1
|
Tagami A, Ikeda Y, Ishizuka K, Maekawa M. Conditional disruption of Nr5a1 directed by Sox9-Cre impairs adrenal development. Sci Rep 2024; 14:12297. [PMID: 38811798 PMCID: PMC11137078 DOI: 10.1038/s41598-024-63264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
The current study aimed to investigate the effect of Sox9-Cre-directed Nr5a1-conditional knockout (Sox9-Cre;Nr5a1flox/flox) on adrenal development. We showed that SOX9 is expressed by adrenocortical cells at E10.5-E11.5 but is extinguished no later than E12.5. The number of adrenocortical cells significantly reduced in Sox9-Cre;Nr5a1flox/flox mice while the number of cleaved caspase 3-positive cells increased compared to that in the controls at E11.5-E12.5, when the adrenal primordium (AP) is about to expand. This indicated that fetal adrenocortical cells are lost via apoptosis due to Nr5a1 ablation by E12.5. Both medulla formation and encapsulation were perturbed, accompanied by a smaller AP size, in Sox9-Cre;Nr5a1flox/flox mice during embryonic development. Adult Sox9-Cre;Nr5a1flox/flox adrenals were hypoplastic and exhibited irregular organization of the medulla with aberrant sex differentiation in the X zone. Additionally, there were histologically eosin-negative vacuolated cells, which were negative for both the X-zone marker 20αHSD and the steroidogenesis marker 3βHSD at the innermost cortex of Sox9-Cre;Nr5a1flox/flox adrenals. Although Nr5a1+/- adrenals were hypoplastic, a small number of chromaffin cells were properly located in the center, having normal sex differences in the X-zone. The results collectively provided in-vivo evidence that Nr5a1 plays a critical role in AP expansion and subsequent adrenal development.
Collapse
Affiliation(s)
- Ayako Tagami
- Department of Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Yayoi Ikeda
- Department of Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan.
| | - Kyoko Ishizuka
- Department of Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Mamiko Maekawa
- Department of Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| |
Collapse
|
2
|
Abstract
The ventromedial nucleus of the hypothalamus (VMH) is a complex brain structure that is integral to many neuroendocrine functions, including glucose regulation, thermogenesis, and appetitive, social, and sexual behaviors. As such, it is of little surprise that the nucleus is under intensive investigation to decipher the mechanisms which underlie these diverse roles. Developments in genetic and investigative tools, for example the targeting of steroidogenic factor-1-expressing neurons, have allowed us to take a closer look at the VMH, its connections, and how it affects competing behaviors. In the current review, we aim to integrate recent findings into the literature and contemplate the conclusions that can be drawn.
Collapse
Affiliation(s)
- Tansi Khodai
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Simon M Luckman
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
- Correspondence: Simon M. Luckman, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
3
|
Bechmann N, Berger I, Bornstein SR, Steenblock C. Adrenal medulla development and medullary-cortical interactions. Mol Cell Endocrinol 2021; 528:111258. [PMID: 33798635 DOI: 10.1016/j.mce.2021.111258] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
The mammalian adrenal gland is composed of two distinct tissue types in a bidirectional connection, the catecholamine-producing medulla derived from the neural crest and the mesoderm-derived cortex producing steroids. The medulla mainly consists of chromaffin cells derived from multipotent nerve-associated descendants of Schwann cell precursors. Already during adrenal organogenesis, close interactions between cortex and medulla are necessary for proper differentiation and morphogenesis of the gland. Moreover, communication between the cortex and the medulla ensures a regular function of the adult adrenal. In tumor development, interfaces between the two parts are also common. Here, we summarize the development of the mammalian adrenal medulla and the current understanding of the cortical-medullary interactions under development and in health and disease.
