1
|
Li S, Sun M, Liu D, Wang X. Research trajectory of the mechanism of preeclampsia: a scientometric perspective. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:142. [PMID: 40302002 PMCID: PMC12042644 DOI: 10.1186/s41043-025-00806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/21/2025] [Indexed: 05/01/2025]
Abstract
OBJECTIVE This study aims to conduct a scientometric analysis on the research history and emerging trends of the pathogenesis of preeclampsia using CiteSpace and VOSviewer software. The goal is to provide guidance for future research and clinical practice. METHODS The core collection database of Web of Science was searched for research literature on the mechanism of preeclampsia from January 1980 to March 2024. CiteSpace6. 1. R6, 5. 7. R5 (64-bit), and VOSviewer1.6.19 software were used for visual analysis, including networks of keywords, countries, authors, institutions, funds, and fields. RESULTS A total of 4989 documents were analyzed in this study. The number of published articles has shown a consistent increase from 1990 to 2022, indicating that this topic remains a significant area of research. The countries, institutions, authors, journals, and fields that contributed the most articles include the USA, University of Mississippi, Lamarca, Babbette, Placenta, and the field of OBSTETRICS and GYNECOLOGY. Keyword clustering and emergence analysis identified 7 clusters, while clustering and emergence analysis of cited documents identified 14 clusters. These analyses revealed that current research on the mechanism of preeclampsia primarily focuses on placental ischemia and hypoxia, inflammatory response and immune disorders, angiogenic factor imbalance, abnormal epigenetic modifications, and intestinal flora imbalance. CONCLUSIONS Research on the mechanisms of preeclampsia is rapidly advancing. Given the presence of multiple mechanisms and pathways, further collaborative research is essential to guide clinical treatment effectively and enhance maternal and child outcomes.
Collapse
Affiliation(s)
- Shen Li
- Obstetrics Department, Rizhao People's Hospital, No. 129, Tai'an Road, Rizhao City, Shandong Province, China
| | - Meiling Sun
- Obstetrics Department, Rizhao People's Hospital, No. 129, Tai'an Road, Rizhao City, Shandong Province, China.
| | - Datong Liu
- Clinical Medical College of Jining Medical University, Jining City, Shandong Province, China
| | - Xuanyi Wang
- , 4215 193 Ferry Road, Southport, QLD, Australia
| |
Collapse
|
2
|
Kim N, Byun S, Um SJ. Additional Sex Combs-like Family Associated with Epigenetic Regulation. Int J Mol Sci 2024; 25:5119. [PMID: 38791157 PMCID: PMC11121404 DOI: 10.3390/ijms25105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The additional sex combs-like (ASXL) family, a mammalian homolog of the additional sex combs (Asx) of Drosophila, has been implicated in transcriptional regulation via chromatin modifications. Abnormal expression of ASXL family genes leads to myelodysplastic syndromes and various types of leukemia. De novo mutation of these genes also causes developmental disorders. Genes in this family and their neighbor genes are evolutionary conserved in humans and mice. This review provides a comprehensive summary of epigenetic regulations associated with ASXL family genes. Their expression is commonly regulated by DNA methylation at CpG islands preceding transcription starting sites. Their proteins primarily engage in histone tail modifications through interactions with chromatin regulators (PRC2, TrxG, PR-DUB, SRC1, HP1α, and BET proteins) and with transcription factors, including nuclear hormone receptors (RAR, PPAR, ER, and LXR). Histone modifications associated with these factors include histone H3K9 acetylation and methylation, H3K4 methylation, H3K27 methylation, and H2AK119 deubiquitination. Recently, non-coding RNAs have been identified following mutations in the ASXL1 or ASXL3 gene, along with circular ASXLs and microRNAs that regulate ASXL1 expression. The diverse epigenetic regulations linked to ASXL family genes collectively contribute to tumor suppression and developmental processes. Our understanding of ASXL-regulated epigenetics may provide insights into the development of therapeutic epigenetic drugs.
