1
|
Shimizu K, Nishi M, Sakate Y, Kawanami H, Bito T, Arima J, Leria L, Maldonado M. Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera. Nat Commun 2024; 15:181. [PMID: 38185711 PMCID: PMC10772126 DOI: 10.1038/s41467-023-44226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Metazoans use silicon traces but rarely develop extensive silica skeletons, except for the early-diverging lineage of sponges. The mechanisms underlying metazoan silicification remain incompletely understood, despite significant biotechnological and evolutionary implications. Here, the characterization of two proteins identified from hexactinellid sponge silica, hexaxilin and perisilin, supports that the three classes of siliceous sponges (Hexactinellida, Demospongiae, and Homoscleromorpha) use independent protein machineries to build their skeletons, which become non-homologous structures. Hexaxilin forms the axial filament to intracellularly pattern the main symmetry of the skeletal parts, while perisilin appears to operate in their thickening, guiding extracellular deposition of peripheral silica, as does glassin, a previously characterized hexactinellid silicifying protein. Distant hexaxilin homologs occur in some bilaterians with siliceous parts, suggesting putative conserved silicifying activity along metazoan evolution. The findings also support that ancestral Porifera were non-skeletonized, acquiring silica skeletons only after diverging into major classes, what reconciles molecular-clock dating and the fossil record.
Collapse
Affiliation(s)
- Katsuhiko Shimizu
- Platform for Community-based Research and Education, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8550, Japan.
| | - Michika Nishi
- Division of Agricultural Science, Graduate studies of Sustainability Science, Tottori University Graduate School, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Yuto Sakate
- Division of Agricultural Science, Graduate studies of Sustainability Science, Tottori University Graduate School, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Haruka Kawanami
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Tomohiro Bito
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Jiro Arima
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Laia Leria
- Sponge Ecobiology and Biotechnology Group, Center for Advanced Studies of Blanes (CEAB, CSIC), Blanes, 17300, Spain
| | - Manuel Maldonado
- Sponge Ecobiology and Biotechnology Group, Center for Advanced Studies of Blanes (CEAB, CSIC), Blanes, 17300, Spain.
| |
Collapse
|
2
|
Santini S, Schenkelaars Q, Jourda C, Duchesne M, Belahbib H, Rocher C, Selva M, Riesgo A, Vervoort M, Leys SP, Kodjabachian L, Le Bivic A, Borchiellini C, Claverie JM, Renard E. The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. BMC Biol 2023; 21:139. [PMID: 37337252 DOI: 10.1186/s12915-023-01619-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.
Collapse
Affiliation(s)
- Sébastien Santini
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Quentin Schenkelaars
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Jourda
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
- CIRAD, UMR PVBMT, La Réunion, France
| | - Marc Duchesne
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Hassiba Belahbib
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Marjorie Selva
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Turing Center for Living Systems, Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France
| | | | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France.
| |
Collapse
|
3
|
Francis WR, Eitel M, Vargas S, Garcia-Escudero CA, Conci N, Deister F, Mah JL, Guiglielmoni N, Krebs S, Blum H, Leys SP, Wörheide G. The genome of the reef-building glass sponge Aphrocallistes vastus provides insights into silica biomineralization. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230423. [PMID: 37351491 PMCID: PMC10282587 DOI: 10.1098/rsos.230423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Well-annotated and contiguous genomes are an indispensable resource for understanding the evolution, development, and metabolic capacities of organisms. Sponges, an ecologically important non-bilaterian group of primarily filter-feeding sessile aquatic organisms, are underrepresented with respect to available genomic resources. Here we provide a high-quality and well-annotated genome of Aphrocallistes vastus, a glass sponge (Porifera: Hexactinellida) that forms large reef structures off the coast of British Columbia (Canada). We show that its genome is approximately 80 Mb, small compared to most other metazoans, and contains nearly 2500 nested genes, more than other genomes. Hexactinellida is characterized by a unique skeletal architecture made of amorphous silicon dioxide (SiO2), and we identified 419 differentially expressed genes between the osculum, i.e. the vertical growth zone of the sponge, and the main body. Among the upregulated ones, mineralization-related genes such as glassin, as well as collagens and actins, dominate the expression profile during growth. Silicateins, suggested being involved in silica mineralization, especially in demosponges, were not found at all in the A. vastus genome and suggests that the underlying mechanisms of SiO2 deposition in the Silicea sensu stricto (Hexactinellida + Demospongiae) may not be homologous.
Collapse
Affiliation(s)
- Warren R. Francis
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Catalina A. Garcia-Escudero
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicola Conci
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Deister
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jasmine L. Mah
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9
| | - Nadège Guiglielmoni
- Service Evolution Biologique et Ecologie, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sally P. Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB)–Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
4
|
Protein-driven biomineralization: Comparing silica formation in grass silica cells to other biomineralization processes. J Struct Biol 2020; 213:107665. [PMID: 33227416 DOI: 10.1016/j.jsb.2020.107665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Biomineralization is a common strategy adopted by organisms to support their body structure. Plants practice significant silicon and calcium based biomineralization in which silicon is deposited as silica in cell walls and intracellularly in various cell-types, while calcium is deposited mostly as calcium oxalate in vacuoles of specialized cells. In this review, we compare cellular processes leading to protein-dependent mineralization in plants, diatoms and sponges (phylum Porifera). The mechanisms of biomineralization in these organisms are inherently different. The composite silica structure in diatoms forms inside the cytoplasm in a membrane bound vesicle, which after maturation is exocytosed to the cell surface. In sponges, separate vesicles with the mineral precursor (silicic acid), an inorganic template, and organic molecules, fuse together and are extruded to the extracellular space. In plants, calcium oxalate mineral precipitates in vacuolar crystal chambers containing a protein matrix which is never exocytosed. Silica deposition in grass silica cells takes place outside the cell membrane when the cells secrete the mineralizing protein into the apoplasm rich with silicic acid (the mineral precursor molecules). Our review infers that the organism complexity and precursor reactivity (calcium and oxalate versus silicic acid) are main driving forces for the evolution of varied mineralization mechanisms.
