1
|
Javadova A, Felmy F. GABA B receptor-mediated modulation in the developing dorsal nucleus of the lateral lemniscus. Eur J Neurosci 2024; 59:966-981. [PMID: 38180306 DOI: 10.1111/ejn.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
The dorsal nucleus of the lateral lemniscus (DNLL) is a GABAergic, reciprocally connected auditory brainstem structure that continues to develop postnatally in rodents. One key feature of the DNLL is the generation of a strong, prolonged, ionotropic, GABAA receptor-mediated inhibition. Possible GABAB receptor-mediated signalling is unexplored in the DNLL. Here, we used Mongolian gerbils of either sex to describe GABAB receptor-mediated modulation of postsynaptic potassium currents and synaptic inputs in postnatal (P) animals of days 10/11 and 23-28. Throughout development, we observed the presence of a Baclofen-activated GABAB receptor-enhanced potassium outward conductance that is capable of suppressing action potential generation. In P10/11, old gerbils GABAB receptor activation enhances glutamatergic and suppresses ionotropic GABAergic synaptic transmission. During development, this differential modulation becomes less distinct, because in P22-28, old animals Baclofen-activated GABAB receptors rather enhance ionotropic GABAergic synaptic transmission, whereas glutamatergic transmission is both enhanced and suppressed. Blocking GABAB receptors causes an increase in ionotropic GABAergic transmission in P10/11 old gerbils that was independent on stimulation frequency but depended on the type of short-term plasticity. Together with the lack of Baclofen-induced changes in the synaptic paired-pulse ratio of either input type, we suggest that GABAB receptor-mediated modulation is predominantly postsynaptic and activates different signalling cascades. Thus, we argue that in DNLL neurons, the GABAB receptor is a post-synaptically located signalling hub that alters signalling cascades during development for distinct targets.
Collapse
Affiliation(s)
- Amina Javadova
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Hannover, Germany
- Infection Medicine and Veterinary Sciences (HGNI), Hannover Graduate School for Neurosciences, Hannover, Germany
| | - Felix Felmy
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Hannover, Germany
| |
Collapse
|
2
|
Tahir MS, Porto-Neto LR, Gondro C, Shittu OB, Wockner K, Tan AWL, Smith HR, Gouveia GC, Kour J, Fortes MRS. Meta-Analysis of Heifer Traits Identified Reproductive Pathways in Bos indicus Cattle. Genes (Basel) 2021; 12:768. [PMID: 34069992 PMCID: PMC8157873 DOI: 10.3390/genes12050768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Fertility traits measured early in life define the reproductive potential of heifers. Knowledge of genetics and biology can help devise genomic selection methods to improve heifer fertility. In this study, we used ~2400 Brahman cattle to perform GWAS and multi-trait meta-analysis to determine genomic regions associated with heifer fertility. Heifer traits measured were pregnancy at first mating opportunity (PREG1, a binary trait), first conception score (FCS, score 1 to 3) and rebreeding score (REB, score 1 to 3.5). The heritability estimates were 0.17 (0.03) for PREG1, 0.11 (0.05) for FCS and 0.28 (0.05) for REB. The three traits were highly genetically correlated (0.75-0.83) as expected. Meta-analysis was performed using SNP effects estimated for each of the three traits, adjusted for standard error. We identified 1359 significant SNPs (p-value < 9.9 × 10-6 at FDR < 0.0001) in the multi-trait meta-analysis. Genomic regions of 0.5 Mb around each significant SNP from the meta-analysis were annotated to create a list of 2560 positional candidate genes. The most significant SNP was in the vicinity of a genomic region on chromosome 8, encompassing the genes SLC44A1, FSD1L, FKTN, TAL2 and TMEM38B. The genomic region in humans that contains homologs of these genes is associated with age at puberty in girls. Top significant SNPs pointed to additional fertility-related genes, again within a 0.5 Mb region, including ESR2, ITPR1, GNG2, RGS9BP, ANKRD27, TDRD12, GRM1, MTHFD1, PTGDR and NTNG1. Functional pathway enrichment analysis resulted in many positional candidate genes relating to known fertility pathways, including GnRH signaling, estrogen signaling, progesterone mediated oocyte maturation, cAMP signaling, calcium signaling, glutamatergic signaling, focal adhesion, PI3K-AKT signaling and ovarian steroidogenesis pathway. The comparison of results from this study with previous transcriptomics and proteomics studies on puberty of the same cattle breed (Brahman) but in a different population identified 392 genes in common from which some genes-BRAF, GABRA2, GABR1B, GAD1, FSHR, CNGA3, PDE10A, SNAP25, ESR2, GRIA2, ORAI1, EGFR, CHRNA5, VDAC2, ACVR2B, ORAI3, CYP11A1, GRIN2A, ATP2B3, CAMK2A, PLA2G, CAMK2D and MAPK3-are also part of the above-mentioned pathways. The biological functions of the positional candidate genes and their annotation to known pathways allowed integrating the results into a bigger picture of molecular mechanisms related to puberty in the hypothalamus-pituitary-ovarian axis. A reasonable number of genes, common between previous puberty studies and this study on early reproductive traits, corroborates the proposed molecular mechanisms. This study identified the polymorphism associated with early reproductive traits, and candidate genes that provided a visualization of the proposed mechanisms, coordinating the hypothalamic, pituitary, and ovarian functions for reproductive performance in Brahman cattle.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD 4072, Australia;
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Olasege B. Shittu
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Kimberley Wockner
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Andre W. L. Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Hugo R. Smith
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Gabriela C. Gouveia
- Animal Science Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Jagish Kour
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| |
Collapse
|
3
|