Collapse
Affiliation(s)
| | | | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, Republic of Korea; (N.K.)
| |
Collapse
|
3
|
Abhinav P, Li YJ, Huang RT, Liu XY, Gu JN, Yang CX, Xu YJ, Wang J, Yang YQ. Somatic GATA4 mutation contributes to tetralogy of Fallot. Exp Ther Med 2024; 27:91. [PMID: 38274337 PMCID: PMC10809308 DOI: 10.3892/etm.2024.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Tetralogy of Fallot (TOF) is the most prevalent cyanotic congenital heart pathology and causes infant morbidity and mortality worldwide. GATA-binding protein 4 (GATA4) serves as a pivotal transcriptional factor for embryonic cardiogenesis and germline GATA4 mutations are causally linked to TOF. However, the effects of somatic GATA4 mutations on the pathogenesis of TOF remain to be ascertained. In the present study, sequencing assay of GATA4 was performed utilizing genomic DNA derived from resected heart tissue specimens as well as matched peripheral blood specimens of 62 patients with non-familial TOF who underwent surgical treatment for TOF. Sequencing of GATA4 was also performed using the heart tissue specimens as well as matched peripheral venous blood samples of 68 sporadic cases who underwent heart valve displacement because of rheumatic heart disorder and the peripheral venous whole blood samples of 216 healthy subjects. The function of the mutant was explored by dual-luciferase activity analysis. Consequently, a new GATA4 mutation, NM_002052.5:c.708T>G;p.(Tyr236*), was found in the heart tissue of one patient with TOF. No mutation was detected in the heart tissue of the 68 cases suffering from rheumatic heart disorder or in the venous blood samples of all 346 individuals. GATA4 mutant failed to transactivate its target gene, myosin heavy chain 6. Additionally, this mutation nullified the synergistic transactivation between GATA4 and T-box transcription factor 5 or NK2 homeobox 5, two genes causative for TOF. Somatic GATA4 mutation predisposes TOF, highlighting the significant contribution of somatic variations to the molecular pathogenesis underpinning TOF.
Collapse
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
4
|
Liu Z, Jiang Y, Fang F, Li R, Han J, Yang X, Deng Q, Li LS, Lei TY, Li DZ, Liao C. ASXL3 gene mutations inhibit cell proliferation and promote cell apoptosis in mouse cardiomyocytes by upregulating lncRNA NONMMUT063967.2. Biochem Biophys Rep 2023; 35:101505. [PMID: 37435360 PMCID: PMC10331400 DOI: 10.1016/j.bbrep.2023.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Congenital heart disease (CHD) is a serious condition with unknown etiology. In a recent study, a compound heterozygous mutation (c.3526C > T [p.Arg1176Trp] and c.4643A > G [p.Asp1548Gly]) in the ASXL3 gene was identified, which is associated with CHD. This mutation was overexpressed in HL-1 mouse cardiomyocyte cells, leading to increased cell apoptosis and decreased cell proliferation. However, whether this effect is mediated by long noncoding RNAs (lncRNAs) is yet to be determined. We identified the differences among lncRNA and mRNA profiles in mouse heart tissues using sequencing to explore this issue. We detected HL-1 cell proliferation and apoptosis through CCK8 and flow cytometry. Fgfr2, lncRNA, and Ras/ERK signaling pathway expressions were evaluated using quantitative real time polymerase chain reaction (qRT-PCR) and western blot (WB) assays. We also conducted functional investigations by silencing lncRNA NONMMUT063967.2. The sequencing revealed significant changes in lncRNA and mRNA profiles, with the expression of lncRNA NONMMUT063967.2 being significantly promoted in the ASXL3 gene mutations group (MT) while the expression of Fgfr2 being downregulated. The in vitro experiments showed that ASXL3 gene mutations inhibited the proliferation of cardiomyocytes and accelerated cell apoptosis by promoting the expression of lncRNAs (NONMMUT063967.2, NONMMUT063918.2, and NONMMUT063891.2), suppressing the formation of FGFR2 transcripts, and inhibiting the Ras/ERK signaling pathway. The decrease in FGFR2 had the same effect on the Ras/ERK signaling pathway, proliferation, and apoptosis in mouse cardiomyocytes as ASXL3 mutations. Further mechanistic studies revealed that suppression of lncRNA NONMMUT063967.2 and overexpression of FGFR2 reversed the effects of the ASXL3 mutations on the Ras/ERK signaling pathway, proliferation, and apoptosis in mouse cardiomyocytes. Therefore, ASXL3 mutation decreases FGFR2 expression by upregulating lncRNA NONMMUT063967.2, inhibiting cell proliferation and promoting cell apoptosis in mouse cardiomyocytes.