Collapse
|
5
|
Maldonado M, López-Acosta M, Beazley L, Kenchington E, Koutsouveli V, Riesgo A. Cooperation between passive and active silicon transporters clarifies the ecophysiology and evolution of biosilicification in sponges. SCIENCE ADVANCES 2020; 6:eaba9322. [PMID: 32832609 PMCID: PMC7439455 DOI: 10.1126/sciadv.aba9322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The biological utilization of dissolved silicon (DSi) influences ocean ecology and biogeochemistry. In the deep sea, hexactinellid sponges are major DSi consumers that remain poorly understood. Their DSi consumption departs from the Michaelis-Menten kinetics of shallow-water demosponges and appears particularly maladapted to incorporating DSi from the modest concentrations typical of the modern ocean. Why did sponges not adapt to the shrinking DSi availability that followed diatom expansion some 100 to 65 million years ago? We propose that sponges incorporate DSi combining passive (aquaglyceroporins) and active (ArsB) transporters, while only active transporters (SITs) operate in diatoms and choanoflagellates. Evolution of greater silicon transport efficiency appears constrained by the additional role of aquaglyceroporins in transporting essential metalloids other than silicon. We discuss the possibility that lower energy costs may have driven replacement of ancestral SITs by less efficient aquaglyceroporins, and discuss the functional implications of conservation of aquaglyceroporin-mediated DSi utilization in vertebrates.
Collapse
Affiliation(s)
- M. Maldonado
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Acceso Cala St. Francesc 14, Blanes 17300, Girona, Spain
| | - M. López-Acosta
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Acceso Cala St. Francesc 14, Blanes 17300, Girona, Spain
| | - L. Beazley
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, 1 Challenger Dr., Dartmouth, NS, Canada
| | - E. Kenchington
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, 1 Challenger Dr., Dartmouth, NS, Canada
| | - V. Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, SW7 5BD London, UK
| | - A. Riesgo
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, SW7 5BD London, UK
| |
Collapse
|
6
|
Funayama N. Produce, carry/position, and connect: morphogenesis using rigid materials. Curr Opin Genet Dev 2019; 57:91-97. [PMID: 31546193 DOI: 10.1016/j.gde.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
Animal morphogenesis can be summarized as a reconfiguration of a mass of cells. Although extracellular matrices that include rigid skeletal elements, such as cartilage/bones and exoskeletons, have important roles in morphogenesis, they are also secreted in situ by accumulated cells or epithelial cells. In contrast, recent studies of the skeleton construction of sponges (Porifera) illuminate a conceptually different mechanism of morphogenesis in which cells manipulate rather fine rigid materials (spicules) to form larger structures. Here, two different types of sponge skeleton formation using calcareous spicules or siliceous spicules are compared with regard to the concept of the production of rigid materials and their use in skeletons. The comparison highlights the advantages of their different strategies of forming sponge skeletons.
Collapse
Affiliation(s)
- Noriko Funayama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
7
|
Evolution of the main skeleton-forming genes in sponges (phylum Porifera) with special focus on the marine Haplosclerida (class Demospongiae). Mol Phylogenet Evol 2018; 131:245-253. [PMID: 30502904 DOI: 10.1016/j.ympev.2018.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 01/14/2023]
Abstract
The skeletons of sponges (Phylum Porifera) are comprised of collagen, often embedded with small siliceous structures (spicules) arranged in various forms to provide strength and flexibility. The main proteins responsible for the formation of the spicules in demosponges are the silicateins, which are related to the cathepsins L of other animals. While the silicatein active site, necessary for the formation of biosilica crystals, is characterized by the amino acids SHN, different variants of the silicatein genes have been found, some that retain SHN at the active site and some that don't. As part of an effort to further understand skeleton formation in marine sponges of the order Haplosclerida, a search for all silicatein variants were made in Irish species representing the main clades of this large sponge group. For this task, transcriptomes were sequenced and de novo assembled from Haliclona oculata, H. simulans and H. indistincta. Silicatein genes were identified from these and all available genomes and transcriptomes from Porifera. These were analysed along with all complete silicateins from GenBank. Silicateins were only found in species belonging to the class Demospongiae but excluding Keratosa and Verongimorpha and there was significant duplication and diversity of these genes. Silicateins showing SHN at the active site were polyphyletic. Indeed silicatein sequences were divided into six major clades (CHNI, CHNII, CHNIII, SHNI, SHNII and C/SQN). In those clades where haplosclerids were well represented the silicatein phylogeny reflected previous ribosomal and mitochondrial topologies. The most basal silicatein clade (CHNI) contained sequences only from marine haplosclerids and freshwater sponges while one silicatein from H. indistincta was more related to cathepsins L (outgroup) than to the overall silicatein clade indicating the presence of an old silicatein or an intermediary form. This data could suggest that marine haplosclerids were one of the first groups of extant demosponges to acquire silicatein genes. Furthermore, we suggest that the paucity of spicule types in this group may be due to their single copy of SHNI variants, and the lack of a silintaphin gene.
