1
|
Skubal M, Larney BM, Phung NB, Desmaras JC, Dozic AV, Volpe A, Ogirala A, Machado CL, Djibankov J, Ponomarev V, Grimm J. Vascularized tumor on a microfluidic chip to study mechanisms promoting tumor neovascularization and vascular targeted therapies. Theranostics 2025; 15:766-783. [PMID: 39776800 PMCID: PMC11700857 DOI: 10.7150/thno.95334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature, as a primary hallmark of cancer. Developing vasculature is difficult to evaluate in vivo but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an on chip approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of cancer spheroids and endothelial cells in a three dimensional environment. Methods: We investigated both, tumor neovascularization and therapy, via co-culture of human derived endothelial cells and adjacently localized metastatic renal cell carcinoma spheroids on a commercially available microfluidic chip system. Metastatic renal cell carcinoma spheroids adjacent to primary vessels model tumor, and induce vessels to sprout neovasculature towards the tumor. We monitored real time changes in vessel formation, probed the interactions of tumor and endothelial cells, and evaluated the role of important effectors in tumor vasculature. In addition to wild type endothelial cells, we evaluated endothelial cells that overexpress Prostate Specific Membrane Antigen (PSMA), that has emerged as a marker of tumor associated neovasculature. We characterized the process of neovascularization on the microfluidic chip stimulated by enhanced culture medium and the investigated metastatic renal cell carcinomas, and assessed endothelial cells responses to vascular targeted therapy with bevacizumab via confocal microscopy imaging. To emphasize the potential clinical relevance of metastatic renal cell carcinomas on chip, we compared therapy with bevacizumab on chip with an in vivo model of the same tumor. Results: Our model permitted real-time, high-resolution observation and assessment of tumor-induced angiogenesis, where endothelial cells sprouted towards the tumor and mimicked a vascular network. Bevacizumab, an antiangiogenic agent, disrupted interactions between vessels and tumors, destroying the vascular network. The on chip approach enabled assessment of endothelial cell biology, vessel's functionality, drug delivery, and molecular expression of PSMA. Conclusion: Observations in the vascularized tumor on chip permitted direct and conclusive quantification of vascular targeted therapies in weeks as opposed to months in a comparable animal model, and bridged the gap between in vitro and in vivo models.
Collapse
Affiliation(s)
- Magdalena Skubal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benedict Mc Larney
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ngan Bao Phung
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Juan Carlos Desmaras
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abdul Vehab Dozic
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alessia Volpe
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anuja Ogirala
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Camila Longo Machado
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jakob Djibankov
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Ponomarev
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
2
|
Horsman MR. Targeting the Tumor Vascular Supply to Enhance Radiation Therapy Administered in Single or Clinically Relevant Fractionated Schedules. Int J Mol Sci 2024; 25:8078. [PMID: 39125647 PMCID: PMC11311563 DOI: 10.3390/ijms25158078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
This pre-clinical study was designed to demonstrate how vascular disrupting agents (VDAs) should be administered, either alone or when combined with radiation in clinically relevant fractionated radiation schedules, for the optimal anti-tumor effect. CDF1 mice, implanted in the right rear foot with a 200 mm3 murine C3H mammary carcinoma, were injected with various doses of the most potent VDA drug, combretastatin A-1 phosphate (CA1P), under different schedules. Tumors were also locally irradiated with single-dose, or stereotactic (3 × 5-20 Gy) or conventional (30 × 2 Gy) fractionation schedules. Tumor growth and control were the endpoints used. Untreated tumors had a tumor growth time (TGT5; time to grow to 5 times the original treatment volume) of around 6 days. This increased with increasing drug doses (5-100 mg/kg). However, with single-drug treatments, the maximum TGT5 was only 10 days, yet this increased to 19 days when injecting the drug on a weekly basis or as three treatments in one week. CA1P enhanced radiation response regardless of the schedule or interval between the VDA and radiation. There was a dose-dependent increase in radiation response when the combined with a single, stereotactic, or conventional fractionated irradiation, but these enhancements plateaued at around a drug dose of 25 mg/kg. This pre-clinical study demonstrated how VDAs should be combined with clinically applicable fractionated radiation schedules for the optimal anti-tumor effect, thus suggesting the necessary pre-clinical testing required to ultimately establish VDAs in clinical practice.