Hossein-Javaheri N, Buck LT. GABA receptor inhibition and severe hypoxia induce a paroxysmal depolarization shift in goldfish neurons. J Neurophysiol 2020; 125:321-330. [PMID: 33296606 DOI: 10.1152/jn.00149.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mammalian neurons undergo rapid excitotoxic cell death when deprived of oxygen; however, the common goldfish (Carassius auratus) has the unique ability of surviving in oxygen-free waters, under anoxia. This organism utilizes γ-amino butyric acid (GABA) signaling to suppress excitatory glutamatergic activity during anoxic periods. Although GABAA receptor antagonists are not deleterious to the cellular survival, coinhibition of GABAA and GABAB receptors is detrimental by abolishing anoxia-induced neuroprotective mechanisms. Here we show that blocking the anoxic GABAergic neurotransmission induces seizure-like activity (SLA) analogous to a paroxysmal depolarization shift (PDS), with hyperpolarization of action potential (AP) threshold and elevation of threshold currents. The observed PDS was attributed to an increase in excitatory postsynaptic currents (EPSCs) that are normally attenuated with decreasing oxygen levels. Furthermore, for the first time, we show that in addition to PDS, some neurons undergo depolarization block and do not generate AP despite a suprathreshold membrane potential. In conclusion, our results indicate that with severe hypoxia and absence of GABA receptor activity, telencephalic neurons of C. auratus manifest a paroxysmal depolarization shift, a key feature of epileptic discharge.NEW & NOTEWORTHY This work shows that the combination of anoxia and inhibition of GABA receptors induces seizure-like activities in goldfish telencephalic pyramidal and stellate neurons. Importantly, to prevent seizure-like activity, an intact GABA-mediated inhibitory pathway is required.
Collapse
Affiliation(s)
| | - Leslie Thomas Buck
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Developmental regulation and lateralization of GABA receptors in the rat hippocampus. Int J Dev Neurosci 2019; 76:86-94. [DOI: 10.1016/j.ijdevneu.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
5
|
Khoshdel-Sarkarizi H, Hami J, Mohammadipour A, Sadr-Nabavi A, Mahmoudi M, Kheradmand H, Peyvandi M, Nourmohammadi E, Haghir H. WITHDRAWN: Developmental regulation and lateralization of GABA receptors in the rat hippocampus. Int J Dev Neurosci 2019; 76:52-60. [PMID: 30630073 DOI: 10.1016/j.ijdevneu.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/25/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Hoda Khoshdel-Sarkarizi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Hami
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Kheradmand
- Hazrat Rasoul Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Peyvandi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmail Nourmohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Molecular Docking of Phenylethylamine and CGP54626 to an Extracellular Domain of the GABAB-Receptor. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9743-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Yaksh TL, Fisher CJ, Hockman TM, Wiese AJ. Current and Future Issues in the Development of Spinal Agents for the Management of Pain. Curr Neuropharmacol 2017; 15:232-259. [PMID: 26861470 PMCID: PMC5412694 DOI: 10.2174/1570159x14666160307145542] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/22/2022] Open
Abstract
Targeting analgesic drugs for spinal delivery reflects the fact that while the conscious experience of pain is mediated supraspinally, input initiated by high intensity stimuli, tissue injury and/or nerve injury is encoded at the level of the spinal dorsal horn and this output informs the brain as to the peripheral environment. This encoding process is subject to strong upregulation resulting in hyperesthetic states and downregulation reducing the ongoing processing of nociceptive stimuli reversing the hyperesthesia and pain processing. The present review addresses the biology of spinal nociceptive processing as relevant to the effects of intrathecally-delivered drugs in altering pain processing following acute stimulation, tissue inflammation/injury and nerve injury. The review covers i) the major classes of spinal agents currently employed as intrathecal analgesics (opioid agonists, alpha 2 agonists; sodium channel blockers; calcium channel blockers; NMDA blockers; GABA A/B agonists; COX inhibitors; ii) ongoing developments in the pharmacology of spinal therapeutics focusing on less studied agents/targets (cholinesterase inhibition; Adenosine agonists; iii) novel intrathecal targeting methodologies including gene-based approaches (viral vectors, plasmids, interfering RNAs); antisense, and toxins (botulinum toxins; resniferatoxin, substance P Saporin); and iv) issues relevant to intrathecal drug delivery (neuraxial drug distribution), infusate delivery profile, drug dosing, formulation and principals involved in the preclinical evaluation of intrathecal drug safety.
Collapse
Affiliation(s)
- Tony L. Yaksh
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Casey J. Fisher
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Tyler M. Hockman
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Ashley J. Wiese
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| |
Collapse
|
8
|
Emmanouilidou E, Minakaki G, Keramioti MV, Xylaki M, Balafas E, Chrysanthou-Piterou M, Kloukina I, Vekrellis K. GABA transmission via ATP-dependent K+channels regulates α-synuclein secretion in mouse striatum. Brain 2016; 139:871-90. [DOI: 10.1093/brain/awv403] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/28/2015] [Indexed: 12/13/2022] Open
|
9
|
Kasten CR, Boehm SL. Identifying the role of pre-and postsynaptic GABA(B) receptors in behavior. Neurosci Biobehav Rev 2015; 57:70-87. [PMID: 26283074 DOI: 10.1016/j.neubiorev.2015.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 12/15/2022]
Abstract
Although many reviews exist characterizing the molecular differences of GABAB receptor isoforms, there is no current review of the in vivo effects of these isoforms. The current review focuses on whether the GABAB1a and GABAB1b isoforms contribute differentially to behaviors in isoform knockout mice. The roles of these receptors have primarily been characterized in cognitive, anxiety, and depressive phenotypes. Currently, the field supports a role of GABAB1a in memory maintenance and protection against an anhedonic phenotype, whereas GABAB1b appears to be involved in memory formation and a susceptibility to developing an anhedonic phenotype. Although GABAB receptors have been strongly implicated in drug abuse phenotypes, no isoform-specific work has been done in this field. Future directions include developing site-specific isoform knockdown to identify the role of different brain regions in behavior, as well as identifying how these isoforms are involved in development of behavioral phenotypes.