Collapse
Affiliation(s)
- Zequn Liu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yanmin Jiang
- Institute of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Fu Fang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Qiong Deng
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Lu-Shan Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ting-ying Lei
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Dong-Zhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| |
Collapse
|
5
|
Siguero-Álvarez M, Salguero-Jiménez A, Grego-Bessa J, de la Barrera J, MacGrogan D, Prados B, Sánchez-Sáez F, Piñeiro-Sabarís R, Felipe-Medina N, Torroja C, Gómez MJ, Sabater-Molina M, Escribá R, Richaud-Patin I, Iglesias-García O, Sbroggio M, Callejas S, O'Regan DP, McGurk KA, Dopazo A, Giovinazzo G, Ibañez B, Monserrat L, Pérez-Pomares JM, Sánchez-Cabo F, Pendas AM, Raya A, Gimeno-Blanes JR, de la Pompa JL. A Human Hereditary Cardiomyopathy Shares a Genetic Substrate With Bicuspid Aortic Valve. Circulation 2023; 147:47-65. [PMID: 36325906 DOI: 10.1161/circulationaha.121.058767] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. METHODS We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. RESULTS Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. CONCLUSIONS These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.
Collapse
Affiliation(s)
- Marcos Siguero-Álvarez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Center for Chromosome Stability and Institut for Cellulær og Molekylær Medicin, University of Copenhagen, Denmark (M.S.)
| | - Alejandro Salguero-Jiménez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Joaquim Grego-Bessa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Jorge de la Barrera
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Belén Prados
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Pluripotent Cell Technology Unit (B.P., G.G.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Carlos Torroja
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Manuel José Gómez
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Laboratorio de Cardiogenética, Instituto Murciano de Investigación Biosanitaria, European Reference Networks and Unidad de Referencia-European Reference Networks Guard Heart de Cardiopatias Familiares, Hospital Universitario Virgen de la Arrixaca-Universidad de Murcia, El Palmar, Spain (M.S.-M., J.R.G.-B.)
| | - María Sabater-Molina
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Rubén Escribá
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Ivonne Richaud-Patin
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Olalla Iglesias-García
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
- Regenerative Medicine Program, Cima Universidad de Navarra, Navarra Institute for Health Research, Pamplona, Spain (O.I.-G.)
| | - Mauro Sbroggio
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Sergio Callejas
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Declan P O'Regan
- Medical Research Council London Institute of Medical Sciences (D.P.O.' K.A.M.), Imperial College London, United Kingdom
| | - Kathryn A McGurk
- Medical Research Council London Institute of Medical Sciences (D.P.O.' K.A.M.), Imperial College London, United Kingdom
- National Heart and Lung Institute (K.A.M.), Imperial College London, United Kingdom
| | - Ana Dopazo
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Giovanna Giovinazzo
- Pluripotent Cell Technology Unit (B.P., G.G.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Borja Ibañez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Translational Laboratory (B.I.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Cardiology Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Lorenzo Monserrat
- Instituto de Investigación Biomédica de A Coruña and Departamento Científico, Health in Code S.L., A Coruña, Spain (L.M.)
| | - José María Pérez-Pomares
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Department of Animal Biology, Faculty of Sciences, Instituto de Investigación Biomédica de Málaga and Centro Andaluz de Nanomedicina y Biotecnología, Universidad de Málaga, Spain (J.M.P.-P.)
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Angel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Juan R Gimeno-Blanes
- Laboratorio de Cardiogenética, Instituto Murciano de Investigación Biosanitaria, European Reference Networks and Unidad de Referencia-European Reference Networks Guard Heart de Cardiopatias Familiares, Hospital Universitario Virgen de la Arrixaca-Universidad de Murcia, El Palmar, Spain (M.S.-M., J.R.G.-B.)