Collapse
Affiliation(s)
- Michael R Horsman
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| |
Collapse
|
3
|
Gostomczyk K, Marsool MDM, Tayyab H, Pandey A, Borowczak J, Macome F, Chacon J, Dave T, Maniewski M, Szylberg Ł. Targeting circulating tumor cells to prevent metastases. Hum Cell 2024; 37:101-120. [PMID: 37874534 PMCID: PMC10764589 DOI: 10.1007/s13577-023-00992-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor, enter the bloodstream or body fluids, and spread to other body parts, leading to metastasis. Their presence and characteristics have been linked to cancer progression and poor prognosis in different types of cancer. Analyzing CTCs can offer valuable information about tumors' genetic and molecular diversity, which is crucial for personalized therapy. Epithelial-mesenchymal transition (EMT) and the reverse process, mesenchymal-epithelial transition (MET), play a significant role in generating and disseminating CTCs. Certain proteins, such as EpCAM, vimentin, CD44, and TGM2, are vital in regulating EMT and MET and could be potential targets for therapies to prevent metastasis and serve as detection markers. Several devices, methods, and protocols have been developed for detecting CTCs with various applications. CTCs interact with different components of the tumor microenvironment. The interactions between CTCs and tumor-associated macrophages promote local inflammation and allow the cancer cells to evade the immune system, facilitating their attachment and invasion of distant metastatic sites. Consequently, targeting and eliminating CTCs hold promise in preventing metastasis and improving patient outcomes. Various approaches are being explored to reduce the volume of CTCs. By investigating and discussing targeted therapies, new insights can be gained into their potential effectiveness in inhibiting the spread of CTCs and thereby reducing metastasis. The development of such treatments offers great potential for enhancing patient outcomes and halting disease progression.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland.
- University Hospital No. 2 Im. Dr Jan Biziel, Ujejskiego 75, 85-168, Bydgoszcz, Poland.
| | | | | | | | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Facundo Macome
- Universidad del Norte Santo Tomás de Aquino, San Miquel de Tucuman, Argentina
| | - Jose Chacon
- American University of Integrative Sciences, Cole Bay, Saint Martin, Barbados
| | - Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Chair of Pathology, Dr Jan Biziel Memorial University Hospital No. 2, Bydgoszcz, Poland
| |
Collapse
|
4
|
Zhang Y, Ouyang Z, Zhan M, Yang R, Gao Y, Li L, Guo R, Shi X, Cao X. An Intelligent Vascular Disrupting Dendritic Nanodevice Incorporating Copper Sulfide Nanoparticles for Immune Modulation-Mediated Combination Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301914. [PMID: 37259269 DOI: 10.1002/smll.202301914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Development of intelligent nanoplatforms that can simultaneously target multiple factors associated with tumor growth and metastasis remains an extreme challenge. Here, an intelligent dendritic nanodevice incorporating both copper sulfide nanoparticles (CuS NPs) and 5,6-dimethylxanthenone-4-acetic acid (DMXAA, a vascular disrupting agent) within the dendrimer internal cavities and surface modified with a targeting agent LyP-1 peptide is reported. The resulting generation 5 (G5) dendrimer-based nanodevice, known as G5-PEG-LyP-1-CuS-DMXAA NPs (GLCD NPs), possess good colloidal stability, pH-sensitive drug release kinetics, and high photothermal conversion efficiency (59.3%). These functional GLCD NPs exert a LyP-1-targeted killing effect on breast tumors by combining CuS-mediated photothermal therapy (PTT) and DMXAA-induced vascular disruption, while also triggering antitumor immune responses through PTT-induced immunogenic cell death and DMXAA-mediated immune regulation via M1 polarization of tumor-associated macrophages and dendritic cell maturation. In addition, with the LyP-1-mediated proapoptotic activity, the GLCD NPs can specifically kill tumor lymphatic endothelial cells. The simultaneous disruption of tumor blood vessels and lymphatic vessels cuts off the two main pathways of tumor metastasis, which plays a two-pronged role in inhibiting lung metastasis of the breast cancer model. Thus, the developed GLCD NPs represent an advanced intelligent nanoformulation for immune modulation-mediated combination tumor therapy with potential for clinical translations.