Collapse
Affiliation(s)
- Nicole Bechmann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Diabetes and Nutritional Sciences Division, King's College London, London, UK
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Abstract
Investigations of the cellular and molecular mechanisms that mediate the development of the autonomic nervous system have identified critical genes and signaling pathways that, when disrupted, cause disorders of the autonomic nervous system. This review summarizes our current understanding of how the autonomic nervous system emerges from the organized spatial and temporal patterning of precursor cell migration, proliferation, communication, and differentiation, and discusses potential clinical implications for developmental disorders of the autonomic nervous system, including familial dysautonomia, Hirschsprung disease, Rett syndrome, and congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| |
Collapse
|
5
|
Arnaboldi F, Sommariva M, Opizzi E, Rasile M, Camelliti S, Busnelli M, Menegola E, Di Renzo F, Menon A, Barajon I. Expression of Toll-like receptors 4 and 7 in murine peripheral nervous system development. Ann Anat 2020; 231:151526. [PMID: 32380196 DOI: 10.1016/j.aanat.2020.151526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/03/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Toll-Like Receptors (TLRs) play a critical role in the innate and adaptive immune system. They are the mammalian orthologs of Drosophila melanogaster protein Toll, which has been proved to have an early morphogenetic role in invertebrate embryogenesis that in the adult switches to an immune function. AIM The aim of this study was to evaluate the expression of TLR4 and TLR7 during dorsal root ganglia (DRG), paravertebral ganglia (PVG), and enteric nervous system (ENS) murine development. METHODS Mouse embryos from different stages (i.e. E12 to E18) were processed for immunolocalization analysis on formalin-fixed paraffin-embedded sections, and isolated intestine were processed for whole-mount preparations. RESULTS We observed a differentially regulated expression of TLR4 and TLR7 during embryogenesis and an overall increased expression of both receptors during development. While TLR4 was detectable in neurons of DRG and PVG starting from E14 and only from E18 in the ENS, TLR7 was already expressed in scattered neurons of all the investigated regions at E12. CONCLUSIONS TLR4 and TRL7 expression temporal patterns suggest a morphogenetic role for these receptors in the development of neural crest derivatives in mammals.
Collapse
Affiliation(s)
- Francesca Arnaboldi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy.
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| | - Emanuela Opizzi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| | - Marco Rasile
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milano, Italy; Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milano, Italy
| | - Simone Camelliti
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| | - Marco Busnelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Elena Menegola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Francesca Di Renzo
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Alessandra Menon
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy; Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy
| | - Isabella Barajon
- Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milano, Italy
| |
Collapse
|
6
|
Bornstein SR, Berger I, Scriba L, Santambrogio A, Steenblock C. Adrenal cortex–medulla interactions in adaptation to stress and disease. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
8
|
Huber K, Narasimhan P, Shtukmaster S, Pfeifer D, Evans SM, Sun Y. The LIM-Homeodomain transcription factor Islet-1 is required for the development of sympathetic neurons and adrenal chromaffin cells. Dev Biol 2013; 380:286-98. [PMID: 23648511 PMCID: PMC5544970 DOI: 10.1016/j.ydbio.2013.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/04/2013] [Accepted: 04/17/2013] [Indexed: 12/25/2022]
Abstract
Islet-1 is a LIM-Homeodomain transcription factor with important functions for the development of distinct neuronal and non-neuronal cell populations. We show here that Islet-1 acts genetically downstream of Phox2B in cells of the sympathoadrenal cell lineage and that the development of sympathetic neurons and chromaffin cells is impaired in mouse embryos with a conditional deletion of Islet-1 controlled by the wnt1 promotor. Islet-1 is not essential for the initial differentiation of sympathoadrenal cells, as indicated by the correct expression of pan-neuronal and catecholaminergic subtype specific genes in primary sympathetic ganglia of Islet-1 deficient mouse embryos. However, our data indicate that the subsequent survival of sympathetic neuron precursors and their differentiation towards TrkA expressing neurons depends on Islet-1 function. In contrast to spinal sensory neurons, sympathetic neurons of Islet-1 deficient mice did not display ectopic expression of genes normally present in the CNS. In Islet-1 deficient mouse embryos the numbers of chromaffin cells were only mildly reduced, in contrast to that of sympathetic neurons, but the initiation of the adrenaline synthesizing enzyme PNMT was abrogated and the expression level of chromogranin A was diminished. Microarray analysis revealed that developing chromaffin cells of Islet-1 deficient mice displayed normal expression levels of TH, DBH and the transcription factors Phox2B, Mash-1, Hand2, Gata3 and Insm1, but the expression levels of the transcription factors Gata2 and Hand1, and AP-2β were significantly reduced. Together our data indicate that Islet-1 is not essentially required for the initial differentiation of sympathoadrenal cells, but has an important function for the correct subsequent development of sympathetic neurons and chromaffin cells.
