notochord lumen formation. Furthermore, we found that ELMOD3 also interacted with Rab1A, which is the regulatory GTPase for vesicle trafficking and located at the notochord cell surface. Rab1A mutations arrested the lumen formation, phenocopying the loss-of-function of ELMOD3 and Flotillin2. Our findings further suggested that Rab1A interactions influenced Flotillin2 localization. We thus identified a unique pathway in which ELMOD3 interacted with Rab1A, which controlled the Flotillin2-mediated vesicle trafficking from cytoplasm to apical membrane, required for Ciona notochord lumen formation.
Collapse
Affiliation(s)
- Amei Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiuke Ouyang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhuqing Wang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
- Laoshan Laboratory, Qingdao 266237, People's Republic of China
| |
Collapse
|
7
|
Turn RE, Hu Y, Dewees SI, Devi N, East MP, Hardin KR, Khatib T, Linnert J, Wolfrum U, Lim MJ, Casanova JE, Caspary T, Kahn RA. The ARF GAPs ELMOD1 and ELMOD3 act at the Golgi and cilia to regulate ciliogenesis and ciliary protein traffic. Mol Biol Cell 2022; 33:ar13. [PMID: 34818063 PMCID: PMC9236152 DOI: 10.1091/mbc.e21-09-0443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/11/2022] Open
Abstract
ELMODs are a family of three mammalian paralogues that display GTPase-activating protein (GAP) activity toward a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogues ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators and compare them to those of ELMOD2, allowing the determination of functional redundancy among the family members. We found strong similarities in phenotypes resulting from deletion of either Elmod1 or Elmod3 and marked differences from those arising in Elmod2 deletion lines. Deletion of either Elmod1 or Elmod3 results in the decreased ability of cells to form primary cilia, loss of a subset of proteins from cilia, and accumulation of some ciliary proteins at the Golgi, predicted to result from compromised traffic from the Golgi to cilia. These phenotypes are reversed upon activating mutant expression of either ARL3 or ARL16, linking their roles to ELMOD1/3 actions.
Collapse
Affiliation(s)
- Rachel E. Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA 94305
| | - Yihan Hu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Skylar I. Dewees
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Narra Devi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Michael P. East
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Tala Khatib
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Joshua Linnert
- Institute of Molecular Physiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Michael J. Lim
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
8
|
Turn RE, Linnert J, Gigante ED, Wolfrum U, Caspary T, Kahn RA. Roles for ELMOD2 and Rootletin in ciliogenesis. Mol Biol Cell 2021; 32:800-822. [PMID: 33596093 PMCID: PMC8108518 DOI: 10.1091/mbc.e20-10-0635] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ELMOD2 is a GTPase-activating protein with uniquely broad specificity for ARF family GTPases. We previously showed that it acts with ARL2 in mitochondrial fusion and microtubule stability and with ARF6 during cytokinesis. Mouse embryonic fibroblasts deleted for ELMOD2 also displayed changes in cilia-related processes including increased ciliation, multiciliation, ciliary morphology, ciliary signaling, centrin accumulation inside cilia, and loss of rootlets at centrosomes with loss of centrosome cohesion. Increasing ARL2 activity or overexpressing Rootletin reversed these defects, revealing close functional links between the three proteins. This was further supported by the findings that deletion of Rootletin yielded similar phenotypes, which were rescued upon increasing ARL2 activity but not ELMOD2 overexpression. Thus, we propose that ARL2, ELMOD2, and Rootletin all act in a common pathway that suppresses spurious ciliation and maintains centrosome cohesion. Screening a number of markers of steps in the ciliation pathway supports a model in which ELMOD2, Rootletin, and ARL2 act downstream of TTBK2 and upstream of CP110 to prevent spurious release of CP110 and to regulate ciliary vesicle docking. These data thus provide evidence supporting roles for ELMOD2, Rootletin, and ARL2 in the regulation of ciliary licensing.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Joshua Linnert
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, Mainz 655099, Germany
| | - Eduardo D Gigante
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322.,Neuroscience Graduate Program, Emory University, Atlanta, GA 30322
| | - Uwe Wolfrum
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, Mainz 655099, Germany
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
9
|
Vona B, Doll J, Hofrichter MAH, Haaf T, Varshney GK. Small fish, big prospects: using zebrafish to unravel the mechanisms of hereditary hearing loss. Hear Res 2020; 397:107906. [PMID: 32063424 PMCID: PMC7415493 DOI: 10.1016/j.heares.2020.107906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Over the past decade, advancements in high-throughput sequencing have greatly enhanced our knowledge of the mutational signatures responsible for hereditary hearing loss. In its present state, the field has a largely uncensored view of protein coding changes in a growing number of genes that have been associated with hereditary hearing loss, and many more that have been proposed as candidate genes. Sequencing data can now be generated using methods that have become widespread and affordable. The greatest hurdles facing the field concern functional validation of uncharacterized genes and rapid application to human diseases, including hearing and balance disorders. To date, over 30 hearing-related disease models exist in zebrafish. New genome editing technologies, including CRISPR/Cas9 will accelerate the functional validation of hearing loss genes and variants in zebrafish. Here, we discuss current progress in the field and recent advances in genome editing approaches.
