1
|
Znalesniak EB, Laskou A, Salm F, Haupenthal K, Harder S, Schlüter H, Hoffmann W. The Forms of the Lectin Tff2 Differ in the Murine Stomach and Pancreas: Indications for Different Molecular Functions. Int J Mol Sci 2023; 24:ijms24087059. [PMID: 37108221 PMCID: PMC10138697 DOI: 10.3390/ijms24087059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The lectin TFF2 belongs to the trefoil factor family (TFF). This polypeptide is typically co-secreted with the mucin MUC6 from gastric mucous neck cells, antral gland cells, and duodenal Brunner glands. Here, TFF2 fulfills a protective function by forming a high-molecular-mass complex with the MUC6, physically stabilizing the mucus barrier. In pigs and mice, and slightly in humans, TFF2 is also synthesized in the pancreas. Here, we investigated the murine stomach, pancreas, and duodenum by fast protein liquid chromatography (FPLC) and proteomics and identified different forms of Tff2. In both the stomach and duodenum, the predominant form is a high-molecular-mass complex with Muc6, whereas, in the pancreas, only low-molecular-mass monomeric Tff2 was detectable. We also investigated the expression of Tff2 and other selected genes in the stomach, pancreas, and the proximal, medial, and distal duodenum (RT-PCR analysis). The absence of the Tff2/Muc6 complex in the pancreas is due to a lack of Muc6. Based on its known motogenic, anti-apoptotic, and anti-inflammatory effects, we propose a protective receptor-mediated function of monomeric Tff2 for the pancreatic ductal epithelium. This view is supported by a report that a loss of Tff2 promotes the formation of pancreatic intraductal mucinous neoplasms.
Collapse
Affiliation(s)
- Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Katharina Haupenthal
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
2
|
Yang Y, Lin Z, Lin Q, Bei W, Guo J. Pathological and therapeutic roles of bioactive peptide trefoil factor 3 in diverse diseases: recent progress and perspective. Cell Death Dis 2022; 13:62. [PMID: 35039476 PMCID: PMC8763889 DOI: 10.1038/s41419-022-04504-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Trefoil factor 3 (TFF3) is the last small-molecule peptide found in the trefoil factor family, which is mainly secreted by intestinal goblet cells and exerts mucosal repair effect in the gastrointestinal tract. Emerging evidence indicated that the TFF3 expression profile and biological effects changed significantly in pathological states such as cancer, colitis, gastric ulcer, diabetes mellitus, non-alcoholic fatty liver disease, and nervous system disease. More importantly, mucosal protection would no longer be the only effect of TFF3, it gradually exhibits carcinogenic activity and potential regulatory effect of nervous and endocrine systems, but the inner mechanisms remain unclear. Understanding the molecular function of TFF3 in specific diseases might provide a new insight for the clinical development of novel therapeutic strategies. This review provides an up-to-date overview of the pathological effects of TFF3 in different disease and discusses the binding proteins, signaling pathways, and clinical application.
Collapse
Affiliation(s)
- Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Quanyou Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
3
|
Zhuang M, Le J, Zhu B, Zhang W, Yan H, Zhang P, Wang T, Sun Y. JAK/STAT3 Pathway in Human Intestinal Epithelial Cells During Trefoil Factor 3(TFF3) Mediated Cell Migration. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200204104420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:Trefoil factor family is expressed in several tissues of the body and provides gastric and intestinal protection and healing. This research aims to indicate the mechanism involved in its function.Methods:The intestinal epithelial cells were pretreated with JAK inhibitor AG490 or the concentration of 60ug/ml human recombinant trefoil factor, while the levels of phospho-STAT3, E-cadherin and N-cadherin were detected by Western Blotting. The levels of Matrix Metalloproteinases, Ecadherin and N-cadherin were evaluated by quantitative real time PCR. The cell migration was assessed by the transwell assay and the scratch assay. The immunofluorescence method was performed to detect the reduction of molecular E-cadherin.Results:hTFF3 activates the JAK/STAT3 pathway in HT-29 cells. The effect of JAK/STAT3 pathway mechanism on cell migration promoted by hTFF3. TFF3 promoting cell migration is associated with increased gene transcription of MMPs. hTFF3 alters E-cadherin expression. hTFF3 activates the expression of N-cadherin and down-regulates E-cadherin expression in HT-29 Cells.Conclusion:We have shown that TFF3 activated the JAK/STAT3 pathway. TFF3 increased the level of Matrix Metalloproteinases and N-cadherin, decreased that of E-cadherin, while AG490 had the opposite effect. TFF3 accelerated cell migration and the AG490 relieved the migrating rate to control the levels. TFF3 activated JAK/STAT3 pathway which was associated with intestinal epithelial cell migration.
