1
|
MacGowan J, Cardenas M, Williams MK. Fold-and-fuse neurulation in zebrafish requires vangl2. Dev Biol 2025; 524:55-68. [PMID: 40334836 DOI: 10.1016/j.ydbio.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Shaping of the future brain and spinal cord during neurulation is an essential component of early vertebrate development. In amniote embryos, primary neurulation occurs through a "fold-and-fuse" mechanism by which the edges of the neural plate fuse into the hollow neural tube. Failure of neural fold fusion results in neural tube defects (NTDs), which are among the most devastating and common congenital anomalies worldwide. Unlike amniotes, the zebrafish neural tube develops largely via formation of a solid neural keel that later cavitates to form a midline lumen. Although many aspects of primary neurulation are conserved in zebrafish, including neural fold zippering, it was not clear how well these events resemble analogous processes in amniote embryos. Here, we demonstrate that despite outward differences, zebrafish anterior neurulation closely resembles that of mammals. For the first time in zebrafish embryos, we directly observe enclosure of a lumen by the bilateral neural folds, which fuse by zippering between at least two distinct closure sites. Both the apical constriction that elevates the neural folds and the zippering that fuses them coincide with apical Myosin enrichment. We further show that embryos lacking vangl2, a core planar cell polarity and NTD risk gene, exhibit delayed and abnormal neural fold fusion that fails to enclose a lumen. These defects can also be observed in fixed embryos, enabling their detection without live imaging. Together, our data provide direct evidence for fold-and-fuse neurulation in zebrafish and its disruption upon loss of an NTD risk gene, highlighting the deep conservation of primary neurulation across vertebrates.
Collapse
Affiliation(s)
- Jacalyn MacGowan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mara Cardenas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Margot Kossmann Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
MacGowan J, Cardenas M, Williams MK. Fold-and-fuse neurulation in zebrafish requires Vangl2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.09.566412. [PMID: 37986956 PMCID: PMC10659374 DOI: 10.1101/2023.11.09.566412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Shaping of the future brain and spinal cord during neurulation is an essential component of early vertebrate development. In amniote embryos, primary neurulation occurs through a "fold-and-fuse" mechanism by which the edges of the neural plate fuse into the hollow neural tube. Failure of neural fold fusion results in neural tube defects (NTDs), which are among the most devastating and common congenital anomalies worldwide. Unlike amniotes, the zebrafish neural tube develops largely via formation of a solid neural keel that later cavitates to form a midline lumen. Although many aspects of primary neurulation are conserved in zebrafish, including neural fold zippering, it was not clear how well these events resemble analogous processes in amniote embryos. Here, we demonstrate that despite outward differences, zebrafish anterior neurulation closely resembles that of mammals. For the first time in zebrafish embryos, we directly observe enclosure of a lumen by the bilateral neural folds, which fuse by zippering between at least two distinct closure sites. Both the apical constriction that elevates the neural folds and the zippering that fuses them coincide with apical Myosin enrichment. We further show that embryos lacking vangl2, a core planar cell polarity and NTD risk gene, exhibit delayed and abnormal neural fold fusion that fails to enclose a lumen. These defects can also be observed in fixed embryos, enabling their detection without live imaging. Together, our data provide direct evidence for fold-and-fuse neurulation in zebrafish and its disruption upon loss of an NTD risk gene, highlighting the deep conservation of primary neurulation across vertebrates.
Collapse
Affiliation(s)
- Jacalyn MacGowan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Mara Cardenas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Margot Kossmann Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Lu L, Bai M, Zheng Y, Wang X, Chen Z, Peng R, Finnell RH, Zhao T, Li C, Wu B, Lei Y, Li J, Wang H. The interaction of endorepellin and neurexin triggers neuroepithelial autophagy and maintains neural tube development. Sci Bull (Beijing) 2024; 69:2260-2272. [PMID: 38702277 DOI: 10.1016/j.scib.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 05/06/2024]
Abstract
Heparan sulfate proteoglycan 2 (HSPG2) gene encodes the matrix protein Perlecan, and genetic inactivation of this gene creates mice that are embryonic lethal with severe neural tube defects (NTDs). We discovered rare genetic variants of HSPG2 in 10% cases compared to only 4% in controls among a cohort of 369 NTDs. Endorepellin, a peptide cleaved from the domain V of Perlecan, is known to promote angiogenesis and autophagy in endothelial cells. The roles of enderepellin in neurodevelopment remain unclear so far. Our study revealed that endorepellin can migrate to the neuroepithelial cells and then be recognized and bind with the neuroepithelia receptor neurexin in vivo. Through the endocytic pathway, the interaction of endorepellin and neurexin physiologically triggers autophagy and appropriately modulates the differentiation of neural stem cells into neurons as a blocker, which is necessary for normal neural tube closure. We created knock-in (KI) mouse models with human-derived HSPG2 variants, using sperm-like stem cells that had been genetically edited by CRISPR/Cas9. We realized that any HSPG2 variants that affected the function of endorepellin were considered pathogenic causal variants for human NTDs given that the severe NTD phenotypes exhibited by these KI embryos occurred in a significantly higher response frequency compared to wildtype embryos. Our study provides a paradigm for effectively confirming pathogenic mutations in other genetic diseases. Furthermore, we demonstrated that using autophagy inhibitors at a cellular level can repress neuronal differentiation. Therefore, autophagy agonists may prevent NTDs resulting from failed autophagy maintenance and neuronal over-differentiation caused by deleterious endorepellin variants.