Collapse
|
8
|
Shimizu K, Morse DE. Silicatein: A Unique Silica-Synthesizing Catalytic Triad Hydrolase From Marine Sponge Skeletons and Its Multiple Applications. Methods Enzymol 2018; 605:429-455. [DOI: 10.1016/bs.mie.2018.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Werner P, Blumtritt H, Natalio F. Organic crystal lattices in the axial filament of silica spicules of Demospongiae. J Struct Biol 2017; 198:186-195. [DOI: 10.1016/j.jsb.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
10
|
Hyde EDER, Seyfaee A, Neville F, Moreno-Atanasio R. Colloidal Silica Particle Synthesis and Future Industrial Manufacturing Pathways: A Review. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01839] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emily D. E. R. Hyde
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ahmad Seyfaee
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Frances Neville
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Roberto Moreno-Atanasio
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
11
|
Schröder HC, Grebenjuk VA, Wang X, Müller WEG. Hierarchical architecture of sponge spicules: biocatalytic and structure-directing activity of silicatein proteins as model for bioinspired applications. BIOINSPIRATION & BIOMIMETICS 2016; 11:041002. [PMID: 27452043 DOI: 10.1088/1748-3190/11/4/041002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since the first description of the silicateins, a group of enzymes that mediate the formation of the amorphous, hydrated biosilica of the skeleton of the siliceous sponges, much progress has been achieved in the understanding of this biomineralization process. These discoveries include, beside the proof of the enzymatic nature of the sponge biosilica formation, the dual property of the enzyme, to act both as a structure-forming and structure-guiding protein, and the demonstration that the initial product of silicatein is a soft, gel-like material that has to undergo a maturation process during which it achieves its favorable physical-chemical properties allowing the development of various technological or medical applications. This process comprises the hardening of the material by the removal of water and ions, its cast-molding to specific morphologies, as well as the fusion of the biosilica nanoparticles through a biosintering mechanism. The discovery that the enzymatically formed biosilica is morphogenetically active and printable also opens new applications in rapid prototyping and three-dimensional bioprinting of customized scaffolds/implants for biomedical use.
Collapse
Affiliation(s)
- Heinz C Schröder
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | | | | | | |
Collapse
|
12
|
Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation. Proc Natl Acad Sci U S A 2015; 112:11449-54. [PMID: 26261346 DOI: 10.1073/pnas.1506968112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hexactinellids are a diverse group of predominantly deep sea sponges that synthesize elaborate fibrous skeletal systems of amorphous hydrated silica. As a representative example, members of the genus Euplectella have proved to be useful model systems for investigating structure-function relationships in these hierarchically ordered siliceous network-like composites. Despite recent advances in understanding the mechanistic origins of damage tolerance in these complex skeletal systems, the details of their synthesis have remained largely unexplored. Here, we describe a previously unidentified protein, named "glassin," the main constituent in the water-soluble fraction of the demineralized skeletal elements of Euplectella. When combined with silicic acid solutions, glassin rapidly accelerates silica polycondensation over a pH range of 6-8. Glassin is characterized by high histidine content, and cDNA sequence analysis reveals that glassin shares no significant similarity with any other known proteins. The deduced amino acid sequence reveals that glassin consists of two similar histidine-rich domains and a connecting domain. Each of the histidine-rich domains is composed of three segments: an amino-terminal histidine and aspartic acid-rich sequence, a proline-rich sequence in the middle, and a histidine and threonine-rich sequence at the carboxyl terminus. Histidine always forms HX or HHX repeats, in which most of X positions are occupied by glycine, aspartic acid, or threonine. Recombinant glassin reproduces the silica precipitation activity observed in the native proteins. The highly modular composition of glassin, composed of imidazole, acidic, and hydroxyl residues, favors silica polycondensation and provides insights into the molecular mechanisms of skeletal formation in hexactinellid sponges.
Collapse
|
13
|
Green DW, Lee JM, Jung HS. Marine Structural Biomaterials in Medical Biomimicry. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:438-50. [PMID: 25905922 DOI: 10.1089/ten.teb.2015.0055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today.
Collapse
Affiliation(s)
- David W Green
- 1 Oral Biosciences, Faculty of Dentistry, The University of Hong Kong , Sai Ying Pun, Hong Kong, SAR .,2 Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS project, Oral Science Research Institute, Yonsei University College of Dentistry , Seoul, Korea
| | - Jong-Min Lee
- 2 Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS project, Oral Science Research Institute, Yonsei University College of Dentistry , Seoul, Korea
| | - Han-Sung Jung
- 1 Oral Biosciences, Faculty of Dentistry, The University of Hong Kong , Sai Ying Pun, Hong Kong, SAR .,2 Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS project, Oral Science Research Institute, Yonsei University College of Dentistry , Seoul, Korea
| |
Collapse
|
14
|
Riesgo A, Maldonado M, López-Legentil S, Giribet G. A Proposal for the Evolution of Cathepsin and Silicatein in Sponges. J Mol Evol 2015; 80:278-91. [DOI: 10.1007/s00239-015-9682-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/06/2015] [Indexed: 01/09/2023]
|
15
|
Arakaki A, Shimizu K, Oda M, Sakamoto T, Nishimura T, Kato T. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids. Org Biomol Chem 2015; 13:974-89. [DOI: 10.1039/c4ob01796j] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials. Molecularly controlled mechanisms of biomineralization and application of the processes towards future material synthesis are introduced.
Collapse
Affiliation(s)
- Atsushi Arakaki
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Japan
| | - Katsuhiko Shimizu
- Organization for Regional Industrial Academic Cooperation
- Tottori University
- Tottori 680-8550
- Japan
| | - Mayumi Oda
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Japan
| | - Takeshi Sakamoto
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Tatsuya Nishimura
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
16
|
Müller WEG, Link T, Schröder HC, Korzhev M, Neufurth M, Brandt D, Wang X. Dissection of the structure-forming activity from the structure-guiding activity of silicatein: a biomimetic molecular approach to print optical fibers. J Mater Chem B 2014; 2:5368-5377. [DOI: 10.1039/c4tb00801d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The enzymatically inactive silicatein was used as the platform for the enzymatically active silicatein, which synthesized the silica waveguide.