Collapse
Affiliation(s)
- Yiming Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Lulu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Skubal M, Larney BM, Phung NB, Desmaras JC, Dozic AV, Volpe A, Ogirala A, Machado CL, Djibankov J, Ponomarev V, Grimm J. Vascularized tumor on a microfluidic chip to study mechanisms promoting tumor neovascularization and vascular targeted therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552309. [PMID: 37609216 PMCID: PMC10441301 DOI: 10.1101/2023.08.07.552309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature as a primary hallmark of cancer. Developing vasculature is difficult to evaluate in vivo but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an on chip approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of metastatic renal cell carcinoma spheroids and endothelial cells in a 3D environment. Our model permitted real-time, high-resolution observation and assessment of tumor-induced angiogenesis, where endothelial cells sprout towards the tumor and mimic a vascular network. Bevacizumab, an angiogenic inhibitor, disrupted interactions between vessels and tumors, destroying the vascular network. The on chip approach enabled assessment of endothelial cell biology, vessel's functionality, drug delivery, and molecular expression of PSMA. Finally, observations in the vascularized tumor on chip permitted direct and conclusive quantification of this therapy in weeks as opposed to months in a comparable animal model. Teaser Vascularized tumor on microfluidic chip provides opportunity to study targeted therapies and improves preclinical drug discovery.
Collapse
|
6
|
Yavvari P, Laporte A, Elomaa L, Schraufstetter F, Pacharzina I, Daberkow AD, Hoppensack A, Weinhart M. 3D-Cultured Vascular-Like Networks Enable Validation of Vascular Disruption Properties of Drugs In Vitro. Front Bioeng Biotechnol 2022; 10:888492. [PMID: 35769106 PMCID: PMC9234334 DOI: 10.3389/fbioe.2022.888492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Vascular-disrupting agents are an interesting class of anticancer compounds because of their combined mode of action in preventing new blood vessel formation and disruption of already existing vasculature in the immediate microenvironment of solid tumors. The validation of vascular disruption properties of these drugs in vitro is rarely addressed due to the lack of proper in vitro angiogenesis models comprising mature and long-lived vascular-like networks. We herein report an indirect coculture model of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs) to form three-dimensional profuse vascular-like networks. HUVECs embedded and sandwiched in the collagen scaffold were cocultured with HDFs located outside the scaffold. The indirect coculture approach with the vascular endothelial growth factor (VEGF) producing HDFs triggered the formation of progressively maturing lumenized vascular-like networks of endothelial cells within less than 7 days, which have proven to be viably maintained in culture beyond day 21. Molecular weight-dependent Texas red-dextran permeability studies indicated high vascular barrier function of the generated networks. Their longevity allowed us to study the dose-dependent response upon treatment with the three known antiangiogenic and/or vascular disrupting agents brivanib, combretastatin A4 phosphate (CA4P), and 6´-sialylgalactose (SG) via semi-quantitative brightfield and qualitative confocal laser scanning microscopic (CLSM) image analysis. Compared to the reported data on in vivo efficacy of these drugs in terms of antiangiogenic and vascular disrupting effects, we observed similar trends with our 3D model, which are not reflected in conventional in vitro angiogenesis assays. High-vascular disruption under continuous treatment of the matured vascular-like network was observed at concentrations ≥3.5 ng·ml−1 for CA4P and ≥300 nM for brivanib. In contrast, SG failed to induce any significant vascular disruption in vitro. This advanced model of a 3D vascular-like network allows for testing single and combinational antiangiogenic and vascular disrupting effects with optimized dosing and may thus bridge the gap between the in vitro and in vivo experiments in validating hits from high-throughput screening. Moreover, the physiological 3D environment mimicking in vitro assay is not only highly relevant to in vivo studies linked to cancer but also to the field of tissue regeneration.
Collapse
Affiliation(s)
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Inga Pacharzina
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Anke Hoppensack
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
- *Correspondence: Marie Weinhart, ,
| |
Collapse
|
7
|
Das BC, Nandwana NK, Ojha DP, Das S, Evans T. Synthesis of a boron-containing amidoxime reagent and its application to synthesize functionalized oxadiazole and quinazolinone derivatives. Tetrahedron Lett 2022; 92:153657. [PMID: 35935920 PMCID: PMC9348647 DOI: 10.1016/j.tetlet.2022.153657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Herein, we report the design, synthesis and application of a borylated amidoxime reagent for the direct synthesis of functionalized oxadiazole and quinazolinone derivatives. This reagent exhibits broad synthetic utility to obtain a variety of biologically relevant drug-like molecules. It can be easily prepared at large scale from relatively inexpensive reagents, and can undergo facile transformations to obtain target compounds. The developed amidoxime reagent was synthesized from 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile and hydroxyl amine hydrochloride using N,N-diisopropylethylamine as a base in ethanol under reflux conditions. Overall advantages include a metal-free route to boronated oxadiazoles, quinazolinone derivatives, and restriction of the multistep sequences. Importantly, the boron-rich pharmacophore derived compounds were obtained through an efficient and inexpensive strategy.