Collapse
Affiliation(s)
- Mengmeng Zhuang
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Juan Le
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Bo Zhu
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Wenwen Zhang
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Hao Yan
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Pan Zhang
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Ting Wang
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yong Sun
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| |
Collapse
|
4
|
Krüger K, Schmid S, Paulsen F, Ignatius A, Klinger P, Hotfiel T, Swoboda B, Gelse K. Trefoil Factor 3 (TFF3) Is Involved in Cell Migration for Skeletal Repair. Int J Mol Sci 2019; 20:ijms20174277. [PMID: 31480518 PMCID: PMC6747154 DOI: 10.3390/ijms20174277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of the study was to explore the possible role of Trefoil Factor Family peptide 3 (TFF3) for skeletal repair. The expression of TFF3 was analyzed in human joint tissues as well as in a murine bone fracture model. Serum levels of TFF3 following a defined skeletal trauma in humans were determined by ELISA. The mRNA expression of TFF3 was analyzed under normoxia and hypoxia. Expression analysis after stimulation of human mesenchymal progenitor cells (MPCs) with TFF3 was performed by RT2 Profiler PCR Array. The effect of recombinant human (rh)TFF3 on MPCs was analysed by different migration and chemotaxis assays. The effect on cell motility was also visualized by fluorescence staining of F-Actin. TFF3 was absent in human articular cartilage, but strongly expressed in the subchondral bone and periosteum of adult joints. Strong TFF3 immunoreactivity was also detected in murine fracture callus. Serum levels of TFF3 were significantly increased after skeletal trauma in humans. Expression analysis demonstrated that rhTFF3 significantly decreased mRNA of ROCK1. Wound healing assays showed increased cell migration of MPCs by rhTFF3. The F-Actin cytoskeleton was markedly influenced by rhTFF3. Cell proliferation was not increased by rhTFF3. The data demonstrate elevated expression of TFF3 after skeletal trauma. The stimulatory effects on cell motility and migration of MPCs suggest a role of TFF3 in skeletal repair.
Collapse
Affiliation(s)
- Katharina Krüger
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sebastian Schmid
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Institute of Functional and Clinical Anatomy, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Patricia Klinger
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Institute of Functional and Clinical Anatomy, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Thilo Hotfiel
- Division of Orthopaedic Rheumatology, Department of Orthopaedics, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Bernd Swoboda
- Division of Orthopaedic Rheumatology, Department of Orthopaedics, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Kolja Gelse
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|
5
|
Fu T, Znalesniak EB, Kalinski T, Möhle L, Biswas A, Salm F, Dunay IR, Hoffmann W. TFF Peptides Play a Role in the Immune Response Following Oral Infection of Mice with Toxoplasma Gondii. Eur J Microbiol Immunol (Bp) 2015; 5:221-31. [PMID: 26495133 PMCID: PMC4598890 DOI: 10.1556/1886.2015.00028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/27/2015] [Indexed: 01/22/2023] Open
Abstract
The peptide trefoil factor family 3 (TFF3) is a major constituent of the intestinal mucus, playing an important role in the repair of epithelial surfaces. To further understand the role of TFF3 in the protection of intestinal epithelium, we tested the influence of TFF3 in a murine Toxoplasma gondii-induced ileitis model. Surprisingly, TFF3KO mice showed a reduced immune response in the ileum when compared to wild-type animals. Interleukin-12 and interferon-γ expression levels as well as the number of CD4+ lymphocytes were reduced in the infected TFF3KO mice. These effects were in line with the trend of elevated parasite levels in the ileum. Moreover, TFF1 expression was upregulated in the spleen of infected mice. These initial results indicate that TFF3 is involved in the immune pathology of T. gondii infection-induced intestinal inflammation. Thus far, the mechanisms of how TFF3 influences the immune response are not fully understood. Further studies should identify if TFF3 affects mucus sensing of dendritic cells and how TFF3 is involved in regulating the immune response as an intrinsic secretory peptide of immune cells.