Collapse
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - Thorben Link
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - Michael Korzhev
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - David Brandt
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| |
Collapse
|
17
|
Ki MR, Jang EK, Pack SP. Hypothetical cathepsin-like protein from Nematostella vectensis and its silicatein-like cathepsin mutant for biosilica production. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Müller WEG, Schröder HC, Burghard Z, Pisignano D, Wang X. Silicateins--a novel paradigm in bioinorganic chemistry: enzymatic synthesis of inorganic polymeric silica. Chemistry 2013; 19:5790-5804. [PMID: 23512301 DOI: 10.1002/chem.201204412] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The inorganic matrix of the siliceous skeletal elements of sponges, that is, spicules, is formed of amorphous biosilica. Until a decade ago, it remained unclear how the hard biosilica monoliths of the spicules are formed in sponges that live in a silica-poor (<50 μM) aquatic environment. The following two discoveries caused a paradigm shift and allowed an elucidation of the processes underlying spicule formation; first the discovery that in the spicules only one major protein, silicatein, exists and second, that this protein displays a bio-catalytical, enzymatic function. These findings caused a paradigm shift, since silicatein is the first enzyme that catalyzes the formation of an inorganic polymer from an inorganic monomeric substrate. In the present review the successive steps, following the synthesis of the silicatein product, biosilica, and resulting in the formation of the hard monolithic spicules is given. The new insight is assumed to open new horizons in the field of biotechnology and also in biomedicine.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | | | | | | | | |
Collapse
|
19
|
Müller WEG, Wang X, Jochum KP, Schröder HC. Self-healing, an intrinsic property of biomineralization processes. IUBMB Life 2013; 65:382-396. [PMID: 23509013 DOI: 10.1002/iub.1155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/31/2013] [Indexed: 12/31/2022]
Abstract
The sponge siliceous spicules are formed enzymatically via silicatein, in contrast to other siliceous biominerals. Originally, silicatein had been described as a major structural protein of the spicules that has the property to allow a specific deposition of silica onto their surface. More recently, it had been unequivocally demonstrated that silicatein displays a genuine enzyme activity, initiating and maintaining silica biopolycondensation at low precursor concentrations (<2 mM). Even more, as silicatein becomes embedded into the biosilica polymer, formed by the enzyme, it retains its functionality to enable a controlled biosilica deposition. The protection of silicatein through the biosilica mantel is so strong that it conserves the functionality of the enzyme for thousands of years. The implication of this finding, the preservation of the enzyme function over such long time periods, is that the intrinsic property of silicatein to display its enzymatic activity remains in the biosilica deposits. This self-healing property of sponge biosilica can be utilized to engineer novel hybrid materials, with silicatein as a functional template, which are more resistant toward physical stress and fracture. Those hybrid materials can even be used for the fabrication of silica dielectrics coupled to optical nanowires.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | | | |
Collapse
|
20
|
Wang X, Schröder HC, Feng Q, Draenert F, Müller WEG. The deep-sea natural products, biogenic polyphosphate (Bio-PolyP) and biogenic silica (Bio-Silica), as biomimetic scaffolds for bone tissue engineering: fabrication of a morphogenetically-active polymer. Mar Drugs 2013; 11:718-746. [PMID: 23528950 PMCID: PMC3705367 DOI: 10.3390/md11030718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/12/2022] Open
Abstract
Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s) of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation). In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; E-Mail:
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Dajie, 100037 Beijing, China
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; E-Mail:
| | - Qingling Feng
- Department of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China; E-Mail:
| | - Florian Draenert
- Department and Clinic for Oral and Maxillofacial Surgery, Baldingerstraße, D-35033 Marburg, Germany; E-Mail:
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; E-Mail:
| |
Collapse
|
21
|
Müller WEG, Schröder HC, Shen Z, Feng Q, Wang X. Inorganic Polymers: Morphogenic Inorganic Biopolymers for Rapid Prototyping Chain. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2013:235-259. [DOI: 10.1007/978-3-642-41004-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Biogenic Inorganic Polysilicates (Biosilica): Formation and Biomedical Applications. BIOMEDICAL INORGANIC POLYMERS 2013; 54:197-234. [DOI: 10.1007/978-3-642-41004-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Polini A, Pagliara S, Camposeo A, Cingolani R, Wang X, Schröder HC, Müller WEG, Pisignano D. Optical properties of in-vitro biomineralised silica. Sci Rep 2012; 2:607. [PMID: 22934130 PMCID: PMC3429881 DOI: 10.1038/srep00607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/09/2012] [Indexed: 11/26/2022] Open
Abstract
Silicon is the second most common element on the Earth's crust and its oxide (SiO2) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5–10 cm−1, suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies.
Collapse
Affiliation(s)
- Alessandro Polini
- National Nanotechnology Laboratory of Istituto Nanoscienze-CNR, Università del Salento, Lecce, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang X, Schloßmacher U, Wiens M, Batel R, Schröder HC, Müller WEG. Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules. FEBS J 2012; 279:1721-36. [DOI: 10.1111/j.1742-4658.2012.08533.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Abstract
Knowledge of the functioning, health state, and capacity for recovery of marine benthic organisms and assemblages has become essential to adequately manage and preserve marine biodiversity. Molecular tools have allowed an entirely new way to tackle old and new questions in conservation biology and ecology, and sponge science is following this lead. In this review, we discuss the biological and ecological studies of sponges that have used molecular markers during the past 20 years and present an outlook for expected trends in the molecular ecology of sponges in the near future. We go from (1) the interface between inter- and intraspecies studies, to (2) phylogeography and population level analyses, (3) intra-population features such as clonality and chimerism, and (4) environmentally modulated gene expression. A range of molecular markers has been assayed with contrasting success to reveal cryptic species and to assess the genetic diversity and connectivity of sponge populations, as well as their capacity to respond to environmental changes. We discuss the pros and cons of the molecular gene partitions used to date and the prospects of a plentiful supply of new markers for sponge ecological studies in the near future, in light of recently available molecular technologies. We predict that molecular ecology studies of sponges will move from genetics (the use of one or some genes) to genomics (extensive genome or transcriptome sequencing) in the forthcoming years and that sponge ecologists will take advantage of this research trend to answer ecological and biological questions that would have been impossible to address a few years ago.
