1
|
Forbes EJ, Tiego J, Langmead J, Unruh KE, Mosconi MW, Finlay A, Kallady K, Maclachlan L, Moses M, Cappel K, Knott R, Chau T, Sindhu VPM, Bellato A, Groom MJ, Kerestes R, Bellgrove MA, Johnson BP. Oculomotor Function in Children and Adolescents with Autism, ADHD or Co-occurring Autism and ADHD. J Autism Dev Disord 2025:10.1007/s10803-024-06718-3. [PMID: 39856431 DOI: 10.1007/s10803-024-06718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Oculomotor characteristics, including accuracy, timing, and sensorimotor processing, are considered sensitive intermediate phenotypes for understanding the etiology of neurodevelopmental conditions, such as autism and ADHD. Oculomotor characteristics have predominantly been studied separately in autism and ADHD. Despite the high rates of co-occurrence between these conditions, only one study has investigated oculomotor processes among those with co-occurring autism + ADHD. Four hundred and five (n = 405; 226 males) Australian children and adolescents aged 4 to 18 years (M = 9.64 years; SD = 3.20 years) with ADHD (n = 64), autism (n = 66), autism + ADHD (n = 146), or neurotypical individuals (n = 129) were compared across four different oculomotor tasks: visually guided saccade, anti-saccade, sinusoidal pursuit and step-ramp pursuit. Confirmatory analyses were conducted using separate datasets acquired from the University of Nottingham UK (n = 17 autism, n = 22 ADHD, n = 32 autism + ADHD, n = 30 neurotypical) and University of Kansas USA (n = 29 autism, n = 41 neurotypical). Linear mixed effect models controlling for sex, age and family revealed that children and adolescents with autism + ADHD exhibited increased variability in the accuracy of the final saccadic eye position compared to neurotypical children and adolescents. Autistic children and adolescents demonstrated a greater number of catch-up saccades during step-ramp pursuit compared to neurotypical children and adolescents. These findings suggest that select differences in saccadic precision are unique to autistic individuals with co-occurring ADHD, indicating that measuring basic sensorimotor processes may be useful for parsing neurodevelopment and clinical heterogeneity in autism.
Collapse
Affiliation(s)
- Elana J Forbes
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia.
| | - Jeggan Tiego
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Joshua Langmead
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Kathryn E Unruh
- Life Span Institute and Kansas Center for Autism Research and Training, The University of Kansas, 12610 Quivira Rd #270, Overland Park, KS, 66213, USA
| | - Matthew W Mosconi
- Life Span Institute and Kansas Center for Autism Research and Training, The University of Kansas, 12610 Quivira Rd #270, Overland Park, KS, 66213, USA
| | - Amy Finlay
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Kathryn Kallady
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Lydia Maclachlan
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Mia Moses
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Kai Cappel
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Rachael Knott
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Tracey Chau
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | | | - Alessio Bellato
- School of Psychology, University of Southampton, Southampton, SO17 1PS, UK
- Centre for Innovation in Mental Health, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Psychology, University of Nottingham, Semenyih, Malaysia
- Mind and Neurodevelopment Research Group, University of Nottingham, Semenyih, Malaysia
| | - Madeleine J Groom
- School of Medicine, Academic Unit of Mental Health & Clinical Neurosciences, Institute of Mental Health, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| | - Rebecca Kerestes
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Mark A Bellgrove
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Beth P Johnson
- School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
- Department of Pediatrics, Monash University, Monash Children's Hospital, Level 5, 246 Clayton Rd, Melbourne, VIC, 3168, Australia
| |
Collapse
|
2
|