Collapse
Affiliation(s)
- Chelsea R Kasten
- Department of Psychology, Indianapolis University Purdue University-Indianapolis, 402N Blackford St LD 124, Indianapolis, IN 46202, United States.
| | - Stephen L Boehm
- Department of Psychology, Indianapolis University Purdue University-Indianapolis, 402N Blackford St LD 124, Indianapolis, IN 46202, United States; Indiana Alcohol Research Center, 545 Barnhill Drive EH 317, Indianapolis, IN, United States.
| |
Collapse
|
10
|
Crowley T, Fitzpatrick JM, Kuijper T, Cryan JF, O'Toole O, O'Leary OF, Downer EJ. Modulation of TLR3/TLR4 inflammatory signaling by the GABAB receptor agonist baclofen in glia and immune cells: relevance to therapeutic effects in multiple sclerosis. Front Cell Neurosci 2015; 9:284. [PMID: 26283920 PMCID: PMC4516894 DOI: 10.3389/fncel.2015.00284] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022] Open
Abstract
The GABAB receptor agonist, baclofen, is used to treat muscle tightness and cramping caused by spasticity in a number of disorders including multiple sclerosis (MS), but its precise mechanism of action is unknown. Neuroinflammation drives the central pathology in MS and is mediated by both immunoreactive glial cells and invading lymphocytes. Furthermore, a body of data indicates that the Toll-like receptor (TLR) family of innate immune receptors is implicated in MS progression. In the present study we investigated whether modulation of GABAB receptors using baclofen can exert anti-inflammatory effects by targeting TLR3 and(or) TLR4-induced inflammatory signaling in murine glial cells and human peripheral blood mononuclear cells (PBMCs) isolated from healthy control individuals and patients with the relapse-remitting (RR) form of MS. TLR3 and TLR4 stimulation promoted the nuclear sequestration of NF-κB and pro-inflammatory cytokine expression in murine glia, while TLR4, but not TLR3, promoted pro-inflammatory cytokine expression in PBMCs isolated from both healthy donors and RR-MS patients. Importantly, this effect was exacerbated in RR-MS patient immune cells. We present further evidence that baclofen dose-dependently attenuated TLR3- and TLR4-induced inflammatory signaling in primary glial cells. Pre-exposure of PBMCs isolated from healthy donors to baclofen attenuated TLR4-induced TNF-α expression, but did not affect TLR4-induced TNF-α expression in RR-MS patient PBMCs. Interestingly, mRNA expression of the GABAB receptor was reduced in PBMCs from RR-MS donors when compared to healthy controls, an effect that might contribute to the differential sensitivity to baclofen seen in healthy and RR-MS patient cells. Overall these findings indicate that baclofen differentially regulates TLR3 and TLR4 signaling in glia and immune cells, and offers insight on the role of baclofen in the treatment of neuroinflammatory disease states including MS.
Collapse
Affiliation(s)
- Tadhg Crowley
- Department of Anatomy and Neuroscience, University College Cork Cork, Ireland
| | | | - Teun Kuijper
- Department of Anatomy and Neuroscience, University College Cork Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork Cork, Ireland ; Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland
| | | | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork Cork, Ireland ; Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland
| | - Eric J Downer
- Department of Anatomy and Neuroscience, University College Cork Cork, Ireland ; School of Medicine, Discipline of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| |
Collapse
|
11
|
McClure-Begley TD, Grady SR, Marks MJ, Collins AC, Stitzel JA. Presynaptic GABAB autoreceptor regulation of nicotinic acetylcholine receptor mediated [(3)H]-GABA release from mouse synaptosomes. Biochem Pharmacol 2014; 91:87-96. [PMID: 24953818 DOI: 10.1016/j.bcp.2014.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 01/26/2023]
Abstract
Activation of nicotinic acetylcholine receptors (nAChRs) can elicit neurotransmitter release from presynaptic nerve terminals. Mechanisms contributing to cell-and-terminal specific regulation of nAChR-mediated neurotransmitter exocytosis are not fully understood. The experiments discussed here examine how activation of GABAB auto- and hetero-receptors suppress nAChR-mediated release of [(3)H]-GABA and [(3)H]-dopamine ((3)H-DA) from mouse striatal synaptosomes. Activation of presynaptic GABAB receptors with (R)-baclofen decreased both [(3)H]-GABA and [(3)H]-DA release evoked by potassium depolarization. However, when nAChRs were activated with ACh to evoke neurotransmitter release, (R)-baclofen had no effect on [(3)H]-DA release, but potently inhibited ACh-evoked [(3)H]-GABA release. Inhibition of nAChR-evoked [(3)H]-GABA release by (R)-baclofen was time sensitive and the effect was lost after prolonged exposure to the GABAB agonist. The early inhibitory effect of GABAB activation on ACh-evoked [(3)H]-GABA release was partially attenuated by antagonists of the phosphatase, calcineurin. Furthermore, antagonists of protein kinase C (PKC) prevented the time-dependent loss of the inhibitory (R)-baclofen effect on [(3)H]-GABA release. These results suggest that α4β2*-nAChRs present on GABAergic nerve terminals in the striatum are subject to functional regulation by GABAB autoreceptors that is apparently cell-type specific, since it is absent from DAergic striatal nerve terminals. In addition, the functional modulation of α4β2*-type nAChRs on striatal GABAergic nerve terminals by GABAB autoreceptor activation is time-sensitive and appears to involve opposing actions of calcineurin and PKC.