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| |
Collapse
|
6
|
Fu F, Li R, Yu Q, Wang D, Deng Q, Li L, Lei T, Chen G, Nie Z, Yang X, Han J, Pan M, Zhen L, Zhang Y, Jing X, Li F, Li F, Zhang L, Yi C, Li Y, Lu Y, Zhou H, Cheng K, Li J, Xiang L, Zhang J, Tang S, Fang P, Li D, Liao C. Application of exome sequencing for prenatal diagnosis of fetal structural anomalies: clinical experience and lessons learned from a cohort of 1618 fetuses. Genome Med 2022; 14:123. [PMID: 36307859 PMCID: PMC9615232 DOI: 10.1186/s13073-022-01130-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Background Exome sequencing (ES) is becoming more widely available in prenatal diagnosis. However, data on its clinical utility and integration into clinical management remain limited in practice. Herein, we report our experience implementing prenatal ES (pES) in a large cohort of fetuses with anomalies detected by ultrasonography using a hospital-based in-house multidisciplinary team (MDT) facilitated by a three-step genotype-driven followed by phenotype-driven analysis framework. Methods We performed pES in 1618 fetal cases with positive ultrasound findings but negative for karyotyping and chromosome microarray analysis between January 2014 and October 2021, including both retrospective (n=565) and prospective (n=1053) cohorts. The diagnostic efficiency and its correlation to organ systems involved, phenotypic spectrum, and the clinical impacts of pES results on pregnancy outcomes were analyzed. Results A genotype-driven followed by phenotype-driven three-step approach was carried out in all trio pES. Step 1, a genotype-driven analysis resulted in a diagnostic rate of 11.6% (187/1618). Step 2, a phenotype-driven comprehensive analysis yielded additional diagnostic findings for another 28 cases (1.7%; 28/1618). In the final step 3, data reanalyses based on new phenotypes and/or clinical requests found molecular diagnosis in 14 additional cases (0.9%; 14/1618). Altogether, 229 fetal cases (14.2%) received a molecular diagnosis, with a higher positive rate in the retrospective than the prospective cohort (17.3% vs. 12.4%, p<0.01). The diagnostic rates were highest in fetuses with skeletal anomalies (30.4%) and multiple organ involvements (25.9%), and lowest in fetuses with chest anomalies (0%). In addition, incidental and secondary findings with childhood-onset disorders were detected in 11 (0.7%) cases. Furthermore, we described the prenatal phenotypes for the first time for 27 gene-associated conditions (20.0%, 27/135) upon a systematic analysis of the diagnosed cases and expanded the phenotype spectrum for 26 (19.3%) genes where limited fetal phenotypic information was available. In the prospective cohort, the combined prenatal ultrasound and pES results had significantly impacted the clinical decisions (61.5%, 648/1053). Conclusions The genotype-driven approach could identify about 81.7% positive cases (11.6% of the total cohort) with the initial limited fetal phenotype information considered. The following two steps of phenotype-driven analysis and data reanalyses helped us find the causative variants in an additional 2.6% of the entire cohort (18.3% of all positive findings). Our extensive phenotype analysis on a large number of molecularly confirmed prenatal cases had greatly enriched our current knowledge on fetal phenotype-genotype correlation, which may guide more focused prenatal ultrasound in the future. This is by far the largest pES cohort study that combines a robust trio sequence data analysis, systematic phenotype-genotype correlation, and well-established MDT in a single prenatal clinical setting. This work underlines the value of pES as an essential component in prenatal diagnosis in guiding medical management and parental decision making. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01130-x.