Putman JN, Watson SD, Zhang Z, Khandelwal N, Kulkarni A, Gibson JR, Huber KM. Pre- and Postsynaptic MEF2C Promotes Experience-Dependent, Input-Specific Development of Cortical Layer 4 to Layer 2/3 Excitatory Synapses and Regulates Activity-Dependent Expression of Synaptic Cell Adhesion Molecules. J Neurosci 2024; 44:e0098242024. [PMID: 39317473 PMCID: PMC11551898 DOI: 10.1523/jneurosci.0098-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Experience- and activity-dependent transcription is a candidate mechanism to mediate development and refinement of specific cortical circuits. Here, we demonstrate that the activity-dependent transcription factor myocyte enhancer factor 2C (MEF2C) is required in both presynaptic layer (L) 4 and postsynaptic L2/3 mouse (male and female) somatosensory (S1) cortical neurons for development of this specific synaptic connection. While postsynaptic deletion of Mef2c weakens L4 synaptic inputs, it has no effect on inputs from local L2/3, contralateral S1, or the ipsilateral frontal/motor cortex. Similarly, homozygous or heterozygous deletion of Mef2c in presynaptic L4 neurons weakens L4 to L2/3 excitatory synaptic inputs by decreasing presynaptic release probability. Postsynaptic MEF2C is specifically required during an early postnatal, experience-dependent, period for L4 to L2/3 synapse function, and expression of transcriptionally active MEF2C (MEF2C-VP16) rescues weak L4 to L2/3 synaptic strength in sensory-deprived mice. Together, these results suggest that experience- and/or activity-dependent transcriptional activation of MEF2C promotes development of L4 to L2/3 synapses. Additionally, MEF2C regulates the expression of many pre- and postsynaptic genes in postnatal cortical neurons. Interestingly, MEF2C was necessary for activity-dependent expression of many presynaptic genes, including those that function in transsynaptic adhesion and neurotransmitter release. This work provides mechanistic insight into the experience-dependent development of specific cortical circuits.
Collapse
Affiliation(s)
- Jennifer N Putman
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Sean D Watson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Zhe Zhang
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Nitin Khandelwal
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
3
|
Fields VL, Tian LH, Wiggins LD, Soke GN, Overwyk K, Moody E, Reyes N, Shapira SK, Schieve LA. Prevalence of Developmental, Psychiatric, and Neurologic Conditions in Older Siblings of Children with and without Autism Spectrum Disorder: Study to Explore Early Development. J Autism Dev Disord 2024:10.1007/s10803-024-06464-6. [PMID: 39048798 PMCID: PMC11759717 DOI: 10.1007/s10803-024-06464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
This study evaluated developmental, psychiatric, and neurologic conditions among older siblings of children with and without autism spectrum disorder (ASD) to understand the extent of familial clustering of these diagnoses. Using data from the Study to Explore Early Development, a large multi-site case-control study, the analyses included 2,963 children aged 2-5 years with ASD, other developmental disabilities (DD group), and a population-based control group (POP). Percentages of index children with older siblings with select developmental, psychiatric, and neurologic conditions were estimated and compared across index child study groups using chi-square tests and multivariable modified Poisson regression. In adjusted analyses, children in the ASD group were significantly more likely than children in the POP group to have one or more older siblings with ASD, developmental delay, attention-deficit/hyperactivity disorder, intellectual disability, sensory integration disorder (SID), speech/language delays, or a psychiatric diagnosis (adjusted prevalence ratio [aPR] range: 1.4-3.7). Children in the DD group were significantly more likely than children in the POP group to have an older sibling with most of the aforementioned conditions, except for intellectual disability and psychiatric diagnosis (aPR range: 1.4-2.2). Children in the ASD group were significantly more likely than children in the DD group to have one or more older siblings with ASD, developmental delay, SID, or a psychiatric diagnosis (aPR range: 1.4-1.9). These findings suggest that developmental disorders cluster in families. Increased monitoring and screening for ASD and other DDs may be warranted when an older sibling has a DD diagnosis or symptoms.