Collapse
Affiliation(s)
- Bhaskar C Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY-11201, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Nitesh K Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY-11201, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Devi P Ojha
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sasmita Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
8
|
Liu M, Wu C, Ke L, Li Z, Wu YL. Emerging Biomaterials-Based Strategies for Inhibiting Vasculature Function in Cancer Therapy. SMALL METHODS 2021; 5:e2100347. [PMID: 34927997 DOI: 10.1002/smtd.202100347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Indexed: 06/14/2023]
Abstract
The constant feeding of oxygen and nutrients through the blood vasculature has a vital role in maintaining tumor growth. Interestingly, recent endeavors have shown that nanotherapeutics with the strategy to block tumor blood vessels feeding nutrients and oxygen for starvation therapy can be helpful in cancer treatment. However, this field has not been detailed. Hence, this review will present an exhaustive summary of the existing biomaterial based strategies to disrupt tumor vascular function for effective cancer treatment, including hydrogel or nanogel-mediated local arterial embolism, thrombosis activator loaded nano-material-mediated vascular occlusion and anti-vascular drugs that block tumor vascular function, which may be beneficial to the design of anti-cancer nanomedicine by targeting the tumor vascular system.
Collapse
Affiliation(s)
- Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
9
|
Lodhi T, Song YP, West C, Hoskin P, Choudhury A. Hypoxia and its Modification in Bladder Cancer: Current and Future Perspectives. Clin Oncol (R Coll Radiol) 2021; 33:376-390. [PMID: 33762140 DOI: 10.1016/j.clon.2021.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Radiotherapy plays an essential role in the curative treatment of muscle-invasive bladder cancer (MIBC). Hypoxia affects the response to MIBC radiotherapy, limiting radiocurability. Likewise, hypoxia influences MIBC genetic instability and malignant progression being associated with metastatic disease and a worse prognosis. Hypoxia identification in MIBC enables treatment stratification and the promise of improved survival. The most promising methods are histopathological markers such as necrosis; biomarkers of protein expression such as HIF-1α, GLUT-1 and CAIX; microRNAs; and novel mRNA signatures. Although hypoxia modification can take different forms, the gold standard remains carbogen and nicotinamide, which improve local control rates in bladder preservation and absolute overall survival with no significant increase in late toxicity. This is an exciting time for evolving therapies such as bioreductive agents, novel oxygen delivery techniques, immunotherapy and poly (ADP-ribose) polymerase 1 (PARP) inhibitors, all in development and representing upcoming trends in MIBC hypoxia modification. Whatever the future holds for hypoxia-modified radiotherapy, there is no doubt of its importance in MIBC. mRNA signatures provide an ideal platform for the selection of those with hypoxic tumours but are yet to qualified and integrated into the clinic. Future interventional trials will require biomarker stratification to ensure optimal treatment response to improve outcomes for patients with MIBC.
Collapse
Affiliation(s)
- T Lodhi
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Y P Song
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - C West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - P Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK; Cancer Centre, Mount Vernon Hospital, Northwood, UK
| | - A Choudhury
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
10
|
Sasso FC, Zuchegna C, Tecce MF, Capasso A, Adinolfi LE, Romano A, Bartollino S, Porcellini A, Costagliola C. High glucose concentration produces a short-term increase in pERK1/2 and p85 proteins, having a direct angiogenetic effect by an action similar to VEGF. Acta Diabetol 2020; 57:947-958. [PMID: 32130518 DOI: 10.1007/s00592-020-01501-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
AIMS Excessive glucose serum concentration, endothelial dysfunction and microangiopathy are key features of diabetes mellitus, being both diagnostic parameters and pathogenetic mechanisms. Vascular endothelial growth factor (VEGF) is importantly implicated in the physiology and pathology of blood vessels, including diabetic vascular damage. METHODS These factors certainly affect endothelial cells, and to evaluate mechanisms involved, we took advantage of telomerase-immortalized human microvascular endothelial (TIME) cells. TIME cells were exposed to different glucose concentrations and to VEGF treatments. Culture conditions also included the use of basement membrane extract, as an in vitro differentiation model. Cell morphology was then evaluated in the different conditions, and cellular proteins were extracted to analyze specific protein products by Western blot. RESULTS High glucose concentrations and VEGF did substantially affect neither morphology nor growth of cultured TIME cells, while both considerably increased differentiation into "capillary-like" structures when cells were cultured on basement membrane extract. CONCLUSIONS Under these conditions, high glucose concentration and VEGF also produced a short-term increase in pERK1/2 and p85 proteins, while total and phosphorylated AKT were not affected. These data suggest a direct angiogenetic effect of glucose, affecting intracellular transduction mechanisms with an action similar to that of VEGF. This effect on endothelial cell proliferation and differentiation could be part of pathogenetic mechanisms producing diabetic microvascular alterations.