Collapse
Affiliation(s)
- Maria J Uriz
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Girona, Spain.
| | | |
Collapse
|
26
|
Wörheide G, Dohrmann M, Erpenbeck D, Larroux C, Maldonado M, Voigt O, Borchiellini C, Lavrov DV. Deep phylogeny and evolution of sponges (phylum Porifera). ADVANCES IN MARINE BIOLOGY 2012; 61:1-78. [PMID: 22560777 DOI: 10.1016/b978-0-12-387787-1.00007-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sponges (phylum Porifera) are a diverse taxon of benthic aquatic animals of great ecological, commercial, and biopharmaceutical importance. They are arguably the earliest-branching metazoan taxon, and therefore, they have great significance in the reconstruction of early metazoan evolution. Yet, the phylogeny and systematics of sponges are to some extent still unresolved, and there is an on-going debate about the exact branching pattern of their main clades and their relationships to the other non-bilaterian animals. Here, we review the current state of the deep phylogeny of sponges. Several studies have suggested that sponges are paraphyletic. However, based on recent phylogenomic analyses, we suggest that the phylum Porifera could well be monophyletic, in accordance with cladistic analyses based on morphology. This finding has many implications for the evolutionary interpretation of early animal traits and sponge development. We further review the contribution that mitochondrial genes and genomes have made to sponge phylogenetics and explore the current state of the molecular phylogenies of the four main sponge lineages (Classes), that is, Demospongiae, Hexactinellida, Calcarea, and Homoscleromorpha, in detail. While classical systematic systems are largely congruent with molecular phylogenies in the class Hexactinellida and in certain parts of Demospongiae and Homoscleromorpha, the high degree of incongruence in the class Calcarea still represents a challenge. We highlight future areas of research to fill existing gaps in our knowledge. By reviewing sponge development in an evolutionary and phylogenetic context, we support previous suggestions that sponge larvae share traits and complexity with eumetazoans and that the simple sedentary adult lifestyle of sponges probably reflects some degree of secondary simplification. In summary, while deep sponge phylogenetics has made many advances in the past years, considerable efforts are still required to achieve a comprehensive understanding of the relationships among and within the main sponge lineages to fully appreciate the evolution of this extraordinary metazoan phylum.
Collapse
Affiliation(s)
- G Wörheide
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Otzen D. The role of proteins in biosilicification. SCIENTIFICA 2012; 2012:867562. [PMID: 24278750 PMCID: PMC3820600 DOI: 10.6064/2012/867562] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/24/2012] [Indexed: 05/19/2023]
Abstract
Although the use of silicon dioxide (silica) as a constituent of living organisms is mainly restricted to diatoms and sponges, the ways in which this process is controlled by nature continue to inspire and fascinate. Both diatoms and sponges carry out biosilificiation using an organic matrix but they adopt very different strategies. Diatoms use small and heavily modified peptides called silaffins, where the most characteristic feature is a modulation of charge by attaching long chain polyamines (LCPAs) to lysine groups. Free LCPAs can also cooperate with silaffins. Sponges use the enzyme silicatein which is homologous to the cysteine protease cathepsin. Both classes of proteins form higher-order structures which act both as structural templates and mechanistic catalysts for the polycondensation reaction. In both cases, additional proteins are continuously being discovered which modulate the process further. This paper concentrates on the role of these proteins in the biosilification process as well as in various applications, highlighting areas where focus on specific protein properties may provide further insight. The field of biosilification is a crossroads of different disciplines, where insight into the energetics and mechanisms of molecular self-assembly combine with fundamental biology, complex multicomponent colloidal systems, and an impressive array of potential technological applications.
Collapse
Affiliation(s)
- Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Center for Insoluble Protein Structures (inSPIN), and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- *Daniel Otzen:
| |
Collapse
|
28
|
Wang X, Wiens M, Schröder HC, Jochum KP, Schlossmacher U, Götz H, Duschner H, Müller WEG. Circumferential spicule growth by pericellular silica deposition in the hexactinellid sponge Monorhaphis chuni. ACTA ACUST UNITED AC 2011; 214:2047-56. [PMID: 21613521 DOI: 10.1242/jeb.056275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The giant basal spicule of the hexactinellid sponge Monorhaphis chuni represents the longest natural siliceous structure on Earth. This spicule is composed of concentrically arranged lamellae that are approximately 10 μm thick. In the present study, we investigated the formation of outer lamellae on a cellular level using microscopic and spectroscopic techniques. It is shown that the formation of an outermost lamella begins with the association of cell clusters with the surface of the thickening and/or growing spicule. The cells release silica for controlled formation of a lamella. The pericellular (silica) material fuses to a delimited and textured layer of silica with depressions approximately 20-30 μm in diameter. The newly formed layer initially displays 40 μm wide, well-structured banded ribbons and only attains its plain surface in a final step. The chemical composition in the depressions was studied using energy dispersive X-ray spectroscopy and by staining with Texas Red. The data suggest that those depressions are the nests for the silica-forming cells and that silica formation starts with a direct association of silica-forming cells with the outer surface of the spicule, where they remain and initiate the development of the next lamellae.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kalyuzhnaya OV, Krasko AG, Grebenyuk VA, Itskovich VB, Semiturkina NA, Solovarov IS, Mueller WEG, Belikov SI. Freshwater sponge silicateins: Comparison of gene sequences and exon-intron structure. Mol Biol 2011. [DOI: 10.1134/s002689331103006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Veremeichik GN, Shkryl YN, Bulgakov VP, Shedko SV, Kozhemyako VB, Kovalchuk SN, Krasokhin VB, Zhuravlev YN, Kulchin YN. Occurrence of a silicatein gene in glass sponges (Hexactinellida: Porifera). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:810-819. [PMID: 21181423 DOI: 10.1007/s10126-010-9343-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 10/03/2010] [Indexed: 05/30/2023]
Abstract
Silicatein genes are involved in spicule formation in demosponges (Demospongiae: Porifera). However, numerous attempts to isolate silicatein genes from glass sponges (Hexactinellida: Porifera) resulted in a limited success. In the present investigation, we performed analysis of potential silicatein/cathepsin transcripts in three different species of glass sponges (Pheronema raphanus, Aulosaccus schulzei, and Bathydorus levis). In total, 472 clones of such transcripts have been analyzed. Most of them represent cathepsin transcripts and only three clones have been found to represent transcripts, which can be related to silicateins. Silicatein transcripts were identified in A. schulzei (Hexactinellida; Lyssacinosida; Rosselidae), and the corresponding gene was called AuSil-Hexa. Expression of AuSil-Hexa in A. schulzei was confirmed by real-time PCR. Comparative sequence analysis indicates high sequence identity of the A. schulzei silicatein with demosponge silicateins described previously. A phylogenetic analysis indicates that the AuSil-Hexa protein belongs to silicateins. However, the AuSil-Hexa protein contains a catalytic cysteine instead of the conventional serine.