Collapse
Affiliation(s)
- Tristan D McClure-Begley
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, United States of America; Department of Integrative Physiology, University of Colorado, Boulder, CO, United States of America; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States of America
| | - Sharon R Grady
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, United States of America
| | - Michael J Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, United States of America; Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States of America
| | - Allan C Collins
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, United States of America
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, United States of America; Department of Integrative Physiology, University of Colorado, Boulder, CO, United States of America.
| |
Collapse
|
12
|
Co-application of the GABAB receptor agonist, baclofen, and the mGlu receptor agonist, L-CCG-I, facilitates [3H]GABA release from rat cortical nerve endings. J Neural Transm (Vienna) 2013; 120:1641-9. [DOI: 10.1007/s00702-013-1057-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
|
13
|
Jamal L, Khan AN, Butt S, Patel CR, Zhang H. The level and distribution of the GABA(B)R1 and GABA(B)R2 receptor subunits in the rat's inferior colliculus. Front Neural Circuits 2012. [PMID: 23189044 PMCID: PMC3506002 DOI: 10.3389/fncir.2012.00092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The type B γ-aminobutyric acid receptor (GABA(B) receptor) is an important neurotransmitter receptor in the midbrain auditory structure, the inferior colliculus (IC). A functional GABA(B) receptor is a heterodimer consisting of two subunits, GABA(B)R1 and GABA(B)R2. Western blotting and immunohistochemical experiments were conducted to examine the expression of the two subunits over the IC including its central nucleus, dorsal cortex, and external cortex (ICc, ICd, and ICx). Results revealed that the two subunits existed in both cell bodies and the neuropil throughout the IC. The two subunits had similar regional distributions over the IC. The combined level of cell body and neuropil labeling was higher in the ICd than the other two subdivisions. Labeling in the ICc and ICx was stronger in the dorsal than the ventral regions. In spite of regional differences, no defined boundaries were formed between different areas. For both subunits, the regional distribution of immunoreactivity in the neuropil was parallel to that of combined immunoreactivity in the neuropil and cell bodies. The density of labeled cell bodies tended to be higher but sizes of cell bodies tended to be smaller in the ICd than in the other subdivisions. No systematic regional changes were found in the level of cell body immunoreactivity, except that GABA(B)R2-immunoreactive cell bodies in the ICd had slightly higher optic density (OD) than in other regions. Elongated cell bodies existed throughout the IC. Many labeled cell bodies along the outline of the IC were oriented in parallel to the outline. No strong tendency of orientation was found in labeled cell bodies in ICc. Regional distributions of the subunits in ICc correlated well with inputs to this subdivision. Our finding regarding the contrast in the level of neuropil immunoreactivity among different subdivisions is consistent with the fact that the GABA(B) receptor has different pre- and postsynaptic functions in different IC regions.
Collapse
Affiliation(s)
- Lena Jamal
- Department of Biological Sciences, University of Windsor Windsor, ON, Canada
| | | | | | | | | |
Collapse
|
14
|
Cox HC, Lea RA, Bellis C, Nyholt DR, Dyer TD, Haupt LM, Charlesworth J, Matovinovic E, Blangero J, Griffiths LR. Heritability and genome-wide linkage analysis of migraine in the genetic isolate of Norfolk Island. Gene 2011; 494:119-23. [PMID: 22197687 DOI: 10.1016/j.gene.2011.11.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/02/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
Migraine is a common neurovascular disorder with a complex envirogenomic aetiology. In an effort to identify migraine susceptibility genes, we conducted a study of the isolated population of Norfolk Island, Australia. A large portion of the permanent inhabitants of Norfolk Island are descended from 18th Century English sailors involved in the infamous mutiny on the Bounty and their Polynesian consorts. In total, 600 subjects were recruited including a large pedigree of 377 individuals with lineage to the founders. All individuals were phenotyped for migraine using International Classification of Headache Disorders-II criterion. All subjects were genotyped for a genome-wide panel of microsatellite markers. Genotype and phenotype data for the pedigree were analysed using heritability and linkage methods implemented in the programme SOLAR. Follow-up association analysis was performed using the CLUMP programme. A total of 154 migraine cases (25%) were identified indicating the Norfolk Island population is high-risk for migraine. Heritability estimation of the 377-member pedigree indicated a significant genetic component for migraine (h(2)=0.53, P=0.016). Linkage analysis showed peaks on chromosome 13q33.1 (P=0.003) and chromosome 9q22.32 (P=0.008). Association analysis of the key microsatellites in the remaining 223 unrelated Norfolk Island individuals showed evidence of association, which strengthen support for the linkage findings (P≤0.05). In conclusion, a genome-wide linkage analysis and follow-up association analysis of migraine in the genetic isolate of Norfolk Island provided evidence for migraine susceptibility loci on chromosomes 9q22.22 and 13q33.1.