Collapse
|
7
|
Shi HY, Xie MS, Yang CX, Huang RT, Xue S, Liu XY, Xu YJ, Yang YQ. Identification of SOX18 as a New Gene Predisposing to Congenital Heart Disease. Diagnostics (Basel) 2022; 12:diagnostics12081917. [PMID: 36010266 PMCID: PMC9406965 DOI: 10.3390/diagnostics12081917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital heart disease (CHD) is the most frequent kind of birth deformity in human beings and the leading cause of neonatal mortality worldwide. Although genetic etiologies encompassing aneuploidy, copy number variations, and mutations in over 100 genes have been uncovered to be involved in the pathogenesis of CHD, the genetic components predisposing to CHD in most cases remain unclear. We recruited a family with CHD from the Chinese Han population in the present investigation. Through whole-exome sequencing analysis of selected family members, a new SOX18 variation, namely NM_018419.3:c.349A>T; p.(Lys117*), was identified and confirmed to co-segregate with the CHD phenotype in the entire family by Sanger sequencing analysis. The heterozygous variant was absent from the 384 healthy volunteers enlisted as control individuals. Functional exploration via luciferase reporter analysis in cultivated HeLa cells revealed that Lys117*-mutant SOX18 lost transactivation on its target genes NR2F2 and GATA4, two genes responsible for CHD. Moreover, the genetic variation terminated the synergistic activation between SOX18 and NKX2.5, another gene accountable for CHD. The findings strongly indicate SOX18 as a novel gene contributing to CHD, which helps address challenges in the clinical genetic diagnosis and prenatal prophylaxis of CHD.
Collapse
Affiliation(s)
- Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, China
| | - Meng-Shi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| |
Collapse
|
8
|
Wang Q, Zhang J, Jiang N, Xie J, Yang J, Zhao X. De novo nonsense variant in ASXL3 in a Chinese girl causing Bainbridge-Ropers syndrome: A case report and review of literature. Mol Genet Genomic Med 2022; 10:e1924. [PMID: 35276034 PMCID: PMC9034677 DOI: 10.1002/mgg3.1924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bainbridge-Ropers syndrome (BRPS, OMIM #615485) was first identified in 2013 by Bainbridge et al. and is a neurodevelopment disorder characterized by failure to thrive, facial dysmorphism and severe developmental delay. BRPS is caused by heterozygous loss-of-function (LOF) variants in the additional sex combs-like 3 (ASXL3) gene. Due to the limited specific recognizable features and overlapping symptoms with Bohring-Opitz syndrome (BOS, OMIM #612990), clinical diagnosis of BRPS is challenging. METHODS In this study, a 2-year-8-month-old Chinese girl was referred for genetic evaluation of severe developmental delay. The reduced fetal movement was found during the antenatal period and bilateral varus deformity of feet was observed at birth. Whole-exome sequencing and Sanger sequencing were used to detect and confirm the variant. RESULTS A novel nonsense variant c.1063G>T (p.E355*) in the ASXL3 gene (NM_030632.3) was identified in the proband and the clinical symptoms were compatible with BRPS. The parents were physical and genetic normal and prenatal diagnosis was requested for her pregnant mother with a negative Sanger sequencing result. CONCLUSION The study revealed a de novo LOF variant in the ASXL3 gene and expanded the mutation spectrum for this clinical condition. By performing a literature review, we summarized genetic results and the clinical phenotypes of all BPRSs reported so far. More cases study may help to elucidate the function of the ASXL3 gene may be critical to understand the genetic aetiology of this syndrome and assist in accurate genetic counselling, informed decision making and prenatal diagnosis.