Collapse
Affiliation(s)
- Victoria L Fields
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Mailstop S106-4, Atlanta, GA, 30341, USA.
| | - Lin H Tian
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Mailstop S106-4, Atlanta, GA, 30341, USA
| | - Lisa D Wiggins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Mailstop S106-4, Atlanta, GA, 30341, USA
| | - Gnakub N Soke
- Global Health Center, Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Katherine Overwyk
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Mailstop S106-4, Atlanta, GA, 30341, USA
| | - Eric Moody
- College of Health Sciences, University of Wyoming, Laramie, WY, USA
| | - Nuri Reyes
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Stuart K Shapira
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Mailstop S106-4, Atlanta, GA, 30341, USA
| | - Laura A Schieve
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Mailstop S106-4, Atlanta, GA, 30341, USA
| |
Collapse
|
4
|
Mayer FP, Stewart A, Varman DR, Moritz AE, Foster JD, Owens AW, Areal LB, Gowrishankar R, Velez M, Wickham K, Phelps H, Katamish R, Rabil M, Jayanthi LD, Vaughan RA, Daws LC, Blakely RD, Ramamoorthy S. Kappa Opioid Receptor Antagonism Restores Phosphorylation, Trafficking and Behavior induced by a Disease Associated Dopamine Transporter Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539310. [PMID: 37205452 PMCID: PMC10187322 DOI: 10.1101/2023.05.03.539310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aberrant dopamine (DA) signaling is implicated in schizophrenia, bipolar disorder (BPD), autism spectrum disorder (ASD), substance use disorder, and attention-deficit/hyperactivity disorder (ADHD). Treatment of these disorders remains inadequate, as exemplified by the therapeutic use of d-amphetamine and methylphenidate for the treatment of ADHD, agents with high abuse liability. In search for an improved and non-addictive therapeutic approach for the treatment of DA-linked disorders, we utilized a preclinical mouse model expressing the human DA transporter (DAT) coding variant DAT Val559, previously identified in individuals with ADHD, ASD, or BPD. DAT Val559, like several other disease-associated variants of DAT, exhibits anomalous DA efflux (ADE) that can be blocked by d-amphetamine and methylphenidate. Kappa opioid receptors (KORs) are expressed by DA neurons and modulate DA release and clearance, suggesting that targeting KORs might also provide an alternative approach to normalizing DA-signaling disrupted by perturbed DAT function. Here we demonstrate that KOR stimulation leads to enhanced surface trafficking and phosphorylation of Thr53 in wildtype DAT, effects achieved constitutively by the Val559 mutant. Moreover, these effects can be rescued by KOR antagonism of DAT Val559 in ex vivo preparations. Importantly, KOR antagonism also corrected in vivo DA release as well as sex-dependent behavioral abnormalities observed in DAT Val559 mice. Given their low abuse liability, our studies with a construct valid model of human DA associated disorders reinforce considerations of KOR antagonism as a pharmacological strategy to treat DA associated brain disorders.
Collapse
Affiliation(s)
- Felix P. Mayer
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy E. Moritz
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Anthony W. Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Lorena B. Areal
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Raajaram Gowrishankar
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Michelle Velez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Kyria Wickham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Hannah Phelps
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Rania Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian Rabil
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Chen Z, Wang X, Zhang S, Han F. Neuroplasticity of children in autism spectrum disorder. Front Psychiatry 2024; 15:1362288. [PMID: 38726381 PMCID: PMC11079289 DOI: 10.3389/fpsyt.2024.1362288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that encompasses a range of symptoms including difficulties in verbal communication, social interaction, limited interests, and repetitive behaviors. Neuroplasticity refers to the structural and functional changes that occur in the nervous system to adapt and respond to changes in the external environment. In simpler terms, it is the brain's ability to learn and adapt to new environments. However, individuals with ASD exhibit abnormal neuroplasticity, which impacts information processing, sensory processing, and social cognition, leading to the manifestation of corresponding symptoms. This paper aims to review the current research progress on ASD neuroplasticity, focusing on genetics, environment, neural pathways, neuroinflammation, and immunity. The findings will provide a theoretical foundation and insights for intervention and treatment in pediatric fields related to ASD.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Xu Wang
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Si Zhang
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Fei Han
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Prem S, Dev B, Peng C, Mehta M, Alibutud R, Connacher RJ, St Thomas M, Zhou X, Matteson P, Xing J, Millonig JH, DiCicco-Bloom E. Dysregulation of mTOR signaling mediates common neurite and migration defects in both idiopathic and 16p11.2 deletion autism neural precursor cells. eLife 2024; 13:e82809. [PMID: 38525876 PMCID: PMC11003747 DOI: 10.7554/elife.82809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.