Collapse
Affiliation(s)
- Barbara Vona
- Department of Otolaryngology--Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Julia Doll
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | | | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.
| |
Collapse
|
10
|
Turn RE, East MP, Prekeris R, Kahn RA. The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol Biol Cell 2020; 31:2070-2091. [PMID: 32614697 PMCID: PMC7543072 DOI: 10.1091/mbc.e20-01-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ELMOD2 is a ∼32 kDa protein first purified by its GTPase-activating protein (GAP) activity toward ARL2 and later shown to have uniquely broad specificity toward ARF family GTPases in in vitro assays. To begin the task of defining its functions in cells, we deleted ELMOD2 in immortalized mouse embryonic fibroblasts and discovered a number of cellular defects, which are reversed upon expression of ELMOD2-myc. We show that these defects, resulting from the loss of ELMOD2, are linked to two different pathways and two different GTPases: with ARL2 and TBCD to support microtubule nucleation from centrosomes and with ARF6 in cytokinesis. These data highlight key aspects of signaling by ARF family GAPs that contribute to previously underappreciated sources of complexity, including GAPs acting from multiple sites in cells, working with multiple GTPases, and contributing to the spatial and temporal control of regulatory GTPases by serving as both GAPs and effectors.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Michael P East
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
11
|
Li W, Feng Y, Chen A, Li T, Huang S, Liu J, Liu X, Liu Y, Gao J, Yan D, Sun J, Mei L, Liu X, Ling J. Elmod3 knockout leads to progressive hearing loss and abnormalities in cochlear hair cell stereocilia. Hum Mol Genet 2019; 28:4103-4112. [PMID: 31628468 PMCID: PMC7305813 DOI: 10.1093/hmg/ddz240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023] Open
Abstract
ELMOD3, an ARL2 GTPase-activating protein, is implicated in causing hearing impairment in humans. However, the specific role of ELMOD3 in auditory function is still far from being elucidated. In the present study, we used the CRISPR/Cas9 technology to establish an Elmod3 knockout mice line in the C57BL/6 background (hereinafter referred to as Elmod3-/- mice) and investigated the role of Elmod3 in the cochlea and auditory function. Elmod3-/- mice started to exhibit hearing loss from 2 months of age, and the deafness progressed with aging, while the vestibular function of Elmod3-/- mice was normal. We also observed that Elmod3-/- mice showed thinning and receding hair cells in the organ of Corti and much lower expression of F-actin cytoskeleton in the cochlea compared with wild-type mice. The deafness associated with the mutation may be caused by cochlear hair cells dysfunction, which manifests with shortening and fusion of inner hair cells stereocilia and progressive degeneration of outer hair cells stereocilia. Our finding associates Elmod3 deficiencies with stereocilia dysmorphologies and reveals that they might play roles in the actin cytoskeleton dynamics in cochlear hair cells, and thus relate to hearing impairment.