Collapse
Affiliation(s)
- Qin Wang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Jianming Zhang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Nan Jiang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Jiansheng Xie
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
- The University of Hong Kong‐Shenzhen Hospital ShenzhenShenzhenChina
| | - Jingxin Yang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Xiaoshan Zhao
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| |
Collapse
|
9
|
Ma L, Xu J, Tang Q, Cao Y, Kong R, Li K, Liu J, Jiang L. SLC2A3
variants in familial and sporadic congenital heart diseases in a Chinese Yunnan population. J Clin Lab Anal 2022; 36:e24456. [PMID: 35466476 DOI: 10.1002/jcla.24456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Lijing Ma
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
- Department of Endocrinology The First People’s Hospital of Yunnan Province Kunming China
| | - Jiaxin Xu
- Yan'an Hospital Affiliated to Kunming Medical University Kunming China
| | - Qisheng Tang
- Regenerative Medicine Research Center The First People's Hospital of Yunnan Province Kunming China
| | - Yu Cao
- Department of Cardiovascular Surgery The First Peoples’ Hospital of Yunnan Province Kunming China
- Department of Cardiovascular Surgery The First Affiliated Hospital of Kunming University of Science and Technology Kunming China
| | - Ruize Kong
- Department of Vascular Surgery The First Peoples’ Hospital of Yunnan Province Kunming China
- Department of Vascular Surgery The First Affiliated Hospital of Kunming University of Science and Technology Kunming China
| | - Kunlin Li
- Yan'an Hospital Affiliated to Kunming Medical University Kunming China
| | - Jie Liu
- Regenerative Medicine Research Center The First People's Hospital of Yunnan Province Kunming China
| | - Lihong Jiang
- Department of Cardiovascular Surgery The First Peoples’ Hospital of Yunnan Province Kunming China
- Department of Cardiovascular Surgery The First Affiliated Hospital of Kunming University of Science and Technology Kunming China
| |
Collapse
|
10
|
Liu ZQ, Cheng M, Fu F, Li R, Han J, Yang X, Deng Q, Li LS, Lei TY, Li DZ, Liao C. Identification of differential microRNAs and messenger RNAs resulting from ASXL transcriptional regulator 3 knockdown during during heart development. Bioengineered 2022; 13:9948-9961. [PMID: 35435106 PMCID: PMC9161854 DOI: 10.1080/21655979.2022.2062525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect. Although ASXL transcriptional regulator 3 (ASXL3) has been reported to cause hereditary CHD, ASXL3-mediated mechanisms in heart development remain unclear. In this study, we used dimethyl sulfoxide (DMSO) to induce differentiation in P19 cells, observed cell morphology using light microscopy after ASXL3 knockdown, and determined the levels of associated myocardial cell markers using reverse transcription-quantitative polymerase chain reaction and western blotting. Subsequently, we used microRNA sequencing, messenger RNA (mRNA) sequencing, and bioinformatics to initially identify the possible mechanisms through which ASXL3-related microRNAs and mRNAs affect heart development. The results indicated that DMSO induced P19 cell differentiation, which could be inhibited by ASXL3 knockdown. We screened 1214 and 1652 differentially expressed microRNAs and mRNAs, respectively, through ASXL3 knockdown and sequencing; these differentially expressed miRNAs were largely enriched in PI3K-Akt, mitogen-activated protein kinase, and Rap1 signaling pathways. Additionally, 11 miRNAs associated with heart development were selected through a literature review. Our analysis indicated the involvement of mmu-miR-323-3p in P19 cell differentiation through the PI3K-Akt pathway. In conclusion, ASXL3 may be involved in the regulation of heart development. This comprehensive study of differentially expressed microRNAs and mRNAs through ASXL3 knockdown in P19 cells provides new insights that may aid the prevention and treatment of CHD.
Collapse
Affiliation(s)
- Ze-Qun Liu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Mi Cheng
- Department of Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Qiong Deng
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Lu-Shan Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Ting-Ying Lei
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Dong-Zhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| |
Collapse
|
11
|
Abhinav P, Zhang GF, Zhao CM, Xu YJ, Wang J, Yang YQ. A novel KLF13 mutation underlying congenital patent ductus arteriosus and ventricular septal defect, as well as bicuspid aortic valve. Exp Ther Med 2022; 23:311. [PMID: 35369534 PMCID: PMC8943534 DOI: 10.3892/etm.2022.11240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Gao-Feng Zhang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
12
|
Wu K, Cong Y. Case report : a novel ASXL3 gene variant in a Sudanese boy. BMC Pediatr 2021; 21:557. [PMID: 34886823 PMCID: PMC8655995 DOI: 10.1186/s12887-021-03038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/30/2021] [Indexed: 12/04/2022] Open
Abstract
Background Bainbridge-Ropers syndrome (BRPS) [OMIM#615485] is a neurodevelopmental disorder, characterized by delayed psychomotor development with generalized hypotonia, moderate to severe intellectual disability, poor or absent speech, feeding difficulties, growth failure, dysmorphic craniofacial features and minor skeletal features. The aim of this study was to investigate the genetic etiology of a Sudanese boy with severe developmental delay, intellectual disability, and craniofacial phenotype using trio-based whole-exome sequencing. To our knowledge, no patients with ASXL3 gene variant c.3043C>T have been reported detailedly in literature. Case presentation The patient (male, 3 years 6 months) was the first born of a healthy non-consanguineous couple originating from Sudan, treated for “psychomotor retardation” for more than 8 months in Yiwu. The patient exhibited severely delayed milestones in physiological and intellectual developmental stages, language impairment, poor eye-contact, lack of subtle motions of fingers, fear of claustrophobic space, hypotonia, clinodactyly, autistic features. Peripheral blood samples were collected from the patient and his parents. Trio-based whole-exome sequencing(Trio-WES) identified a de novo heterozygous ASXL3 gene variant c.3043C>T;p.Q1015X. Sanger sequencing verified variants of this family. Conclusion Trio-WES analysis identified a de novo nonsense variant (c.3043C>T) of ASXL3 gene in a Sudanese boy. To our knowledge, the patient with this variant has not been reported previously in literature. This study presents a new case for ASXL3 gene variants, which expanded the mutational and phenotypic spectrum.