Collapse
Affiliation(s)
- Lei Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Meizhu Bai
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yufang Zheng
- Obstetrics & Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200090, China
| | - Xiukun Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhongzhong Chen
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Rui Peng
- Obstetrics & Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200090, China
| | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston 77031, USA
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Chengtao Li
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bo Wu
- Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518028, China
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston 77031, USA.
| | - Jinsong Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Hongyan Wang
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China; Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518028, China; Children's Hospital, Fudan University, Shanghai 201102, China.
| |
Collapse
|
4
|
Mann LK, Pandiri S, Agarwal N, Northrup H, Au KS, Grundberg E, Bergh EP, Austin MT, Patel R, Miller B, Zhu S, Feinberg JS, Lai D, Tsao K, Fletcher SA, Papanna R. Morphometric Analysis of Spina Bifida after Fetal Repair Shows New Subtypes with Associated Outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308088. [PMID: 38853851 PMCID: PMC11160825 DOI: 10.1101/2024.05.29.24308088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Importance The binary classification of spina bifida lesions as myelomeningocele (with sac) or myeloschisis (without sac) belies a spectrum of morphologies, which have not been correlated to clinical characteristics and outcomes. Objective To characterize spina bifida lesion types and correlate them with preoperative presentation and postoperative outcomes. Design Secondary analysis of images and videos obtained during fetoscopic spina bifida repair surgery from 2020-2023. Setting Fetal surgery was performed at a quaternary care center. Participants A prospective cohort of patients referred for fetal spina bifida underwent fetoscopic repair under an FDA-approved protocol. Of 60 lesions repaired, 57 had available images and were included in the analysis. Interventions or Exposures We evaluated lesion morphology on high-resolution intraoperative images and videos to categorize lesions based on placode exposure and nerve root stretching. Main Outcomes and Measures The reproducibility of the lesion classification was assessed via Kappa interrater agreement. Preoperative characteristics analyzed include ventricle size, tonsillar herniation level, lower extremities movement, and lesion dimensions. Outcomes included surgical time, need for patch for skin closure, gestational age at delivery, preterm premature rupture of membranes (PPROM), and neonatal cerebrospinal fluid (CSF) diversion. Results We distinguished five lesion types that differ across a range of sac sizes, nerve root stretching, and placode exposure, with 93% agreement between examiners (p<0.001). Fetal characteristics at preoperative evaluation differed significantly by lesion type, including lesion volume (p<0.001), largest ventricle size (p=0.008), tonsillar herniation (p=0.005), and head circumference (p=0.03). Lesion level, talipes, and lower extremities movement did not differ by type. Surgical and perinatal outcomes differed by lesion type, including need for patch skin closure (p<0.001), gestational age at delivery (p=0.01), and NICU length of stay (p<0.001). PPROM, CSF leakage at birth, and CSF diversion in the NICU did not differ between lesion groups. Linear regression associated severity of ventriculomegaly with lesion type, but not with tonsillar herniation level. Conclusions and Relevance There is a distinct phenotypic spectrum in open spina bifida with differential baseline presentation and outcomes. Severity of ventriculomegaly is associated with lesion type, rather than tonsillar herniation level. Our findings expand the classification of spina bifida to reveal a spectrum that warrants further study.