Collapse
Affiliation(s)
- Hannah C Cox
- Genomics Research Centre, Griffith Health Institute, Gold Coast Campus, Griffith University, Queensland, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sleep-deprivation induces changes in GABA(B) and mGlu receptor expression and has consequences for synaptic long-term depression. PLoS One 2011; 6:e24933. [PMID: 21980366 PMCID: PMC3182263 DOI: 10.1371/journal.pone.0024933] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 08/24/2011] [Indexed: 12/30/2022] Open
Abstract
Long term depression (LTD) in the CA1 region of the hippocampus, induced with a 20-Hz, 30 s tetanus to Schaffer collaterals, is enhanced in sleep-deprived (SD) rats. In the present study, we investigated the role of metabotropic glutamate receptors (mGluRs), γ-aminobutyric acid (GABA) B receptors (GABA(B)-Rs) and N-methyl-D-aspartic acid receptors (NMDARs) in the LTD of the population excitatory postsynaptic potential (pEPSP). The requirement of Ca(2+) from L- and T-type voltage-gated calcium channels (VGCCs) and intracellular stores was also studied. Results indicate that mGluRs, a release of Ca(2+) from intracellular stores and GABA(B)-Rs are required for LTD. Interestingly, while mGlu1Rs seem to be involved in both short-term depression and LTD, mGlu5Rs appear to participate mostly in LTD. CGP 55845, a GABA(B)-R antagonist, partially suppressed LTD in normally sleeping (NS) rats, while completely blocking LTD in SD rats. Moreover, GS-39783, a positive allosteric modulator for GABA(B)-R, suppressed the pEPSP in SD, but not NS rats. Since both mGluRs and GABA(B)-Rs seem to be involved in the LTD, especially in SD rats, we examined if the receptor expression pattern and/or dimerization changed, using immunohistochemical, co-localization and co-immunoprecipitation techniques. Sleep-deprivation induced an increase in the expression of GABA(B)-R1 and mGlu1αR in the CA1 region of the hippocampus. In addition, co-localization and heterodimerization between mGlu1αR/GABA(B)-R1 and mGlu1αR/GABA(B)-R2 is enhanced in SD rats. Taken together, our findings present a novel form of LTD sensitive to the activation of mGluRs and GABA(B)-Rs, and reveal, for the first time, that sleep-deprivation induces alterations in the expression and dimerization of these receptors.
Collapse
|
16
|
Comps-Agrar L, Kniazeff J, Nørskov-Lauritsen L, Maurel D, Gassmann M, Gregor N, Prézeau L, Bettler B, Durroux T, Trinquet E, Pin JP. The oligomeric state sets GABA(B) receptor signalling efficacy. EMBO J 2011; 30:2336-49. [PMID: 21552208 PMCID: PMC3116278 DOI: 10.1038/emboj.2011.143] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/11/2011] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have key roles in cell-cell communication. Recent data suggest that these receptors can form large complexes, a possibility expected to expand the complexity of this regulatory system. Among the brain GPCRs, the heterodimeric GABA(B) receptor is one of the most abundant, being distributed in most brain regions, on either pre- or post-synaptic elements. Here, using specific antibodies labelled with time-resolved FRET compatible fluorophores, we provide evidence that the heterodimeric GABA(B) receptor can form higher-ordered oligomers in the brain, as suggested by the close proximity of the GABA(B1) subunits. Destabilizing the oligomers using a competitor or a GABA(B1) mutant revealed different G protein coupling efficiencies depending on the oligomeric state of the receptor. By examining, in heterologous system, the G protein coupling properties of such GABA(B) receptor oligomers composed of a wild-type and a non-functional mutant heterodimer, we provide evidence for a negative functional cooperativity between the GABA(B) heterodimers.
Collapse
Affiliation(s)
- Laëtitia Comps-Agrar
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Julie Kniazeff
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Lenea Nørskov-Lauritsen
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Damien Maurel
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Martin Gassmann
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Nathalie Gregor
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Laurent Prézeau
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Thierry Durroux
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Eric Trinquet
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Jean-Philippe Pin
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| |
Collapse
|
17
|
Grothe B, Koch U. Dynamics of binaural processing in the mammalian sound localization pathway--the role of GABA(B) receptors. Hear Res 2011; 279:43-50. [PMID: 21447375 DOI: 10.1016/j.heares.2011.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/14/2011] [Accepted: 03/21/2011] [Indexed: 01/01/2023]
Abstract
The initial binaural processing in the superior olive represents the fastest computation known in the entire mammalian brain. Although the binaural system has to perform under very different and often highly dynamic acoustic conditions, the integration of binaural information in the superior olivary complex (SOC) has not been considered to be adaptive or dynamic itself. Recent evidence, however, shows that the initial processing of interaural level and interaural time differences relies on well-adjusted interactions of both the excitatory and the inhibitory projections, respectively. Under static conditions, these inputs seem to be tightly balanced, but may also require dynamic adjustment for proper function when the acoustic environment changes. GABA(B) receptors are at least one mechanism rendering the system more dynamic than considered so far. A comprehensive description of how binaural processing in the SOC is dynamically regulated by GABA(B) receptors in adults and in early development is important for understanding how spatial auditory processing changes with acoustic context.