Collapse
Affiliation(s)
- Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Bharati Dev
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Cynthia Peng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Monal Mehta
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Rohan Alibutud
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Robert J Connacher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Madeline St Thomas
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Paul Matteson
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Jinchuan Xing
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| |
Collapse
|
7
|
Lang J, Wylie G, Haig C, Gillberg C, Minnis H. Towards system redesign: An exploratory analysis of neurodivergent traits in a childhood population referred for autism assessment. PLoS One 2024; 19:e0296077. [PMID: 38198484 PMCID: PMC10781046 DOI: 10.1371/journal.pone.0296077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Children's health services in many countries are moving from single condition diagnostic silo assessments to considering neurodevelopment in a more holistic sense. There has been increasing recognition of the importance of clinical overlap and co-occurrence of different neurotypes when assessing neurodivergent children. Using a cross-sectional service evaluation design, we investigated the overlap of neurodivergences in a cohort of children referred for autism assessment, focusing on motor, learning, and attention/activity level domains. We aimed to determine what proportion of children in a cohort referred for an autism assessment showed traits of additional neurodivergences, and what proportion were further investigated. METHODS We evaluated anonymised medical records of children aged between two and 17 years referred for autism assessment. We used validated questionnaires to assess for neurodivergent traits. A weighted scoring system was developed to determine traits in each neurodevelopmental domain and a score above the median was considered to indicate a neurodivergent trait. Evidence of further investigations were recorded. We then examined the relationships between autism traits and traits of additional neurodivergence. RESULTS 114 participants were included for evaluation. 62.3% (n = 71) had completed questionnaires for analysis. Of these, 71.8% (n = 51) scored greater than the median for at least one additional neurotype, indicating the presence of other neurodivergent traits, and 88.7% (n = 64) attracted a diagnosis of autism. Only 26.3% of children with evidence of additional neurotypes were further investigated beyond their autism assessment. CONCLUSIONS Our results demonstrate the extensive overlap between additional neurodivergent traits in a population of children referred with suspected autism and show that only a small proportion were further investigated. The use of standardised questionnaires to uncover additional neurodivergences may have utility in improving the holistic nature of neurodevelopmental assessments.
Collapse
Affiliation(s)
- Jason Lang
- School of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| | - Georgia Wylie
- School of Medicine, University of Glasgow, Glasgow, Scotland
| | - Caroline Haig
- School of Health and Wellbeing, Robertson Centre for Biostatistics, Glasgow, Scotland
| | | | - Helen Minnis
- School of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
8
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
9
|
Alibutud R, Hansali S, Cao X, Zhou A, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. Structural Variations Contribute to the Genetic Etiology of Autism Spectrum Disorder and Language Impairments. Int J Mol Sci 2023; 24:13248. [PMID: 37686052 PMCID: PMC10487745 DOI: 10.3390/ijms241713248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restrictive interests and/or repetitive behaviors and deficits in social interaction and communication. ASD is a multifactorial disease with a complex polygenic genetic architecture. Its genetic contributing factors are not yet fully understood, especially large structural variations (SVs). In this study, we aimed to assess the contribution of SVs, including copy number variants (CNVs), insertions, deletions, duplications, and mobile element insertions, to ASD and related language impairments in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Within the cohort, ~77% of the families contain SVs that followed expected segregation or de novo patterns and passed our filtering criteria. These SVs affected 344 brain-expressed genes and can potentially contribute to the genetic etiology of the disorders. Gene Ontology and protein-protein interaction network analysis suggested several clusters of genes in different functional categories, such as neuronal development and histone modification machinery. Genes and biological processes identified in this study contribute to the understanding of ASD and related neurodevelopment disorders.