Collapse
Affiliation(s)
- Ke Wu
- Prenatal Diganosis Center, Yiwu Maternity and Child Health Care Hospital, Xinke Road C100, Yiwu, 322000, Zhejiang Province, People's Republic of China
| | - Yan Cong
- Rehabilitation Department, Yiwu Maternity and Child Health Care Hospital, Xinke Road C100, Yiwu, 322000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
13
|
Zhang S, Fu F, Zhen L, Li R, Liao C. Alteration of long non-coding RNAs and mRNAs expression profiles by compound heterozygous ASXL3 mutations in the mouse brain. Bioengineered 2021; 12:6935-6951. [PMID: 34559584 PMCID: PMC8806560 DOI: 10.1080/21655979.2021.1974811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Compound mutations in the additional sex combs-like 3 (ASXL3) gene greatly impact the expression of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in mouse myocardial tissues. Little is known about ASXL3 mutation effects on lncRNAs and mRNAs expression in the cerebrum and cerebellum. This study aims to clarify this point using quantitative real-time polymerase chain reaction and Western blotting. Transcriptome analysis based on RNA-seq followed by bioinformatics analysis were used to compare lncRNA and mRNA expression profiles. Cell proliferation, cell cycle progression, and apoptosis were evaluated after silencing of ASXL3 expression using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2 H-tetrazolium method and flow cytometry. Results showed that ASXL3 gene expression was decreased in the cerebrum and cerebellum of mice with ASXL3 P723R*P1817A mutations. We identified 319 lncRNAs and 252 mRNAs differentially expressed in the cerebrum of ASXL3 P723R*P1817A mutant mice. In the cerebellum of ASXL3 P723R*P1817A mutant mice, 5330 lncRNAs and 2204 mRNAs were differentially expressed. Differentially expressed lncRNAs and mRNAs were widely distributed across the mouse genome and were associated with various biological processes and pathways. ASXL3 silencing by siRNA transfection affected the proliferation, cell cycle progression, and apoptosis of neural cells. Therefore, the ASXL3 P723R*P1817A mutations greatly modify the lncRNA and mRNA expression profiles in the mouse cerebrum and cerebellum.
Collapse
Affiliation(s)
- Songhui Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Obstetrics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
14
|
EZH2 as an epigenetic regulator of cardiovascular development and diseases. J Cardiovasc Pharmacol 2021; 78:192-201. [PMID: 34029268 DOI: 10.1097/fjc.0000000000001062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/29/2021] [Indexed: 02/04/2023]
Abstract
ABSTRACT Enhancer of zeste homolog 2(EZH2) is an enzymatic subunit of polycomb repressive complex 2 (PRC2) and is responsible for catalyzing mono-, di-, and trimethylation of histone H3 at lysine-27(H3K27me1/2/3). Many noncoding RNAs or signaling pathways are involved in EZH2 functional alterations. This new epigenetic regulation of target genes is able to silence downstream gene expression and modify physiological and pathological processes in heart development, cardiomyocyte regeneration and cardiovascular diseases such as hypertrophy, ischemic heart diseases, atherosclerosis and cardiac fibrosis. Targeting the function of EZH2 could be a potential therapeutic approach for cardiovascular diseases.