Collapse
Affiliation(s)
- Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universitaet Munich, Großhaderner Str. 2-4, D-82152 Martinsried-Planegg, Germany.
| | | |
Collapse
|
18
|
Rekik L, Daguin-Nerrière V, Petit JY, Brachet P. γ-Aminobutyric acid type B receptor changes in the rat striatum and substantia nigra following intrastriatal quinolinic acid lesions. J Neurosci Res 2011; 89:524-35. [PMID: 21290407 DOI: 10.1002/jnr.22574] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 12/16/2023]
Abstract
Changes in the regional distribution of the metabotropic GABA type B receptors (GABA(B)) were investigated in a rat model of Huntington's disease. Animals received a unilateral intrastriatal injection of quinolinic acid (QA), and GABA(B) immunoreactivity was monitored 3, 11, and 21 days postinjection in the striatum and substantia nigra (SN). Two antibodies, recognizing either the GABA(B1) or the GABA(B2) receptor subtypes, were used. QA injection rapidly induced a protracted increase in GABA(B1) or GABA(B2) immunoreactivity in the lesioned striatum, despite the neuronal loss. In the SN, a continuous increase in GABA(B1) and GABA(B2) immunoreactivity was observed at all time points in the ipsilateral pars reticulata (SNr), whereas the pars compacta (SNc) was unaffected by this phenomenon. This increase was supported by a densitometric analysis. At day 21 postlesion induction, intensely labeled stellate cells and processes were found in the ipsilateral SNr, in addition to immunoreactive neurons. Double labeling of GABA(B1) and glial fibrillary acidic protein (GFAP) showed that the stellate cells were reactive astrocytes. Hence, part of the sustained increase in GABA(B) immunoreactivity that takes place in the SNr and possibly the striatum may be ascribed to reactive astrocytes. It is suggested that GABA(B) receptors are up-regulated in these reactive astrocytes and that agonists might influence the extent of this astroglial reaction.
Collapse
Affiliation(s)
- Letaïef Rekik
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | | | | | | |
Collapse
|
19
|
Guetg N, Aziz SA, Holbro N, Turecek R, Rose T, Seddik R, Gassmann M, Moes S, Jenoe P, Oertner TG, Casanova E, Bettler B. NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1. Proc Natl Acad Sci U S A 2010; 107:13924-9. [PMID: 20643921 PMCID: PMC2922270 DOI: 10.1073/pnas.1000909107] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. GABAB receptors are abundant on dendritic spines, where they dampen postsynaptic excitability and inhibit Ca2+ influx through NMDA receptors when activated by spillover of GABA from neighboring GABAergic terminals. Here, we show that an excitatory signaling cascade enables spines to counteract this GABAB-mediated inhibition. We found that NMDA application to cultured hippocampal neurons promotes dynamin-dependent endocytosis of GABAB receptors. NMDA-dependent internalization of GABAB receptors requires activation of Ca2+/Calmodulin-dependent protein kinase II (CaMKII), which associates with GABAB receptors in vivo and phosphorylates serine 867 (S867) in the intracellular C terminus of the GABAB1 subunit. Blockade of either CaMKII or phosphorylation of S867 renders GABAB receptors refractory to NMDA-mediated internalization. Time-lapse two-photon imaging of organotypic hippocampal slices reveals that activation of NMDA receptors removes GABAB receptors within minutes from the surface of dendritic spines and shafts. NMDA-dependent S867 phosphorylation and internalization is predominantly detectable with the GABAB1b subunit isoform, which is the isoform that clusters with inhibitory effector K+ channels in the spines. Consistent with this, NMDA receptor activation in neurons impairs the ability of GABAB receptors to activate K+ channels. Thus, our data support that NMDA receptor activity endocytoses postsynaptic GABAB receptors through CaMKII-mediated phosphorylation of S867. This provides a means to spare NMDA receptors at individual glutamatergic synapses from reciprocal inhibition through GABAB receptors.
Collapse
Affiliation(s)
- Nicole Guetg
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
| | - Said Abdel Aziz
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
| | - Niklaus Holbro
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Rostislav Turecek
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic; and
| | - Tobias Rose
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Riad Seddik
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
| | - Suzette Moes
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Paul Jenoe
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Thomas G. Oertner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Emilio Casanova
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
20
|
Bartoi T, Rigbolt KTG, Du D, Köhr G, Blagoev B, Kornau HC. GABAB receptor constituents revealed by tandem affinity purification from transgenic mice. J Biol Chem 2010; 285:20625-33. [PMID: 20406808 DOI: 10.1074/jbc.m109.049700] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
GABA(B) receptors function as heterodimeric G-protein-coupled receptors for the neurotransmitter gamma-aminobutyric acid (GABA). Receptor subtypes, based on isoforms of the ligand-binding subunit GABA(B1), are thought to involve a differential set of associated proteins. Here, we describe two mouse lines that allow a straightforward biochemical isolation of GABA(B) receptors. The transgenic mice express GABA(B1) isoforms that contain sequences for a two-step affinity purification, in addition to their endogenous subunit repertoire. Comparative analyses of purified samples from the transgenic mice and wild-type control animals revealed two novel components of the GABA(B1) complex. One of the identified proteins, potassium channel tetramerization domain-containing protein 12, associates with heterodimeric GABA(B) receptors via the GABA(B2) subunit. In transfected hippocampal neurons, potassium channel tetramerization domain-containing protein 12 augmented axonal surface targeting of GABA(B2). The mice equipped with tags on GABA(B1) facilitate validation and identification of native binding partners of GABA(B) receptors, providing insight into the molecular mechanisms of synaptic modulation.