Collapse
Affiliation(s)
- Lovepreet K. Mann
- Division of Fetal Intervention, Department of Obstetrics, Gynecology & Reproductive Sciences, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Shreya Pandiri
- Division of Fetal Intervention, Department of Obstetrics, Gynecology & Reproductive Sciences, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Neha Agarwal
- Division of Fetal Intervention, Department of Obstetrics, Gynecology & Reproductive Sciences, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Elin Grundberg
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO 64108
| | - Eric P. Bergh
- Division of Fetal Intervention, Department of Obstetrics, Gynecology & Reproductive Sciences, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Mary T. Austin
- Department of Pediatric Surgery, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Rajan Patel
- Neuroradiology Section, Department of Radiology, Texas Children’s Hospital, Houston, TX 77030
| | - Brandon Miller
- Department of Pediatric Surgery, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Sen Zhu
- Division of Fetal Intervention, Department of Obstetrics, Gynecology & Reproductive Sciences, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Jonathan S. Feinberg
- Division of Fetal Intervention, Department of Obstetrics, Gynecology & Reproductive Sciences, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Dejian Lai
- Department of Biostatistics, School of Public Health, UTHealth Houston, Houston, TX
| | - KuoJen Tsao
- Department of Pediatric Surgery, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Stephen A. Fletcher
- Department of Pediatric Surgery, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| | - Ramesha Papanna
- Division of Fetal Intervention, Department of Obstetrics, Gynecology & Reproductive Sciences, McGovern Medical School, UTHealth Science Center, Houston, TX 77030
| |
Collapse
|
5
|
McKay L, Petrelli B, Pind M, Reynolds JN, Wintle RF, Chudley AE, Drögemöller B, Fainsod A, Scherer SW, Hanlon-Dearman A, Hicks GG. Risk and Resilience Variants in the Retinoic Acid Metabolic and Developmental Pathways Associated with Risk of FASD Outcomes. Biomolecules 2024; 14:569. [PMID: 38785976 PMCID: PMC11117505 DOI: 10.3390/biom14050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a common neurodevelopmental disorder that affects an estimated 2-5% of North Americans. FASD is induced by prenatal alcohol exposure (PAE) during pregnancy and while there is a clear genetic contribution, few genetic factors are currently identified or understood. In this study, using a candidate gene approach, we performed a genetic variant analysis of retinoic acid (RA) metabolic and developmental signaling pathway genes on whole exome sequencing data of 23 FASD-diagnosed individuals. We found risk and resilience alleles in ADH and ALDH genes known to normally be involved in alcohol detoxification at the expense of RA production, causing RA deficiency, following PAE. Risk and resilience variants were also identified in RA-regulated developmental pathway genes, especially in SHH and WNT pathways. Notably, we also identified significant variants in the causative genes of rare neurodevelopmental disorders sharing comorbidities with FASD, including STRA6 (Matthew-Wood), SOX9 (Campomelic Dysplasia), FDG1 (Aarskog), and 22q11.2 deletion syndrome (TBX1). Although this is a small exploratory study, the findings support PAE-induced RA deficiency as a major etiology underlying FASD and suggest risk and resilience variants may be suitable biomarkers to determine the risk of FASD outcomes following PAE.
Collapse
Affiliation(s)
- Leo McKay
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Berardino Petrelli
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Molly Pind
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - James N. Reynolds
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Richard F. Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Albert E. Chudley
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Britt Drögemöller
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12271, Jerusalem 9112102, Israel
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON M5G 1L7, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ana Hanlon-Dearman
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Geoffrey G. Hicks
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
6
|
Zhang M, Hu X, Wang L. A Review of Cerebrospinal Fluid Circulation and the Pathogenesis of Congenital Hydrocephalus. Neurochem Res 2024; 49:1123-1136. [PMID: 38337135 PMCID: PMC10991002 DOI: 10.1007/s11064-024-04113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
The brain's ventricles are filled with a colorless fluid known as cerebrospinal fluid (CSF). When there is an excessive accumulation of CSF in the ventricles, it can result in high intracranial pressure, ventricular enlargement, and compression of the surrounding brain tissue, leading to potential damage. This condition is referred to as hydrocephalus. Hydrocephalus is classified into two categories: congenital and acquired. Congenital hydrocephalus (CH) poses significant challenges for affected children and their families, particularly in resource-poor countries. Recognizing the psychological and economic impacts is crucial for developing interventions and support systems that can help alleviate the distress and burden faced by these families. As our understanding of CSF production and circulation improves, we are gaining clearer insights into the causes of CH. In this article, we will summarize the current knowledge regarding CSF circulation pathways and the underlying causes of CH. The main causes of CH include abnormalities in the FoxJ1 pathway of ventricular cilia, dysfunctions in the choroid plexus transporter Na+-K+-2Cl- contransporter isoform 1, developmental abnormalities in the cerebral cortex, and structural abnormalities within the brain. Understanding the causes of CH is indeed crucial for advancing research and developing effective treatment strategies. In this review, we will summarize the findings from existing studies on the causes of CH and propose potential research directions to further our understanding of this condition.