Collapse
Affiliation(s)
- Galina N Veremeichik
- Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schloßmacher U, Wiens M, Schröder HC, Wang X, Jochum KP, Müller WEG. Silintaphin-1 - interaction with silicatein during structure-guiding bio-silica formation. FEBS J 2011; 278:1145-55. [DOI: 10.1111/j.1742-4658.2011.08040.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
The Unique Invention of the Siliceous Sponges: Their Enzymatically Made Bio-Silica Skeleton. MOLECULAR BIOMINERALIZATION 2011; 52:251-81. [DOI: 10.1007/978-3-642-21230-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Schröder HC, Wiens M, Wang X, Schloßmacher U, Müller WEG. Biosilica-based strategies for treatment of osteoporosis and other bone diseases. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:283-312. [PMID: 21877270 DOI: 10.1007/978-3-642-21230-7_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a common disease in later life, which has become a growing public health problem. This degenerative bone disease primarily affects postmenopausal women, but also men may suffer from reduced bone mineral density. The development of prophylactic treatments and medications of osteoporosis has become an urgent issue due to the increasing proportion of the elderly in the population. Apart from medical/hormonal treatments, current strategies for prophylaxis of osteoporosis are primarily based on calcium supplementation as a main constituent of bone hydroxyapatite mineral. Despite previous reports suggesting an essential role in skeletal growth and development, the significance of the trace element silicon in human bone formation has attracted major scientific interest only rather recently. The interest in silicon has been further increased by the latest discoveries in the field of biosilicification, the formation of the inorganic silica skeleton of the oldest still extant animals on Earth, the sponges, which revealed new insights in the biological function of this element. Sponges make use of silicon to build up their inorganic skeleton which consists of biogenously formed polymeric silica (biosilica). The formation of biosilica is mediated by specific enzymes, silicateins, which have been isolated, characterized, and expressed in a recombinant way. Epidemiological studies revealed that dietary silicon reduces the risk of osteoporosis and other bone diseases. Recent results allowed for the first time to understand the molecular mechanism underlying the protective effect of silicic acid/biosilica against osteoporosis. Biosilica was shown to modulate the ratio of expression of two cytokines involved in bone formation-RANKL and osteoprotegerin. Hence, biosilica has been proposed to have a potential in prophylaxis and therapy of osteoporosis and related bone diseases.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Grant Research Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128, Mainz, Germany,
| | | | | | | | | |
Collapse
|
34
|
Ehrlich H, Deutzmann R, Brunner E, Cappellini E, Koon H, Solazzo C, Yang Y, Ashford D, Thomas-Oates J, Lubeck M, Baessmann C, Langrock T, Hoffmann R, Wörheide G, Reitner J, Simon P, Tsurkan M, Ereskovsky AV, Kurek D, Bazhenov VV, Hunoldt S, Mertig M, Vyalikh DV, Molodtsov SL, Kummer K, Worch H, Smetacek V, Collins MJ. Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nat Chem 2010; 2:1084-8. [DOI: 10.1038/nchem.899] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 10/05/2010] [Indexed: 11/09/2022]
|
35
|
Abstract
Early fossil sponges offer a direct window onto the evolutionary emergence of animals, but insights are limited by the paucity of characters preserved in the conventional fossil record. Here, a new preservational mode for sponge spicules is reported from the lower Cambrian Forteau Formation (Newfoundland, Canada), prompting a re-examination of proposed homologies and sponge inter-relationships. The spicules occur as wholly carbonaceous films, and are interpreted as the remains of robust organic spicule sheaths. Comparable sheaths are restricted among living taxa to calcarean sponges, although the symmetries of the fossil spicules are characteristic of hexactinellid sponges. A similar extinct character combination has been documented in the Burgess Shale fossil Eiffelia. Interpreting the shared characters as homologous implies complex patterns of spicule evolution, but an alternative interpretation as convergent autapomorphies is more parsimonious. In light of the mutually exclusive distributions of these same characters among the crown groups, this result suggests that sponges exhibited an early episode of disparity expansion followed by comparatively constrained evolution, a pattern shared with many other metazoans but obscured by the conventional fossil record of sponges.