Collapse
Affiliation(s)
- Tudor Bartoi
- Center for Molecular Neurobiology (ZMNH), University of Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Zunner D, Deschermeier C, Kornau HC. GABA(B) receptor subunit 1 binds to proteins affected in 22q11 deletion syndrome. Biochem Biophys Res Commun 2010; 393:185-9. [PMID: 20036641 DOI: 10.1016/j.bbrc.2009.12.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/20/2009] [Indexed: 01/08/2023]
Abstract
GABA(B) receptors mediate slow inhibitory effects of the neurotransmitter gamma-aminobutyric acid (GABA) on synaptic transmission in the central nervous system. They function as heterodimeric G-protein-coupled receptors composed of the seven-transmembrane domain proteins GABA(B1) and GABA(B2), which are linked through a coiled-coil interaction. The ligand-binding subunit GABA(B1) is at first retained in the endoplasmic reticulum and is transported to the cell surface only upon assembly with GABA(B2). Here, we report that GABA(B1), via the coiled-coil domain, can also bind to soluble proteins of unknown function, that are affected in 22q11 deletion/DiGeorge syndrome and are therefore referred to as DiGeorge critical region 6 (DGCR6). In transfected neurons the GABA(B1)-DGCR6 association resulted in a redistribution of both proteins into intracellular clusters. Furthermore, the C-terminus of GABA(B2) interfered with the novel interaction, consistent with heterodimer formation overriding transient DGCR6-binding to GABA(B1). Thus, sequential coiled-coil interactions may direct GABA(B1) into functional receptors.
Collapse
Affiliation(s)
- Dagmar Zunner
- Center for Molecular Neurobiology, University of Hamburg, Germany
| | | | | |
Collapse
|
22
|
Trinchella F, Cannetiello M, Simoniello P, Filosa S, Scudiero R. Differential gene expression profiles in embryos of the lizard Podarcis sicula under in ovo exposure to cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2010; 151:33-9. [PMID: 19695345 DOI: 10.1016/j.cbpc.2009.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 12/19/2022]
Abstract
Screening for differentially expressed genes is a straightforward approach to study the molecular basis of contaminant toxicity. In this paper, the mRNA differential display technique was applied to analyze transcriptional regulation in response to cadmium exposure in the lizard embryos. Lizard eggs may be particularly susceptible to soil contamination and in ovo exposure may interfere or disrupt normal physiological function in the developing embryo, including regulation of gene expression. Fertilized eggs of the lizard Podarcis sicula were incubated in cadmium-contaminated soil at 25 degrees C for 20 days. Gene expression profiling showed 5 down- and 9 up-regulated genes. Four cDNAs had no homology to known gene sequences, thus suggesting that may either encode not yet identified proteins, or correspond to untranslated regions of mRNA molecules. Four fragments exhibited significant sequence similarity with genes encoding novel proteins or ESTs derived from other vertebrates. The remaining genes are mainly involved in molecular pathways associated with processes such as membrane trafficking, signal transduction, cytoskeletal organization, cell proliferation and differentiation. Cadmium also affected the expression of factors actively involved in the regulation of the transcription machinery. Down-regulated genes are mainly associated with cellular metabolism and cell-cycle regulation and apoptosis. All of these differentially expressed genes may represent candidates that function in cadmium responses. The present study leads to an increased understanding of genes and/or the biochemical pathways involved in perturbation of embryo development following cadmium exposure.
Collapse
Affiliation(s)
- Francesca Trinchella
- Department of Biological Sciences, University Federico II, Via Mezzocannone 8, Naples, Italy
| | | | | | | | | |
Collapse
|
23
|
GABAB receptors: physiological functions and mechanisms of diversity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 58:231-55. [PMID: 20655485 DOI: 10.1016/s1054-3589(10)58010-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GABA(B) receptors are the G-protein-coupled receptors (GPCRs) for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the central nervous system. GABA(B) receptors are implicated in the etiology of a variety of psychiatric disorders and are considered attractive drug targets. With the cloning of GABA(B) receptor subunits 13 years ago, substantial progress was made in the understanding of the molecular structure, physiology, and pharmacology of these receptors. However, it remained puzzling that native studies demonstrated a heterogeneity of GABA(B) responses that contrasted with a very limited diversity of cloned GABA(B) receptor subunits. Until recently, the only firmly established molecular diversity consisted of two GABA(B1) subunit isoforms, GABA(B1a) and GABA(B1b), which assemble with GABA(B2) subunits to generate heterodimeric GABA(B(1a,2)) and GABA(B(1b,2)) receptors. Using genetic, ultrastructural, biochemical, and electrophysiological approaches, it has been possible to identify functional properties that segregate with these two receptors. Moreover, receptor modifications and factors that can alter the receptor response have been identified. Most importantly, recent data reveal the existence of a family of auxiliary GABA(B) receptor subunits that assemble as tetramers with the C-terminal domain of GABA(B2) subunits and drastically alter pharmacology and kinetics of the receptor response. The data are most consistent with native GABA(B) receptors minimally forming dimeric assemblies of units composed of GABA(B1), GABA(B2), and a tetramer of auxiliary subunits. This represents a substantial departure from current structural concepts for GPCRs.
Collapse
|
24
|
Rives ML, Vol C, Fukazawa Y, Tinel N, Trinquet E, Ayoub MA, Shigemoto R, Pin JP, Prézeau L. Crosstalk between GABAB and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO J 2009; 28:2195-208. [PMID: 19590495 DOI: 10.1038/emboj.2009.177] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 05/29/2009] [Indexed: 12/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have critical functions in intercellular communication. Although a wide range of different receptors have been identified in the same cells, the mechanism by which signals are integrated remains elusive. The ability of GPCRs to form dimers or larger hetero-oligomers is thought to generate such signal integration. We examined the molecular mechanisms responsible for the GABA(B) receptor-mediated potentiation of the mGlu receptor signalling reported in Purkinje neurons. We showed that this effect does not require a physical interaction between both receptors. Instead, it is the result of a more general mechanism in which the betagamma subunits produced by the Gi-coupled GABA(B) receptor enhance the mGlu-mediated Gq response. Most importantly, this mechanism could be generally applied to other pairs of Gi- and Gq-coupled receptors and the signal integration varied depending on the time delay between activation of each receptor. Such a mechanism helps explain specific properties of cells expressing two different Gi- and Gq-coupled receptors activated by a single transmitter, or properties of GPCRs naturally coupled to both types of the G protein.