Collapse
Affiliation(s)
- Ting Fu
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| | - Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| | - Thomas Kalinski
- Institute of Pathology, Otto-von-Guericke University Magdeburg , Germany
| | - Luisa Möhle
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg , Germany
| | - Aindrila Biswas
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg , Germany
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| | - Ildiko Rita Dunay
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg , Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| |
Collapse
|
6
|
Wang XN, Wang SJ, Pandey V, Chen P, Li Q, Wu ZS, Wu Q, Lobie PE. Trefoil factor 3 as a novel biomarker to distinguish between adenocarcinoma and squamous cell carcinoma. Medicine (Baltimore) 2015; 94:e860. [PMID: 25997063 PMCID: PMC4602872 DOI: 10.1097/md.0000000000000860] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In carcinoma, such as of the lung, the histological subtype is important to select an appropriate therapeutic strategy for patients. However, carcinomas with poor differentiation cannot always be distinguished on the basis of morphology alone nor on clinical findings. Hence, delineation of poorly differentiated adenocarcinoma and squamous cell carcinoma, the 2 most common epithelial-origin carcinomas, is pivotal for selection of optimum therapy. Herein, we explored the potential utility of trefoil factor 3 (TFF3) as a biomarker for primary lung adenocarcinoma and extrapulmonary adenocarcinomas derived from different organs. We observed that 90.9% of lung adenocarcinomas were TFF3-positive, whereas no expression of TFF3 was observed in squamous cell carcinomas. The subtype of lung carcinoma was confirmed by four established biomarkers, cytokeratin 7 and thyroid transcription factor 1 for adenocarcinoma and P63 and cytokeratin 5/6 for squamous cell carcinoma. Furthermore, expression of TFF3 mRNA was observed by quantitative PCR in all of 11 human lung adenocarcinoma cell lines and highly correlated with markers of the adenocarcinomatous lineage. In contrast, little or no expression of TFF3 was observed in 4 lung squamous cell carcinoma cell lines. By use of forced expression, or siRNA-mediated depletion of TFF3, we determined that TFF3 appeared to maintain rather than promote glandular differentiation of lung carcinoma cells. In addition, TFF3 expression was also determined in adenocarcinomas from colorectum, stomach, cervix, esophagus, and larynx. Among all these extrapulmonary carcinomas, 93.7% of adenocarcinomas exhibited TFF3 positivity, whereas only 2.9% of squamous cell carcinomas were TFF3-positive. Totally, 92.9% of both pulmonary and extrapulmonary adenocarcinomas exhibited TFF3 positivity, whereas only 1.5% of squamous cell carcinomas were TFF3-positive. In conclusion, TFF3 is preferentially expressed in adenocarcinoma and may function as an additional biomarker for distinguishing adenocarcinoma from squamous cell carcinoma.