Collapse
|
36
|
Müller WEG, Wang X, Sinha B, Wiens M, Schröder HC, Jochum KP. NanoSIMS: Insights into the Organization of the Proteinaceous Scaffold within Hexactinellid Sponge Spicules. Chembiochem 2010; 11:1077-82. [DOI: 10.1002/cbic.201000078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Müller WEG, Wang X, Schröder HC, Korzhev M, Grebenjuk VA, Markl JS, Jochum KP, Pisignano D, Wiens M. A cryptochrome‐based photosensory system in the siliceous sponge Suberites domuncula (Demospongiae). FEBS J 2010; 277:1182-1201. [DOI: 10.1111/j.1742-4658.2009.07552.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Based on the light‐reactive behavior of siliceous sponges, their intriguing quartz glass‐based spicular system and the existence of a light‐generating luciferase [Müller WEG et al. (2009) Cell Mol Life Sci 66, 537–552], a protein potentially involved in light reception has been identified, cloned and recombinantly expressed from the demosponge Suberites domuncula. Its sequence displays two domains characteristic of cryptochrome, the N‐terminal photolyase‐related region and the C‐terminal FAD‐binding domain. The expression level of S. domuncula cryptochrome depends on animal’s exposure to light and is highest in tissue regions rich in siliceous spicules; in the dark, no cryptochrome transcripts/translational products are seen. From the experimental data, it is proposed that sponges might employ a luciferase‐like protein, the spicular system and a cryptochrome as the light source, optical waveguide and photosensor, respectively.
Collapse
|
38
|
Sperling EA, Robinson JM, Pisani D, Peterson KJ. Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules. GEOBIOLOGY 2010; 8:24-36. [PMID: 19929965 DOI: 10.1111/j.1472-4669.2009.00225.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The earliest evidence for animal life comes from the fossil record of 24-isopropylcholestane, a sterane found in Cryogenian deposits, and whose precursors are found in modern demosponges, but not choanoflagellates, calcareans, hexactinellids, or eumetazoans. However, many modern demosponges are also characterized by the presence of siliceous spicules, and there are no convincing demosponge spicules in strata older than the Cambrian. This temporal disparity highlights a problem with our understanding of the Precambrian fossil record--either these supposed demosponge-specific biomarkers were derived from the sterols of some other organism and are simply retained in modern demosponges, or spicules do not primitively characterize crown-group demosponges. Resolving this issue requires resolving the phylogenetic placement of another group of sponges, the hexactinellids, which not only make a spicule thought to be homologous to the spicules of demosponges, but also make their first appearance near the Precambrian/Cambrian boundary. Using two independent analytical approaches and data sets--traditional molecular phylogenetic analyses and the presence or absence of specific microRNA genes--we show that demosponges are monophyletic, and that hexactinellids are their sister group (together forming the Silicea). Thus, spicules must have evolved before the last common ancestor of all living siliceans, suggesting the presence of a significant gap in the silicean spicule fossil record. Molecular divergence estimates date the origin of this last common ancestor well within the Cryogenian, consistent with the biomarker record, and strongly suggests that siliceous spicules were present during the Precambrian but were not preserved.
Collapse
Affiliation(s)
- E A Sperling
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | | | | | | |
Collapse
|
39
|
Armirotti A, Damonte G, Pozzolini M, Mussino F, Cerrano C, Salis A, Benatti U, Giovine M. Primary Structure and Post-Translational Modifications of Silicatein Beta from the Marine Sponge Petrosia ficiformis (Poiret, 1789). J Proteome Res 2009; 8:3995-4004. [DOI: 10.1021/pr900342y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea Armirotti
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Gianluca Damonte
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Marina Pozzolini
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Francesca Mussino
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Carlo Cerrano
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Annalisa Salis
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Umberto Benatti
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Marco Giovine
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| |
Collapse
|
40
|
Giant basal spicule from the deep-sea glass sponge Monorhaphis chuni: synthesis of the largest bio-silica structure on Earth by silicatein. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11706-009-0044-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Wang X, Schröder HC, Müller WEG. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:69-115. [PMID: 19215903 DOI: 10.1016/s1937-6448(08)01803-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Only 13 years after realizing, during a repair of a telegraph cable pulled out from the deep sea, that the depth of the ocean is plentifully populated with a highly diverse fauna and flora, the Challenger expedition (1873-1876) treasured up a rich collection of vitreous sponges (Hexactinellida). They had been described by Schulze and represent the phylogenetically oldest class of siliceous sponges (phylum Porifera); they are eye-catching because of their distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Soon after, during the German Deep Sea Expedition "Valdivia" (1898-1899), Schulze could describe the largest siliceous hexactinellid sponge on Earth, the up to 3-m high Monorhaphis chuni, which develops the equally largest bio-silica structure, the giant basal spicules (3 mx10 mm). Using these spicules as a model, basic knowledge on the morphology, formation, and development of the skeletal elements could be achieved. They are formed by a proteinaceous scaffold (composed of a 27-kDa protein), which mediates the formation of the siliceous lamellae, into which the proteins are encased. The high number of 800 of 5-10 microm thick lamellae is concentrically arranged around the axial canal. The silica matrix is composed of almost pure silicon oxide, providing it with unusually optophysical properties, which are superior to those of man-made waveguides. Experiments might suggest that the spicules function in vivo as a nonocular photoreception system. In addition, the spicules have exceptional mechanical properties, combining mechanical stability with strength and stiffness. Like demosponges, also the hexactinellids synthesize their silica enzymatically, via the enzyme silicatein (27-kDa protein). It is suggested that these basic insights will surely contribute to a further applied utilization and exploration of silica in bio-material/biomedical science.