Collapse
Affiliation(s)
- Mingzhao Zhang
- Laboratory of pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Xiangjun Hu
- Laboratory of pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| | - Lifeng Wang
- Laboratory of pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
7
|
Feng X, Ye Y, Zhang J, Zhang Y, Zhao S, Mak JCW, Otomo N, Zhao Z, Niu Y, Yonezawa Y, Li G, Lin M, Li X, Cheung PWH, Xu K, Takeda K, Wang S, Xie J, Kotani T, Choi VNT, Song YQ, Yang Y, Luk KDK, Lee KS, Li Z, Li PS, Leung CYH, Lin X, Wang X, Qiu G, Watanabe K, Wu Z, Posey JE, Ikegawa S, Lupski JR, Cheung JPY, Zhang TJ, Gao B, Wu N. Core planar cell polarity genes VANGL1 and VANGL2 in predisposition to congenital vertebral malformations. Proc Natl Acad Sci U S A 2024; 121:e2310283121. [PMID: 38669183 PMCID: PMC11067467 DOI: 10.1073/pnas.2310283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Xin Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yongyu Ye
- Department of Orthopedic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou510080, China
| | - Jianan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan250012, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Judith C. W. Mak
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nao Otomo
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Zhengye Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Yoshiro Yonezawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Guozhuang Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Mao Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Prudence Wing Hang Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Kazuki Takeda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Junjie Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Vanessa N. T. Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Keith Dip Kei Luk
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kin Shing Lee
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ziquan Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Pik Shan Li
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Connie Y. H. Leung
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | | | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | | | - Zhihong Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston77030, TX
- Texas Children’s Hospital, Houston77030, TX
- Department of Pediatrics, Baylor College of Medicine, Houston77030, TX
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
- Centre for Translational Stem Cell Biology, Hong Kong Special Administrative Region, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| |
Collapse
|
8
|
Oxman E, Li H, Wang HY, Zohn IE. Identification and functional analysis of rare HECTD1 missense variants in human neural tube defects. Hum Genet 2024; 143:263-277. [PMID: 38451291 PMCID: PMC11043113 DOI: 10.1007/s00439-024-02647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 03/08/2024]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased extracellular heat shock protein 90 (eHSP90) secretion to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with NTDs in humans.
Collapse
Affiliation(s)
- Elias Oxman
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC, 20012, USA
| | - Huili Li
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Hong-Yan Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Irene E Zohn
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC, 20012, USA.
| |
Collapse
|
9
|
Zhang Z, Lin X, Wei L, Wu Y, Xu L, Wu L, Wei X, Zhao S, Zhu X, Xu F. A framework for Frizzled-G protein coupling and implications to the PCP signaling pathways. Cell Discov 2024; 10:3. [PMID: 38182578 PMCID: PMC10770037 DOI: 10.1038/s41421-023-00627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/19/2023] [Indexed: 01/07/2024] Open
Abstract
The ten Frizzled receptors (FZDs) are essential in Wnt signaling and play important roles in embryonic development and tumorigenesis. Among these, FZD6 is closely associated with lens development. Understanding FZD activation mechanism is key to unlock these emerging targets. Here we present the cryo-EM structures of FZD6 and FZD3 which are known to relay non-canonical planar cell polarity (PCP) signaling pathways as well as FZD1 in their G protein-coupled states and in the apo inactive states, respectively. Comparison of the three inactive/active pairs unveiled a shared activation framework among all ten FZDs. Mutagenesis along with imaging and functional analysis on the human lens epithelial tissues suggested potential crosstalk between the G-protein coupling of FZD6 and the PCP signaling pathways. Together, this study provides an integrated understanding of FZD structure and function, and lays the foundation for developing therapeutic modulators to activate or inhibit FZD signaling for a range of disorders including cancers and cataracts.
Collapse
Affiliation(s)
- Zhibin Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi Lin
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ling Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lu Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xiaohu Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
10
|
Oxman E, Li H, Wang HY, Zohn I. Identification and Functional Analysis of Rare HECTD1 Missense Variants in Human Neural Tube Defects. RESEARCH SQUARE 2024:rs.3.rs-3794712. [PMID: 38260607 PMCID: PMC10802691 DOI: 10.21203/rs.3.rs-3794712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased secretion of extracellular heat shock protein 90 (eHSP90) to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with human disease and suggest that sequence variation in HECTD1 may play a role in the etiology of human NTDs.