Collapse
Affiliation(s)
- Rohan Alibutud
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sammy Hansali
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Vaidhyanathan Mahaganapathy
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Christopher W. Bartlett
- The Steve Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Torres EB, Twerski G, Varkey H, Rai R, Elsayed M, Katz MT, Tarlowe J. The time is ripe for the renaissance of autism treatments: evidence from clinical practitioners. Front Integr Neurosci 2023; 17:1229110. [PMID: 37600235 PMCID: PMC10437220 DOI: 10.3389/fnint.2023.1229110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Recent changes in diagnostics criteria have contributed to the broadening of the autism spectrum disorders and left clinicians ill-equipped to treat the highly heterogeneous spectrum that now includes toddlers and children with sensory and motor issues. Methods To uncover the clinicians' critical needs in the autism space, we conducted surveys designed collaboratively with the clinicians themselves. Board Certified Behavioral Analysts (BCBAs) and developmental model (DM) clinicians obtained permission from their accrediting boards and designed surveys to assess needs and preferences in their corresponding fields. Results 92.6% of BCBAs are open to diversified treatment combining aspects of multiple disciplines; 82.7% of DMs also favor this diversification with 21.8% valuing BCBA-input and 40.6% neurologists-input; 85.9% of BCBAs and 85.3% of DMs advocate the use of wearables to objectively track nuanced behaviors in social exchange; 76.9% of BCBAs and 57.0% DMs feel they would benefit from augmenting their knowledge about the nervous systems of Autism (neuroscience research) to enhance treatment and planning programs; 50.0% of BCBAs feel they can benefit for more training to teach parents. Discussion Two complementary philosophies are converging to a more collaborative, integrative approach favoring scalable digital technologies and neuroscience. Autism practitioners seem ready to embrace the Digital-Neuroscience Revolutions under a new cooperative model.
Collapse
Affiliation(s)
- Elizabeth B. Torres
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
- Rutgers Center for Cognitive Science, Rutgers the State University of New Jersey, Piscataway, NJ, United States
- Department of Computer Science, Rutgers Center for Biomedicine Imaging and Modeling, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | | | - Hannah Varkey
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | - Richa Rai
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | - Mona Elsayed
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | - Miriam Tirtza Katz
- MTK Therapy, Yahalom NJ, Family Advocacy and Support, Agudas Yisroel of America, Lakewood, NJ, United States
| | - Jillian Tarlowe
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
11
|
Kwak MJ, Kim SH, Kim HH, Tanpure R, Kim JI, Jeon BH, Park HK. Psychobiotics and fecal microbial transplantation for autism and attention-deficit/hyperactivity disorder: microbiome modulation and therapeutic mechanisms. Front Cell Infect Microbiol 2023; 13:1238005. [PMID: 37554355 PMCID: PMC10405178 DOI: 10.3389/fcimb.2023.1238005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 08/10/2023] Open
Abstract
Dysbiosis of the gut microbiome is thought to be the developmental origins of the host's health and disease through the microbiota-gut-brain (MGB) axis: such as immune-mediated, metabolic, neurodegenerative, and neurodevelopmental diseases. Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are common neurodevelopmental disorders, and growing evidence indicates the contribution of the gut microbiome changes and imbalances to these conditions, pointing to the importance of considering the MGB axis in their treatment. This review summarizes the general knowledge of gut microbial colonization and development in early life and its role in the pathogenesis of ASD/ADHD, highlighting a promising therapeutic approach for ASD/ADHD through modulation of the gut microbiome using psychobiotics (probiotics that positively affect neurological function and can be applied for the treatment of psychiatric diseases) and fecal microbial transplantation (FMT).
Collapse
Affiliation(s)
- Min-jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hoo Hugo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Rahul Tanpure
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|