Collapse
Affiliation(s)
- Katrin Huber
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Chou CW, Chiu CH, Liu YW. Fibronectin mediates correct positioning of the interrenal organ in zebrafish. Dev Dyn 2013; 242:432-43. [PMID: 23362214 DOI: 10.1002/dvdy.23932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2013] [Indexed: 12/29/2022] Open
Affiliation(s)
- Chih-Wei Chou
- Department of Life Science; Tunghai University; Taichung; Taiwan; R.O.C
| | - Chih-Hao Chiu
- Department of Life Science; Tunghai University; Taichung; Taiwan; R.O.C
| | - Yi-Wen Liu
- Department of Life Science; Tunghai University; Taichung; Taiwan; R.O.C
| |
Collapse
|
10
|
Unsicker K, Huber K, Schober A, Kalcheim C. Resolved and open issues in chromaffin cell development. Mech Dev 2012; 130:324-9. [PMID: 23220335 DOI: 10.1016/j.mod.2012.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 11/19/2022]
Abstract
Ten years of research within the DFG-funded Collaborative Research Grant SFB 488 at the University of Heidelberg have added many new facets to our understanding of chromaffin cell development. Glucocorticoid signaling is no longer the key for understanding the determination of the chromaffin phenotype, yet a novel role has been attributed to glucocorticoids: they are essential for the postnatal maintenance of adrenal and extra-adrenal chromaffin cells. Transcription factors, as, e.g. MASH1 and Phox2B, have similar, but also distinct functions in chromaffin and sympathetic neuronal development, and BMP-4 not only induces sympathoadrenal (SA) cells at the dorsal aorta and within the adrenal gland, but also promotes chromaffin cell maturation. Chromaffin cells and sympathetic neurons share a common progenitor in the dorsal neural tube (NT) in vivo, as revealed by single cell electroporations into the dorsal NT. Thus, specification of chromaffin cells is likely to occur after cell emigration either during migration or close to colonization of the target regions. Mechanisms underlying the specification of chromaffin cells vs. sympathetic neurons are currently being explored.
Collapse
Affiliation(s)
- Klaus Unsicker
- Dept. of Molecular Embryology, University of Freiburg, Albertstr. 17, D-79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
11
|
Comai G, Boutet A, Neirijnck Y, Schedl A. Expression patterns of the Wtx/Amer gene family during mouse embryonic development. Dev Dyn 2010; 239:1867-78. [PMID: 20503382 DOI: 10.1002/dvdy.22313] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
WTX/AMER1 is a novel negative regulator of the WNT/beta-catenin pathway with mutations detected in Wilms' tumors and an X-linked sclerosing bone dysplasia. WTX/AMER1 (Fam123b) shares several domains of homology with two other recently identified proteins: AMER2 (Fam123a) and AMER3 (Fam123c). Here, we describe an in-depth expression analysis of all three members of this gene family during mouse embryonic development. All genes were strongly expressed in the central as well as the peripheral nervous system, thus suggesting important roles of this gene family during neurogenesis. Specific expression was found in the retina, inner ear, and nasal epithelium. Outside of the nervous system Wtx/Amer1 showed the broadest expression domains including cephalic and limb mesenchyme, skeletal muscle, bladder, gonads, lung bud, salivary glands, and the kidneys. The widespread expression pattern of Wtx/Amer1, together with its role as a modulator of the Wnt signaling pathway, suggest that Wtx/Amer1 serves pleiotropic roles during mammalian organogenesis.
Collapse
Affiliation(s)
- Glenda Comai
- INSERM U636, Centre de Biochimie, and University of Nice/Sophia-Antipolis, Nice, France
| | | | | | | |
Collapse
|
12
|
Hoivik EA, Lewis AE, Aumo L, Bakke M. Molecular aspects of steroidogenic factor 1 (SF-1). Mol Cell Endocrinol 2010; 315:27-39. [PMID: 19616058 DOI: 10.1016/j.mce.2009.07.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/01/2009] [Accepted: 07/08/2009] [Indexed: 12/24/2022]
Abstract
Steroidogenic factor 1 (SF-1, also called Ad4BP and NR5A1) is a nuclear receptor with critical roles in steroidogenic tissues, as well as in the brain and pituitary. In particular, SF-1 has emerged as an essential regulator of adrenal and gonadal functions and development. In the last few years, our knowledge on SF-1 has increased considerably at all levels, from the gene to the protein, and on its specific roles in different physiological processes. In this review, we discuss the current understanding on SF-1 with focus on the parameters that control the transcriptional capacity of SF-1 and the mechanisms that ensure proper stage- and tissue-specific expression of the gene encoding SF-1.