Collapse
Affiliation(s)
| | - Huili Li
- University of Colorado at Boulder
| | | | | |
Collapse
|
11
|
Han X, Cao X, Aguiar-Pulido V, Yang W, Karki M, Ramirez PAP, Cabrera RM, Lin YL, Wlodarczyk BJ, Shaw GM, Ross ME, Zhang C, Finnell RH, Lei Y. CIC missense variants contribute to susceptibility for spina bifida. Hum Mutat 2022; 43:2021-2032. [PMID: 36054333 PMCID: PMC9772115 DOI: 10.1002/humu.24460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Neural tube defects (NTDs) are congenital malformations resulting from abnormal embryonic development of the brain, spine, or spinal column. The genetic etiology of human NTDs remains poorly understood despite intensive investigation. CIC, homolog of the Capicua transcription repressor, has been reported to interact with ataxin-1 (ATXN1) and participate in the pathogenesis of spinocerebellar ataxia type 1. Our previous study demonstrated that CIC loss of function (LoF) variants contributed to the cerebral folate deficiency syndrome by downregulating folate receptor 1 (FOLR1) expression. Given the importance of folate transport in neural tube formation, we hypothesized that CIC variants could contribute to increased risk for NTDs by depressing embryonic folate concentrations. In this study, we examined CIC variants from whole-genome sequencing (WGS) data of 140 isolated spina bifida cases and identified eight missense variants of CIC gene. We tested the pathogenicity of the observed variants through multiple in vitro experiments. We determined that CIC variants decreased the FOLR1 protein level and planar cell polarity (PCP) pathway signaling in a human cell line (HeLa). In a murine cell line (NIH3T3), CIC loss of function variants downregulated PCP signaling. Taken together, this study provides evidence supporting CIC as a risk gene for human NTD.
Collapse
Affiliation(s)
- Xiao Han
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Vanessa Aguiar-Pulido
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Computer Science, University of Miami, Coral
Gables, FL 33146, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Paula Andrea Pimienta Ramirez
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - M. Elizabeth Ross
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
- Departments of Molecular and Human Genetics and Medicine,
Baylor College of Medicine, Houston, TX 77031, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| |
Collapse
|
12
|
Liu Y, Dong L, Zhi X, Liu Y, Zhao L, Xu X, Wang L, Zheng J, Pu L, Gu C, Shu J, Cai C. Single nucleotide polymorphisms of PCP pathway related genes participate in the occurrence and development of neural tube defect. Mol Genet Genomic Med 2022; 11:e2094. [PMID: 36378568 PMCID: PMC9834144 DOI: 10.1002/mgg3.2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/08/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND To screen the single nucleotide polymorphisms (SNPs) in the coding regions of VANGL and FZD family members related to the plane cell polarity (PCP) signaling pathway in neural tube defects (NTDs) patients, so as to provide theoretical and experimental basis for the prevention and treatment of NTDs by intervening PCP signal transduction. METHODS 112 NTDs patients were collected as the case group and 112 craniocerebral trauma patients as control. Afterwards, blood genomic DNA was extracted and sequenced. The distribution of SNP alleles and genotypes between case and control groups was analyzed. Finally, the NTD rat model was constructed, and the effect of SNPs on the expression level of VANGL and FZD genes was verified by qRT-PCR. RESULTS GC genotype was newly found at VANGL1 c.346G>A, as well as AT genotype in FZD6 c.97A>G. The distribution of VANGL1 c.346g>A allele and genotype was statistically different between the case and control groups (p < 0.05). The newly found genotype GC increased the risk of NTDs (OR = 9.918, 95% CI: 1.234%-79.709%). The results of qRT-PCR showed that the expression level of FZD6 in E11 NTD fetuses were significantly increased (p < 0.05), but there was no obvious difference in the expression of VANGL1. CONCLUSION We found a new variant of VANGL1 c.346G>A, whose GC genotype might play an important role in the pathogenesis of NTDs. The SNPs of VANGL1 had no significant effect on its expression level, indicating that it may induce NTDs through other ways. FZD6 was significantly overexpressed in NTDs fetuses.