Collapse
|
15
|
Miller DB, Piccolo SR. A Survey of Compound Heterozygous Variants in Pediatric Cancers and Structural Birth Defects. Front Genet 2021; 12:640242. [PMID: 33828584 PMCID: PMC8019969 DOI: 10.3389/fgene.2021.640242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Compound heterozygous (CH) variants occur when two recessive alleles are inherited and the variants are located at different loci within the same gene in a given individual. CH variants are important contributors to many different types of recessively inherited diseases. However, many studies overlook CH variants because identification of this type of variant requires knowing the parent of origin for each nucleotide. Using computational methods, haplotypes can be inferred using a process called "phasing," which estimates the chromosomal origin of most nucleotides. In this paper, we used germline, phased, whole-genome sequencing (WGS) data to identify CH variants across seven pediatric diseases (adolescent idiopathic scoliosis: n = 16, congenital heart defects: n = 709, disorders of sex development: n = 79, ewing sarcoma: n = 287, neuroblastoma: n = 259, orofacial cleft: n = 107, and syndromic cranial dysinnervation: n = 172), available as parent-child trios in the Gabriella Miller Kids First Data Resource Center. Relatively little is understood about the genetic underpinnings of these diseases. We classified CH variants as "potentially damaging" based on minor allele frequencies (MAF), Combined Annotation Dependent Depletion scores, variant impact on transcription or translation, and gene-level frequencies in the disease group compared to a healthy population. For comparison, we also identified homozygous alternate (HA) variants, which affect both gene copies at a single locus; HA variants represent an alternative mechanism of recessive disease development and do not require phasing. Across all diseases, 2.6% of the samples had a potentially damaging CH variant and 16.2% had a potentially damaging HA variant. Of these samples with potentially damaging variants, the average number of genes per sample was 1 with a CH variant and 1.25 with a HA variant. Across all samples, 5.1 genes per disease had a CH variant, while 35.6 genes per disease had a HA variant; on average, only 4.3% of these variants affected common genes. Therefore, when seeking to identify potentially damaging variants of a putatively recessive disease, CH variants should be considered as potential contributors to disease development. If CH variants are excluded from analysis, important candidate genes may be overlooked.
Collapse
Affiliation(s)
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
16
|
Lin S, He Z, Huang L, Liu J, Lei T, Wu J, Huang P, Zhou Y, Luo Y. Case Report: Low-Level Maternal Mosaicism of a Novel CREBBP Variant Causes Recurrent Rubinstein-Taybi Syndrome in Two Siblings of a Chinese Family. Front Genet 2021; 12:640992. [PMID: 33747050 PMCID: PMC7970026 DOI: 10.3389/fgene.2021.640992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/15/2021] [Indexed: 01/05/2023] Open
Abstract
Familial Rubinstein-Taybi syndrome (RSTS) with recurrent RSTS siblings and apparently unaffected parents is rare; such cases might result from parental somatic and/or germline mosaicism. Parental low-level (<10%) germline mosaicism in the CREBBP-associated RSTS family has not been reported. Here, we present our studies of a Chinese family with two RSTS siblings and apparently unaffected parents. We detected the apparent de novo variant (DNV) c.3235C>T (p.Gln1079*) in CREBBP in the siblings via trio whole-exome sequencing. High-depth next-generation sequencing (NGS) for the parents revealed a low-level (<10%) mosaic variant in both the peripheral blood (3.64%) and buccal mucosa (1.94%) of the unaffected mother, indicating maternal somatic and germline mosaicism. Peripheral blood RNA-sequencing analysis for the patients and normal individuals indicated that the c.3235C>T (p.Gln1079*) non-sense variant did not trigger nonsense-mediated mRNA decay to reduce CREBBP mRNA levels. Transcriptome analysis revealed 151 downregulated mRNAs and 132 upregulated mRNAs between the patients and normal individuals. This study emphasizes that high-depth NGS using multiple specimens might be applied for a family with an affected sibling caused by an apparent CREBBP DNV to identify potential low-level parental mosaicism and provide an assessment of recurrence risk.
Collapse
Affiliation(s)
- Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jialiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ting Lei
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianzhu Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peizhi Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|