Collapse
Affiliation(s)
- Wu Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
- Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anhai Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Taoxi Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
- Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Sida Huang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Jing Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Xianlin Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong, China
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jie Sun
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Xuezhong Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jie Ling
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University and Hunan Key Laboratory of Molecular Precision Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Sang S, Ling J, Liu X, Mei L, Cai X, Li T, Li W, Li M, Wen J, Liu X, Liu J, Liu Y, Chen H, He C, Feng Y. Proband Whole-Exome Sequencing Identified Genes Responsible for Autosomal Recessive Non-Syndromic Hearing Loss in 33 Chinese Nuclear Families. Front Genet 2019; 10:639. [PMID: 31379920 PMCID: PMC6650584 DOI: 10.3389/fgene.2019.00639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/18/2019] [Indexed: 11/22/2022] Open
Abstract
Autosomal recessive non-syndromic hearing loss (ARNSHL) is a highly heterogeneous disease involving more than 70 pathogenic genes. However, most ARNSHL families have small-sized pedigrees with limited genetic information, rendering challenges for the molecular diagnosis of these patients. Therefore, we attempted to establish a strategy for identifying deleterious variants associated with ARNSHL by applying proband whole-exome sequencing (proband-WES). Aside from desiring to improve molecular diagnostic rates, we also aimed to search for novel deafness genes shared by patients with similar phenotype, making up for the deficiency of small ARNSHL families. In this study, 48.5% (16/33) families were detected the pathogenic variants in eight known deafness genes, including 10 novel variants identified in TMPRSS3 (MIM 605551), MYO15A (MIM 602666), TMC1 (MIM 606706), ADGRV1 (MIM 602851), and PTPRQ (MIM 603317). Apart from six novel variants with a truncating effect (nonsense, deletion, insertion, and splice-site), four novel missense variants were not found in 200 unrelated control population by using Sanger sequencing. It is important to note that none of novel genes were shared across different pedigrees, indicating that a larger sample size might be needed. Proband-WES is a cost-effective and precise way of identifying causative variants in nuclear families with ARNSHL. This economical strategy may be appropriated as a clinical application to provide molecular diagnostics, genetic counseling, and individualized health maintenance measures for patients with ARNSHL at hearing clinics.
Collapse
Affiliation(s)
- Shushan Sang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Jie Ling
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Molecular Precision Medicine, Changsha, China
| | - Xuezhong Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Xinzhang Cai
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Taoxi Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China.,Hunan Jiahui Genetics Hospital, Changsha, China
| | - Wu Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Meng Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Jie Wen
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Xianlin Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Jing Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Hongsheng Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China.,Hunan Jiahui Genetics Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Extrusion pump ABCC1 was first linked with nonsyndromic hearing loss in humans by stepwise genetic analysis. Genet Med 2019; 21:2744-2754. [PMID: 31273342 DOI: 10.1038/s41436-019-0594-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/17/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To determine the genetic etiology of deafness in a family (HN-SD01) with autosomal dominant nonsyndromic hearing loss (NSHL). METHODS Stepwise genetic analysis was performed on family HN-SD01, including hotspot variant screening, exome sequencing, virtual hearing loss gene panel, and genome-wide linkage analysis. Targeted region sequencing was used to screen ABCC1 in additional cases. Cochlear expression of Abcc1 was evaluated by messenger RNA (mRNA) and protein levels. Computational prediction, immunofluorescence, real-time quantitative polymerase chain reaction, and flow cytometry were conducted to uncover functional consequences of candidate variants. RESULTS Stepwise genetic analysis identified a heterozygous missense variant, ABCC1:c.1769A>G (p.Asn590Ser), cosegregating with phenotype in HN-SD01. Screening of ABCC1 in an additional 217 cases identified candidate pathogenic variants c.692G>A (p.Gly231Asp) in a sporadic case and c.887A>T (p.Glu296Val) in a familial proband. Abcc1 expressed in stria vascularis and auditory nerve of mouse cochlea. Immunofluorescence showed p.Asn590Ser distributed in cytomembrane and cytoplasm, while wild type was shown only in cytomembrane. Besides, it generated unstable mRNA and decreased efflux capacity of ABCC1. CONCLUSION Stepwise genetic analysis is efficient to analyze the genetic etiology of NSHL. Variants in ABCC1 are linked with NSHL and suggest an important role of extruding pumps in maintaining cochlea function.
Collapse
|
14
|
Role of microRNAs in inner ear development and hearing loss. Gene 2018; 686:49-55. [PMID: 30389561 DOI: 10.1016/j.gene.2018.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
The etiology of hearing loss tends to be multi-factorial and affects a significant proportion of the global population. Despite the differences in etiology, a common physical pathological change that leads to hearing loss is damage to the mechanosensory hair cells of the inner ear. MicroRNAs (miRNAs) have been shown to play a role in inner ear development and thus, may play a role in the development or prevention of hearing loss. In this paper, we review the mechanism of action of miRNAs in the auditory system. We present an overview about the role of miRNAs in inner ear development, summarize the current research on the role of miRNAs in gene regulation, and discuss the effects of both miRNA mutations as well as overexpression. We discuss the crucial role of miRNAs in ensuring normal physiological development of the inner ear. Any deviation from the proper function of miRNA in the cochlea seems to contribute to deleterious damage to the structure of the auditory system and subsequently results in hearing loss. As interest for miRNA research increases, this paper serves as a platform to review current understandings and postulate future avenues for research. A better knowledge about the role of miRNA in the auditory system will help in developing novel treatment modalities for restoring hearing function based on regeneration of damaged inner ear hair cells.