Collapse
Affiliation(s)
- Yan Liu
- Department of NephrologyTianjin Children's Hospital (Children's Hospital of Tianjin University)TianjinChina,Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Liang Dong
- Department of Pediatric General SurgeryTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Xiufang Zhi
- Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Yang Liu
- Department of NeonatologyTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Linsheng Zhao
- Department of PathologyTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Xiaowei Xu
- Institute of PediatricsTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Lu Wang
- Institute of PediatricsTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Jie Zheng
- Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Linjie Pu
- Department of NeonatologyTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Chunyu Gu
- Department of NeonatologyTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Jianbo Shu
- Institute of PediatricsTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina,Tianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
| | - Chunquan Cai
- Institute of PediatricsTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina,Tianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
| |
Collapse
|
13
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 PMCID: PMC11803072 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
14
|
Baldwin AT, Kim JH, Wallingford JB. In vivo high-content imaging and regression analysis reveal non-cell autonomous functions of Shroom3 during neural tube closure. Dev Biol 2022; 491:105-112. [PMID: 36113571 PMCID: PMC10118288 DOI: 10.1016/j.ydbio.2022.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/02/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
Abstract
During neural tube closure, neural ectoderm cells constrict their apical surfaces to bend and fold the tissue into a tube that will become the central nervous system. Recent data from mice and humans with neural tube defects suggest that key genes required for neural tube closure can exert non-cell autonomous effects on cell behavior, but the nature of these effects remains obscure. Here, we coupled tissue-scale, high-resolution time-lapse imaging of the closing neural tube of Xenopus to multivariate regression modeling, and we show that medial actin accumulation drives apical constriction non-autonomously in neighborhoods of cells, rather than solely in individual cells. To further explore this effect, we examined mosaic crispant embryos and identified both autonomous and non-autonomous effects of the apical constriction protein Shroom3.
Collapse
Affiliation(s)
- Austin T Baldwin
- Dept. of Molecular Biosciences, University of Texas at Austin, United States
| | - Juliana H Kim
- Dept. of Molecular Biosciences, University of Texas at Austin, United States
| | - John B Wallingford
- Dept. of Molecular Biosciences, University of Texas at Austin, United States.
| |
Collapse
|
15
|
Wang C, Seltzsam S, Zheng B, Wu CHW, Nicolas-Frank C, Yousef K, Au KS, Mann N, Pantel D, Schneider S, Schierbaum L, Kitzler TM, Connaughton DM, Mao Y, Dai R, Nakayama M, Kari JA, Desoky SE, Shalaby M, Eid LA, Awad HS, Tasic V, Mane SM, Lifton RP, Baum MA, Shril S, Estrada CR, Hildebrandt F. Whole exome sequencing identifies potential candidate genes for spina bifida derived from mouse models. Am J Med Genet A 2022; 188:1355-1367. [PMID: 35040250 PMCID: PMC8995376 DOI: 10.1002/ajmg.a.62644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022]
Abstract
Spina bifida (SB) is the second most common nonlethal congenital malformation. The existence of monogenic SB mouse models and human monogenic syndromes with SB features indicate that human SB may be caused by monogenic genes. We hypothesized that whole exome sequencing (WES) allows identification of potential candidate genes by (i) generating a list of 136 candidate genes for SB, and (ii) by unbiased exome-wide analysis. We generated a list of 136 potential candidate genes from three categories and evaluated WES data of 50 unrelated SB cases for likely deleterious variants in 136 potential candidate genes, and for potential SB candidate genes exome-wide. We identified 6 likely deleterious variants in 6 of the 136 potential SB candidate genes in 6 of the 50 SB cases, whereof 4 genes were derived from mouse models, 1 gene was derived from human nonsyndromic SB, and 1 gene was derived from candidate genes known to cause human syndromic SB. In addition, by unbiased exome-wide analysis, we identified 12 genes as potential candidates for SB. Identification of these 18 potential candidate genes in larger SB cohorts will help decide which ones can be considered as novel monogenic causes of human SB.