Collapse
Affiliation(s)
- Marie-Laure Rives
- Department of Molecular Pharmacology, CNRS, UMR 5203, Institut de Génomique fonctionnelle, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
CGP7930 (3-(3',5'-Di-tert-butyl-4'-hydroxy)phenyl-2,2-dimethylpropanol) is a positive allosteric modulator of the metabotropic GABAB receptor. CGP7930 has been found to modulate the GABAB receptor in the open, or high affinity, state increasing agonist affinity for the receptor and signal transduction efficacy following agonist stimulation. The GABAB heteromeric subunit B2, involved in signal transduction but not ligand binding, seems to be the site of action of CGP7930 and similar allosteric modulators. When administered alone in naïve animals, CGP7930 acts as an anxiolytic in rodents without other overt behavioral effects and has also been demonstrated to reduce self-administration of nicotine, cocaine, or alcohol in rodents, suggesting that "fine tuning" of the GABAB receptor by positive allosteric modulators may be able to regulate abuse of these drugs. Baclofen, the GABAB agonist, is currently finding use in treating addiction and various other disorders, but this can result in off-target effects and tolerance. CGP7930 when co-administered with baclofen enhances its potency, which could in theory minimize deleterious effects. Further study of CGP7930 is required, but this compound, and others like it, holds potential in a clinical setting.
Collapse
Affiliation(s)
- C L Adams
- Department of Pharmaceutical Biology, Victorian College of Pharmacy, Monash University, Australia
| | | |
Collapse
|
26
|
NMR structure of an intracellular third loop peptide of human GABAB receptor. Biochem Biophys Res Commun 2008; 366:681-4. [DOI: 10.1016/j.bbrc.2007.11.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 11/29/2007] [Indexed: 01/05/2023]
|
27
|
Enell L, Hamasaka Y, Kolodziejczyk A, Nässel DR. γ-Aminobutyric acid (GABA) signaling components inDrosophila: Immunocytochemical localization of GABABreceptors in relation to the GABAAreceptor subunit RDL and a vesicular GABA transporter. J Comp Neurol 2007; 505:18-31. [PMID: 17729251 DOI: 10.1002/cne.21472] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
gamma-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in insects and is widely distributed in the central nervous system (CNS). GABA acts on ion channel receptors (GABA(A)R) for fast inhibitory transmission and on G-protein-coupled ones (GABA(B)R) for slow and modulatory action. We used immunocytochemistry to map GABA(B)R sites in the Drosophila CNS and compared the distribution with that of the GABA(A)R subunit RDL. To identify GABAergic synapses, we raised an antiserum to the vesicular GABA transporter (vGAT). For general GABA distribution, we utilized an antiserum to glutamic acid decarboxylase (GAD1) and a gad1-GAL4 to drive green fluorescent protein. GABA(B)R-immunoreactive (IR) punctates were seen in specific patterns in all major neuropils of the brain. Most abundant labeling was seen in the mushroom body calyces, ellipsoid body, optic lobe neuropils, and antennal lobes. The RDL distribution is very similar to that of GABA(B)R-IR punctates. However, the mushroom body lobes displayed RDL-IR but not GABA(B)R-IR material, and there were subtle differences in other areas. The vGAT antiserum labeled punctates in the same areas as the GABA(B)R and appeared to display presynaptic sites of GABAergic neurons. Various GAL4 drivers were used to analyze the relation between GABA(B)R distribution and identified neurons in adults and larvae. Our findings suggest that slow GABA transmission is very widespread in the Drosophila CNS and that fast RDL-mediated transmission generally occurs at the same sites.
Collapse
Affiliation(s)
- Lina Enell
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
28
|
Ulrich D, Bettler B. GABA(B) receptors: synaptic functions and mechanisms of diversity. Curr Opin Neurobiol 2007; 17:298-303. [PMID: 17433877 DOI: 10.1016/j.conb.2007.04.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 04/05/2007] [Indexed: 12/20/2022]
Abstract
GABA(B) receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the mammalian central nervous system. They are implicated in a variety of neurological and psychiatric disorders. With the cloning of GABA(B) receptors ten years ago, substantial progress was made in our understanding of this receptor system. Here, we review current concepts of synaptic GABA(B) functions and present the evidence that points to specific roles for receptor subtypes. We discuss ultrastructural studies revealing that most GABA(B) receptors are located remote from GABAergic terminals, which raises questions as to when such receptors become activated. Finally, we provide possible explanations for the perplexing situation that GABA(B) receptor subtypes that have indistinguishable properties in vitro generate distinct GABA(B) responses in vivo.
Collapse
Affiliation(s)
- Daniel Ulrich
- Pharmazentrum, Institute of Physiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
29
|
Trellakis S, Lautermann J, Lehnerdt G. Lidocaine: neurobiological targets and effects on the auditory system. PROGRESS IN BRAIN RESEARCH 2007; 166:303-22. [DOI: 10.1016/s0079-6123(07)66028-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|