Collapse
Affiliation(s)
- Xiao-Nan Wang
- From the Department of Pathology (X-NW, S-JW, PC, QL, Z-SW, QW); Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui, People's Republic of China (X-NW); Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore (VP, PEL); and National Cancer Institute of Singapore, National University Health System, Singapore (PEL). These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Albert TK, Laubinger W, Müller S, Hanisch FG, Kalinski T, Meyer F, Hoffmann W. Human intestinal TFF3 forms disulfide-linked heteromers with the mucus-associated FCGBP protein and is released by hydrogen sulfide. J Proteome Res 2010; 9:3108-17. [PMID: 20423149 DOI: 10.1021/pr100020c] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TFF3 is a secretory peptide belonging to the trefoil factor family with a predicted size of 59 amino acid residues containing seven cysteine residues. It is predominantly expressed in intestinal goblet cells where it plays a key role in mucosal regeneration and repair processes. In the course of these studies, human colonic TFF3 was shown to exist mainly as a high molecular weight heteromer. Purification of this heteromer and characterization by LC-ESI-MS/MS analysis identified the IgG Fc binding protein (FCGBP) as the disulfide-linked partner protein of TFF3. FCGBP is a constituent of intestinal mucus secreted by goblet cells. Furthermore, low amounts of TFF3/monomer and only little TFF3/dimer were detected in human colonic extracts. Here, we show that these TFF3 forms can be released from the purified TFF3-FCGBP heteromer complex in vitro by reduction with hydrogen sulfide (H(2)S). Such a mechanism would be in line with the high H(2)S concentrations reported to occur in the lumen of the colon. Of special note, this points to intestinal mucus as a reservoir for a biologically active peptide. Also proteolytic processing of FCGBP was observed which is in line with multiple autocatalytic cleavages as proposed earlier by Johansson et al. (J. Proteome Res. 2009 , 8 , 3549 - 3557).
Collapse
Affiliation(s)
- Timo K Albert
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Rösler S, Haase T, Claassen H, Schulze U, Schicht M, Riemann D, Brandt J, Wohlrab D, Müller-Hilke B, Goldring MB, Sel S, Varoga D, Garreis F, Paulsen FP. Trefoil factor 3 is induced during degenerative and inflammatory joint disease, activates matrix metalloproteinases, and enhances apoptosis of articular cartilage chondrocytes. ACTA ACUST UNITED AC 2010; 62:815-25. [PMID: 20131235 DOI: 10.1002/art.27295] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a member of a family of protease-resistant peptides containing a highly conserved motif with 6 cysteine residues. Recent studies have shown that TFF3 is expressed in injured cornea, where it plays a role in corneal wound healing, but not in healthy cornea. Since cartilage and cornea have similar matrix properties, we undertook the present study to investigate whether TFF3 could induce anabolic functions in diseased articular cartilage. METHODS We used reverse transcriptase-polymerase chain reaction, Western blot analysis, and immunohistochemistry to measure the expression of TFF3 in healthy articular cartilage, osteoarthritis (OA)-affected articular cartilage, and septic arthritis-affected articular cartilage and to assess the effects of cytokines, bacterial products, and bacterial supernatants on TFF3 production. The effects of TFF3 on matrix metalloproteinase (MMP) production were measured by enzyme-linked immunosorbent assay, and effects on chondrocyte apoptosis were studied by caspase assay and annexin V assay. RESULTS Trefoil factors were not expressed in healthy human articular cartilage, but expression of TFF3 was highly up-regulated in the cartilage of patients with OA. These findings were confirmed in animal models of OA and septic arthritis, as well as in tumor necrosis factor alpha- and interleukin-1beta-treated primary human articular chondrocytes, revealing induction of Tff3/TFF3 under inflammatory conditions. Application of the recombinant TFF3 protein to cultured chondrocytes resulted in increased production of cartilage-degrading MMPs and increased chondrocyte apoptosis. CONCLUSION In this study using articular cartilage as a model, we demonstrated that TFF3 supports catabolic functions in diseased articular cartilage. These findings widen our knowledge of the functional spectrum of TFF peptides and demonstrate that TFF3 is a multifunctional trefoil factor with the ability to link inflammation with tissue remodeling processes in articular cartilage. Moreover, our data suggest that TFF3 is a factor in the pathogenesis of OA and septic arthritis.