Collapse
Affiliation(s)
- Chunyan Wang
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Steve Seltzsam
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bixia Zheng
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Han Wilfred Wu
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Departments of Urology and Genetics, Case Western Reserve University and University Hospitals, Cleveland, OH, USA
| | - Camille Nicolas-Frank
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kirollos Yousef
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kit Sing Au
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nina Mann
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dalia Pantel
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Sophia Schneider
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Schierbaum
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas M Kitzler
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dervla M. Connaughton
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Youying Mao
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rufeng Dai
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Makiko Nakayama
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jameela A. Kari
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Nephrology Center of Excellence, s, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Sherif El Desoky
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Nephrology Center of Excellence, s, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed Shalaby
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Nephrology Center of Excellence, s, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Loai A. Eid
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Hazem S. Awad
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Velibor Tasic
- Medical Faculty Skopje, University Children’s Hospital, Skopje, North Macedonia
| | - Shrikant M. Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York, USA
| | - Michelle A. Baum
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos R. Estrada
- Department of Urology, Boston Children’s Hospital; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Binagui-Casas A, Dias A, Guillot C, Metzis V, Saunders D. Building consensus in neuromesodermal research: Current advances and future biomedical perspectives. Curr Opin Cell Biol 2021; 73:133-140. [PMID: 34717142 DOI: 10.1016/j.ceb.2021.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The development of the vertebrate body axis relies on the activity of different populations of axial progenitors, including neuromesodermal progenitors. Currently, the term 'Neuromesodermal progenitors' is associated with various definitions. Here, we use distinct terminologies to highlight advances in our understanding of this cell type at both the single-cell and population levels. We discuss how these recent insights prompt new opportunities to address a range of biomedical questions spanning cancer metastasis, congenital disorders, cellular metabolism, regenerative medicine, and evolution. Finally, we outline some of the major unanswered questions and propose future directions at the forefront of neuromesodermal research.
Collapse
Affiliation(s)
- Anahí Binagui-Casas
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - André Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| | - Charlène Guillot
- Department of Pathology, Brigham and Women's Hospital & Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA, USA; Institute of Genetics, Reproduction and Development, Medical school, University of Clermont Auvergne, 28, Place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Vicki Metzis
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
| | - Dillan Saunders
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| |
Collapse
|
17
|
Zhu H, Wang L, Ren A. [Research progress on the etiology and pathogenesis of spina bifida]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1368-1373. [PMID: 34779160 DOI: 10.7507/1002-1892.202106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research progress on etiology and pathogenesis of spina bifida. Methods By consulting relevant domestic and foreign research literature on spina bifida, the classification, epidemic trend, pathogenesis, etiology, prevention and treatment of it were analyzed and summarized. Results Spina bifida, a common phenotype of neural tube defects, is classified based on the degree and pattern of malformation associated with neuroectodermal involvement and is due to the disturbance of neural tube closure 28 days before embryonic development. The prevalence of spina bifida varies greatly among different ethnic groups and regions, and its etiology is complex. Currently, some spina bifida patients can be prevented by folic acid supplements, and with the improvement of treatment technology, the short-term and long-term survival rate of children with spina bifida has improved. Conclusion The research on the pathogenesis of spina bifida will be based on the refined individual information on exposure, genetics, and complex phenotype, and will provide a theoretical basis for improving prevention and treatment strategies through multidisciplinary cooperation.
Collapse
Affiliation(s)
- Haiyan Zhu
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| | - Linlin Wang
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| | - Aiguo Ren
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| |
Collapse
|
18
|
Mancini P, Ossipova O, Sokol SY. The dorsal blastopore lip is a source of signals inducing planar cell polarity in the Xenopus neural plate. Biol Open 2021; 10:bio058761. [PMID: 34259326 PMCID: PMC8325942 DOI: 10.1242/bio.058761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Coordinated polarization of cells in the tissue plane, known as planar cell polarity (PCP), is associated with a signaling pathway critical for the control of morphogenetic processes. Although the segregation of PCP components to opposite cell borders is believed to play a critical role in this pathway, whether PCP derives from egg polarity or preexistent long-range gradient, or forms in response to a localized cue, remains a challenging question. Here we investigate the Xenopus neural plate, a tissue that has been previously shown to exhibit PCP. By imaging Vangl2 and Prickle3, we show that PCP is progressively acquired in the neural plate and requires a signal from the posterior region of the embryo. Tissue transplantations indicated that PCP is triggered in the neural plate by a planar cue from the dorsal blastopore lip. The PCP cue did not depend on the orientation of the graft and was distinct from neural inducers. These observations suggest that neuroectodermal PCP is not instructed by a preexisting molecular gradient but induced by a signal from the dorsal blastopore lip.