Collapse
|
15
|
Lahbib S, Leblond CS, Hamza M, Regnault B, Lemée L, Mathieu A, Jaouadi H, Mkaouar R, Youssef-Turki IB, Belhadj A, Kraoua I, Bourgeron T, Abdelhak S. Homozygous 2p11.2 deletion supports the implication of ELMOD3 in hearing loss and reveals the potential association of CAPG with ASD/ID etiology. J Appl Genet 2018; 60:49-56. [PMID: 30284680 DOI: 10.1007/s13353-018-0472-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental conditions characterized by early-onset difficulties in social communication and unusually restricted, repetitive behavior and interests. Parental consanguinity may lead to higher risk of ASD and to more severe clinical presentations in the offspring. Studies of ASD families with high inbreeding enable the identification of inherited variants of this disorder particularly those with an autosomal recessive pattern of inheritance. In our study, using copy number variants (CNV) analysis, we identified a rare homozygous deletion in 2p11.2 region that affects ELMOD3, CAPG, and SH2D6 genes in a boy with ASD, intellectual disability (ID), and hearing impairment (HI). This deletion may reveal a new contiguous deletion syndrome in which ELMOD3, known to be implicated in autosomal recessive deafness underlies the HI of the proband and CAPG, member of actin regulatory proteins involved in cytoskeletal dynamic, an important function for brain development and activity, underlies the ASD/ID phenotype. A possible contribution of SH2D6 gene, as a part of a chimeric gene, to the clinical presentation of the patient is discussed. Our result supports the implication of ELMOD3 in hearing loss and highlights the potential clinical relevance of 2p11.2 deletion in autism and/or intellectual disability.
Collapse
Affiliation(s)
- Saida Lahbib
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05, Université Tunis El Manar, Institut Pasteur de Tunis, 1002, Tunis, Tunisia. .,University of Tunis El Manar, Tunis, Tunisia.
| | - Claire S Leblond
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, 75015, Paris, France.,CNRS UMR3571, Genes, Synapses and Cognition, Institut Pasteur, 75015, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, 75013, Paris, France
| | - Mariem Hamza
- Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta, Tunis, Tunisia.,Child and Adolescent Psychiatry Department, Mongi Slim Hospital, 2046, Sidi Daoud, Tunisia
| | - Béatrice Regnault
- Plateforme de Génotypage des Eucaryotes, Centre d'Innovation et Recherche Technologique (CITECH), Institut Pasteur, 75015, Paris, France
| | - Laure Lemée
- Plateforme de Génotypage des Eucaryotes, Centre d'Innovation et Recherche Technologique (CITECH), Institut Pasteur, 75015, Paris, France
| | - Alexandre Mathieu
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, 75015, Paris, France.,CNRS UMR3571, Genes, Synapses and Cognition, Institut Pasteur, 75015, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, 75013, Paris, France
| | - Hager Jaouadi
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05, Université Tunis El Manar, Institut Pasteur de Tunis, 1002, Tunis, Tunisia
| | - Rahma Mkaouar
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05, Université Tunis El Manar, Institut Pasteur de Tunis, 1002, Tunis, Tunisia
| | - Ilhem Ben Youssef-Turki
- Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta, Tunis, Tunisia.,Research Unit UR12 SP24 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007, Tunis, Tunisia
| | - Ahlem Belhadj
- Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta, Tunis, Tunisia.,Child and Adolescent Psychiatry Department, Mongi Slim Hospital, 2046, Sidi Daoud, Tunisia
| | - Ichraf Kraoua
- Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta, Tunis, Tunisia.,Research Unit UR12 SP24 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007, Tunis, Tunisia
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, 75015, Paris, France.,CNRS UMR3571, Genes, Synapses and Cognition, Institut Pasteur, 75015, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, 75013, Paris, France
| | - Sonia Abdelhak
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05, Université Tunis El Manar, Institut Pasteur de Tunis, 1002, Tunis, Tunisia
| |
Collapse
|