Collapse
Affiliation(s)
- Xiaohong Wang
- National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, Beijing, China
| | | | | |
Collapse
|
42
|
Müller WEG, Wang X, Cui FZ, Jochum KP, Tremel W, Bill J, Schröder HC, Natalio F, Schlossmacher U, Wiens M. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Appl Microbiol Biotechnol 2009; 83:397-413. [PMID: 19430775 PMCID: PMC2755733 DOI: 10.1007/s00253-009-2014-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/12/2009] [Accepted: 04/15/2009] [Indexed: 11/18/2022]
Abstract
While most forms of multicellular life have developed a calcium-based skeleton, a few specialized organisms complement their body plan with silica. However, of all recent animals, only sponges (phylum Porifera) are able to polymerize silica enzymatically mediated in order to generate massive siliceous skeletal elements (spicules) during a unique reaction, at ambient temperature and pressure. During this biomineralization process (i.e., biosilicification) hydrated, amorphous silica is deposited within highly specialized sponge cells, ultimately resulting in structures that range in size from micrometers to meters. Spicules lend structural stability to the sponge body, deter predators, and transmit light similar to optic fibers. This peculiar phenomenon has been comprehensively studied in recent years and in several approaches, the molecular background was explored to create tools that might be employed for novel bioinspired biotechnological and biomedical applications. Thus, it was discovered that spiculogenesis is mediated by the enzyme silicatein and starts intracellularly. The resulting silica nanoparticles fuse and subsequently form concentric lamellar layers around a central protein filament, consisting of silicatein and the scaffold protein silintaphin-1. Once the growing spicule is extruded into the extracellular space, it obtains final size and shape. Again, this process is mediated by silicatein and silintaphin-1, in combination with other molecules such as galectin and collagen. The molecular toolbox generated so far allows the fabrication of novel micro- and nanostructured composites, contributing to the economical and sustainable synthesis of biomaterials with unique characteristics. In this context, first bioinspired approaches implement recombinant silicatein and silintaphin-1 for applications in the field of biomedicine (biosilica-mediated regeneration of tooth and bone defects) or micro-optics (in vitro synthesis of light waveguides) with promising results.
Collapse
Affiliation(s)
- Werner E G Müller
- Department for Applied Molecular Biology, Institute for Physiological Chemistry, Johannes Gutenberg University, Duesbergweg 6, 55099 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The role of the silicatein-α interactor silintaphin-1 in biomimetic biomineralization. Biomaterials 2009; 30:1648-56. [DOI: 10.1016/j.biomaterials.2008.12.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/04/2008] [Indexed: 11/19/2022]
|
44
|
Towards a Molecular Systematics of the Lake Baikal/Lake Tuva Sponges. BIOSILICA IN EVOLUTION, MORPHOGENESIS, AND NANOBIOTECHNOLOGY 2009; 47:111-44. [DOI: 10.1007/978-3-540-88552-8_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Silicatein: Nanobiotechnological and Biomedical Applications. BIOSILICA IN EVOLUTION, MORPHOGENESIS, AND NANOBIOTECHNOLOGY 2009; 47:251-73. [DOI: 10.1007/978-3-540-88552-8_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Mohri K, Nakatsukasa M, Masuda Y, Agata K, Funayama N. Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Dev Dyn 2008; 237:3024-39. [PMID: 18816843 DOI: 10.1002/dvdy.21708] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Siliceous spicules of sponges are morphologically diverse and provide good models for understanding the morphogenesis of biomineralized products. The silica deposition enzyme silicatein is a component of siliceous spicules of sponges and is thought to be the key molecule determining the morphology of spicules. Here, we focused on the silicateins of the freshwater sponge Ephydatia fluviatilis, which has two types of morphologically and functionally different spicules, called megascleres and gemmoscleres. We isolated six isoforms of silicateins and examined their mRNA expression in the cells producing megascleres and gemmoscleres. The spicule-type-specific mRNA expression of these isoforms and differential expression during spicule development suggest that the characteristic morphology of spicules is due to the specific properties and combinatory functions of silicatein isoforms.
Collapse
Affiliation(s)
- Kurato Mohri
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku Kyoto, Japan
| | | | | | | | | |
Collapse
|
47
|
Wang X, Boreiko A, Schlossmacher U, Brandt D, Schröder HC, Li J, Kaandorp JA, Götz H, Duschner H, Müller WEG. Axial growth of hexactinellid spicules: formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis. J Struct Biol 2008; 164:270-80. [PMID: 18805491 DOI: 10.1016/j.jsb.2008.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 08/24/2008] [Accepted: 08/26/2008] [Indexed: 11/24/2022]
Abstract
The glass sponge Monorhaphis chuni (Porifera: Hexactinellida) forms the largest bio-silica structures on Earth; their giant basal spicules reach sizes of up to 3m and diameters of 8.5mm. Previously, it had been shown that the thickness growth proceeds by appositional layering of individual lamellae; however, the mechanism for the longitudinal growth remained unstudied. Now we show, that the surface of the spicules have towards the tip serrated relief structures that are consistent in size and form with the protrusions on the surface of the spicules. These protrusions fit into the collagen net that surrounds the spicules. The widths of the individual lamellae do not show a pronounced size tendency. The apical elongation of the spicule proceeds by piling up cone-like structural units formed from silica. As a support of the assumption that in the extracellular space silicatein(-like) molecules exist that associate with the external surface of the respective spicule immunogold electron microscopic analyses were performed. With the primmorph system from Suberites domuncula we show that silicatein(-like) molecules assemble as string- and net-like arrangements around the spicules. At their tips the silicatein(-like) molecules are initially stacked and at a later stay also organized into net-like structures. Silicatein(-like) molecules have been extracted from the giant basal spicule of Monorhaphis. Applying the SDS-PAGE technique it could be shown that silicatein molecules associate to dimers and trimers. Higher complexes (filaments) are formed from silicatein(-like) molecules, as can be visualized by electron microscopy (SEM). In the presence of ortho-silicate these filaments become covered with 30-60nm long small rod-like/cuboid particles of silica. From these data we conclude that the apical elongation of the spicules of Monorhaphis proceeds by piling up cone-like silica structural units, whose synthesis is mediated by silicatein(-like) molecules.
Collapse
Affiliation(s)
- Xiaohong Wang
- National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, CHN-100037 Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|