Collapse
Affiliation(s)
| | | | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
19
|
Tian T, Cao X, Chen Y, Jin L, Li Z, Han X, Lin Y, Wlodarczyk BJ, Finnell RH, Yuan Z, Wang L, Ren A, Lei Y. Somatic and de novo Germline Variants of MEDs in Human Neural Tube Defects. Front Cell Dev Biol 2021; 9:641831. [PMID: 33748132 PMCID: PMC7969791 DOI: 10.3389/fcell.2021.641831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/15/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are among the most common and severe congenital defects in humans. Their genetic etiology is complex and remains poorly understood. The Mediator complex (MED) plays a vital role in neural tube development in animal models. However, no studies have yet examined the role of its human homolog in the etiology of NTDs. METHODS In this study, 48 pairs of neural lesion site and umbilical cord tissues from NTD and 21 case-parent trios were involved in screening for NTD-related somatic and germline de novo variants. A series of functional cell assays were performed. We generated a Med12 p.Arg1784Cys knock-in mouse using CRISPR/Cas9 technology to validate the human findings. RESULTS One somatic variant, MED12 p.Arg1782Cys, was identified in the lesion site tissue from an NTD fetus. This variant was absent in any other normal tissue from different germ layers of the same case. In 21 case-parent trios, one de novo stop-gain variant, MED13L p.Arg1760∗, was identified. Cellular functional studies showed that MED12 p.Arg1782Cys decreased MED12 protein level and affected the regulation of MED12 on the canonical-WNT signaling pathway. The Med12 p.Arg1784Cys knock-in mouse exhibited exencephaly and spina bifida. CONCLUSION These findings provide strong evidence that functional variants of MED genes are associated with the etiology of some NTDs. We demonstrated a potentially important role for somatic variants in the occurrence of NTDs. Our study is the first study in which an NTD-related variant identified in humans was validated in mice using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Tian Tian
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xuanye Cao
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Yongyan Chen
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lei Jin
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhiwen Li
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xiao Han
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Ying Lin
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Bogdan J. Wlodarczyk
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Richard H. Finnell
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Linlin Wang
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Aiguo Ren
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
20
|
Galea GL, Maniou E, Edwards TJ, Marshall AR, Ampartzidis I, Greene NDE, Copp AJ. Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nat Commun 2021; 12:1159. [PMID: 33608529 PMCID: PMC7895924 DOI: 10.1038/s41467-021-21372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves continue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK.
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Timothy J Edwards
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Abigail R Marshall
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Ioakeim Ampartzidis
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
21
|
Provenzano A, La Barbera A, Scagnet M, Pagliazzi A, Traficante G, Pantaleo M, Tiberi L, Vergani D, Kurtas NE, Guarducci S, Bargiacchi S, Forzano G, Artuso R, Palazzo V, Kura A, Giordano F, di Feo D, Mortilla M, De Filippi C, Mattei G, Garavelli L, Giusti B, Genitori L, Zuffardi O, Giglio S. Chiari 1 malformation and exome sequencing in 51 trios: the emerging role of rare missense variants in chromatin-remodeling genes. Hum Genet 2020; 140:625-647. [PMID: 33337535 PMCID: PMC7981314 DOI: 10.1007/s00439-020-02231-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Type 1 Chiari malformation (C1M) is characterized by cerebellar tonsillar herniation of 3–5 mm or more, the frequency of which is presumably much higher than one in 1000 births, as previously believed. Its etiology remains undefined, although a genetic basis is strongly supported by C1M presence in numerous genetic syndromes associated with different genes. Whole-exome sequencing (WES) in 51 between isolated and syndromic pediatric cases and their relatives was performed after confirmation of the defect by brain magnetic resonance image (MRI). Moreover, in all the cases showing an inherited candidate variant, brain MRI was performed in both parents and not only in the carrier one to investigate whether the defect segregated with the variant. More than half of the variants were Missense and belonged to the same chromatin-remodeling genes whose protein truncation variants are associated with severe neurodevelopmental syndromes. In the remaining cases, variants have been detected in genes with a role in cranial bone sutures, microcephaly, neural tube defects, and RASopathy. This study shows that the frequency of C1M is widely underestimated, in fact many of the variants, in particular those in the chromatin-remodeling genes, were inherited from a parent with C1M, either asymptomatic or with mild symptoms. In addition, C1M is a Mendelian trait, in most cases inherited as dominant. Finally, we demonstrate that modifications of the genes that regulate chromatin architecture can cause localized anatomical alterations, with symptoms of varying degrees.
Collapse
Affiliation(s)
- Aldesia Provenzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Andrea La Barbera
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Mirko Scagnet
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Angelica Pagliazzi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanna Traficante
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marilena Pantaleo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Debora Vergani
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Nehir Edibe Kurtas
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Silvia Guarducci
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Giulia Forzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Ada Kura
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Flavio Giordano
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Daniele di Feo
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marzia Mortilla
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Claudio De Filippi
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| |
Collapse
|