Collapse
Affiliation(s)
- Sophie Rösler
- Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
As one of important defensive factors, trefoil factor 3 (TFF3) has considerable relation to the lesion, recovery, proliferation and malignancy of gastrointestinal mucosa. Furthermore, the correlation between TFF3 and tumor, including its pathogenesis, progress and prognosis, has been reported remarkably. However, the binding proteins of TFF3 remains to be confirmed and the research of TFF3 on the mechanism of action and signal transduction pathway is just initial. This article reviewed the progress in TFF3 research.
Collapse
|
10
|
Madsen J, Nielsen O, Tornøe I, Thim L, Holmskov U. Tissue localization of human trefoil factors 1, 2, and 3. J Histochem Cytochem 2007; 55:505-13. [PMID: 17242463 DOI: 10.1369/jhc.6a7100.2007] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Trefoil factors (TTFs) are small, compact proteins coexpressed with mucins in the gastrointestinal tract. Three trefoil factors are known in mammals: TFF1, TFF2, and TFF3. They are implicated to play diverse roles in maintenance and repair of the gastrointestinal channel. We compared the expression pattern of the three trefoil factors analyzing mRNA from a panel of 20 human tissues by conventional reverse transcriptase (RT) PCR and, in addition, by real-time PCR. These findings were supported by immunohistochemical analysis of paraffin-embedded human tissues using rabbit polyclonal antibodies raised against these factors. TFF1 showed highest expression in the stomach and colon, whereas TFF2 and TFF3 showed highest expression in stomach and colon, respectively. All three TFFs were found in the ducts of pancreas. Whereas TFF2 was found to be restricted to these two tissues, the structurally more closely related TFF1 and TFF3 showed a more general tissue distribution and were found to colocalize on an array of mucosal surfaces. This is the first thorough parallel description of the tissue distribution of TFFs in normal tissues, and it provides a baseline for similar analysis in diseased tissues.
Collapse
Affiliation(s)
- Jens Madsen
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94118, USA.
| | | | | | | | | |
Collapse
|
11
|
Paulsen FP, Varoga D, Paulsen AR, Corfield A, Tsokos M. Prognostic value of mucins in the classification of ampullary carcinomas. Hum Pathol 2006; 37:160-7. [PMID: 16426915 DOI: 10.1016/j.humpath.2005.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/30/2005] [Accepted: 10/06/2005] [Indexed: 02/07/2023]
Abstract
The ampulla of Vater is of high clinical relevance with regard to influx of chyme, ascending inflammation, intubation during diagnostic and therapeutic endoscopic investigation, therapeutic papillotomy, and especially to malignant transformation. Little is known about the distribution of mucins in the ampulla. In this study, we have investigated the mucin distribution in the normal ampulla of Vater and compared it to duodenal mucosa and Brunner glands. Expression of mucins in the ampulla of Vater and duodenum was monitored by reverse transcription-polymerase chain reaction and localization of the products by immunohistochemistry. The samples investigated originated from 30 autopsy cases. Mucins MUC1, MUC3, MUC4, MUC5AC, MUC5B, MUC6, MUC7, and MUC8 were expressed in the ampulla of Vater. Immunohistochemistry revealed production of MUC4, MUC5AC, MUC5B, and MUC6. The mucin composition varied in comparison with the duodenum referring to MUC2, MUC7, and MUC8. Detected mucins contribute to innate immunity, epithelial restitution, and protection against the aggressive secretions of the liver, gall bladder, and pancreas. By cross-linking, they influence the rheological properties of the secretions in the ampulla and facilitate unidirectional flow into the duodenum. Knowledge of their pattern of expression has prognostic value with regard to the detection of malignancy. The observed differences in the mucin distribution between the duodenum and the ampulla of Vater support the use of MUC2, MUC7, and MUC8 as useful tool in the classification of ampullary carcinomas.
Collapse
Affiliation(s)
- Friedrich P Paulsen
- Department of Anatomy and Cell Biology, Martin-Luther-University of Halle-Wittenberg, Saale, Germany.
| | | | | | | | | |
Collapse
|