Collapse
Affiliation(s)
- Erling A Hoivik
- Department of Biomedicine, University of Bergen, Jonas Lies vei 9, N-5009 Bergen, Norway.
| | | | | | | |
Collapse
|
13
|
|
14
|
Murata T, Tsuboi M, Koide N, Hikita K, Kohno S, Kaneda N. Neuronal differentiation elicited by glial cell line-derived neurotrophic factor and ciliary neurotrophic factor in adrenal chromaffin cell line tsAM5D immortalized with temperature-sensitive SV40 T-antigen. J Neurosci Res 2008; 86:1694-710. [PMID: 18293415 DOI: 10.1002/jnr.21632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To understand the characteristics of tsAM5D cells immortalized with the temperature-sensitive simian virus 40 large T-antigen, we first examined the responsiveness of the cells to ligands of the glial cell line-derived neurotrophic factor (GDNF) family. tsAM5D cells proliferated at the permissive temperature of 33 degrees C in response to either GDNF or neurturin, but not persephin or artemin. At the nonpermissive temperature of 39 degrees C, GDNF or neurturin caused tsAM5D cells to differentiate into neuron-like cells; however, the differentiated cells died in a time-dependent manner. Interestingly, ciliary neurotrophic factor (CNTF) did not affect the GDNF-mediated cell proliferation at 33 degrees C but promoted the survival and differentiation of GDNF-treated cells at 39 degrees C. In the presence of GDNF plus CNTF, the morphological change induced by the temperature shift was associated with up-regulated expression of various neuronal marker genes, indicating that the cells had undergone neuronal differentiation. In addition, tsAM5D cells caused to differentiate by GDNF plus CNTF at 39 degrees C became dependent solely on nerve growth factor (NGF) for their survival and neurite outgrowth. Moreover, upon treatment with GDNF plus CNTF, the dopaminergic phenotype was suppressed by the temperature shift. Thus, we demonstrated that tsAM5D cells had the capacity to differentiate terminally into neuron-like cells in response to GDNF plus CNTF when the oncogene was inactivated by the temperature shift. This cell line provides a useful model system for studying the role of a variety of signaling molecules for GDNF/CNTF-induced neuronal differentiation.
Collapse
Affiliation(s)
- Tomiyasu Murata
- Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Jozan S, Aziza J, Châtelin S, Evra C, Courtade-Saïdi M, Parant O, Sol JC, Zhou H, Lazorthes Y. Human fetal chromaffin cells: A potential tool for cell pain therapy. Exp Neurol 2007; 205:525-35. [PMID: 17466976 DOI: 10.1016/j.expneurol.2007.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/30/2007] [Accepted: 03/12/2007] [Indexed: 12/25/2022]
Abstract
Transplantation of adrenal medulla cells has been proposed in the treatment of various conditions. Indeed, these cells possess a bipotentiality: neural and neuroendocrine, which could be exploited for brain repair or pain therapy. In a previous study, we characterized these human cells in vitro over 7-10 gestational weeks (GW) [Zhou, H., Aziza, J., Sol, J.C., Courtade-Saidi, M., Chatelin, S., Evra, C., Parant, O., Lazorthes, Y., and Jozan, S., 2006. Cell therapy of pain: Characterization of human fetal chromaffin cells at early adrenal medulla development. Exp. Neurol. 198, 370-381]. We report here our results on the extension to 23 GW. This developmental period can be split into three stages. During the first stage (7-10 GW), we observed in situ that extra-adrenal surrounding cells display the same morphology and phenotype as the intra-adrenal chromaffin cells. We also found that the intra-adrenal chromaffin cells could be committed in vitro towards an adrenergic phenotype using differentiating agents. During the second stage (11 to 15-16 GW), two types of cells (Type 1 and Type 2 cells) were identified morphologically both inside and outside the gland. Interestingly, we noted that the Type 2 cells stem from the Type 1 cells. However, during this developmental period only the intra-adrenal Type 2 cells will evolve towards an adrenergic phenotype. In the third stage (17-23 GW), we observed the ultimate location of the medulla gland. Both the in situ results and the in vitro experiments indicate that particular procedures need to be implemented prior transplantation of chromaffin cells. First, in order to obtain a large number of immature chromaffin cells, they must be isolated from the intra and extra-adrenal gland and should then be committed towards an adrenergic phenotype in vitro for subsequent use in pain therapy. This strategy is under investigation in our laboratory.
Collapse
Affiliation(s)
- Suzanne Jozan
- Laboratory of Pain and Cell Therapy EA 3039, Rangueil Medical School, Histology-Embryology Department, 31062 Toulouse Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|