Collapse
Affiliation(s)
- Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, School of Medicine and Surgery, Università Dalla Campania "L. Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.
| | - Candida Zuchegna
- Department of Biology, University of Naples "Federico II", Via Cinthia, 4, 80126, Naples, Italy.
| | | | - Anna Capasso
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, School of Medicine and Surgery, Università Dalla Campania "L. Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy
| | - Antonella Romano
- Department of Biology, University of Naples "Federico II", Via Cinthia, 4, 80126, Naples, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Antonio Porcellini
- Department of Biology, University of Naples "Federico II", Via Cinthia, 4, 80126, Naples, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
11
|
Virani NA, Kelada OJ, Kunjachan S, Detappe A, Kwon J, Hayashi J, Vazquez-Pagan A, Biancur DE, Ireland T, Kumar R, Sridhar S, Makrigiorgos GM, Berbeco RI. Noninvasive imaging of tumor hypoxia after nanoparticle-mediated tumor vascular disruption. PLoS One 2020; 15:e0236245. [PMID: 32706818 PMCID: PMC7380644 DOI: 10.1371/journal.pone.0236245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/01/2020] [Indexed: 01/09/2023] Open
Abstract
We have previously demonstrated that endothelial targeting of gold nanoparticles followed by external beam irradiation can cause specific tumor vascular disruption in mouse models of cancer. The induced vascular damage may lead to changes in tumor physiology, including tumor hypoxia, thereby compromising future therapeutic interventions. In this study, we investigate the dynamic changes in tumor hypoxia mediated by targeted gold nanoparticles and clinical radiation therapy (RT). By using noninvasive whole-body fluorescence imaging, tumor hypoxia was measured at baseline, on day 2 and day 13, post-tumor vascular disruption. A 2.5-fold increase (P<0.05) in tumor hypoxia was measured two days after combined therapy, resolving by day 13. In addition, the combination of vascular-targeted gold nanoparticles and radiation therapy resulted in a significant (P<0.05) suppression of tumor growth. This is the first study to demonstrate the tumor hypoxic physiological response and recovery after delivery of vascular-targeted gold nanoparticles followed by clinical radiation therapy in a human non-small cell lung cancer athymic Foxn1nu mouse model.
Collapse
Affiliation(s)
- Needa A. Virani
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Olivia J. Kelada
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sijumon Kunjachan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexandre Detappe
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston Massachusetts, United States of America
| | - Jihun Kwon
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiation Oncology, Hokkaido University, Sapporo, Japan
| | - Jennifer Hayashi
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Ana Vazquez-Pagan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Douglas E. Biancur
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston Massachusetts, United States of America
| | - Thomas Ireland
- LA-ICP-MS and ICP-ES Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Rajiv Kumar
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Srinivas Sridhar
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ross I. Berbeco
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Chen D, Yu Q, Huang X, Dai H, Luo T, Shao J, Chen P, Chen J, Huang W, Dong X. A Highly-Efficient Type I Photosensitizer with Robust Vascular-Disruption Activity for Hypoxic-and-Metastatic Tumor Specific Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001059. [PMID: 32378337 DOI: 10.1002/smll.202001059] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 05/11/2023]
Abstract
Hypoxia severely impedes photodynamic therapy (PDT) efficiency. Worse still, considerable tumor metastasis will occur after PDT. Herein, an organic superoxide radical (O2∙- ) nano-photogenerator as a highly effcient type I photosensitizer with robust vascular-disrupting efficiency to combat these thorny issues is designed. Boron difluoride dipyrromethene (BODIPY)-vadimezan conjugate (BDPVDA) is synthesized and enwrapped in electron-rich polymer-brushes methoxy-poly(ethylene glycol)-b-poly(2-(diisopropylamino) ethyl methacrylate) (mPEG- PPDA) to afford nanosized hydrophilic type I photosensitizer (PBV NPs). Owing to outstanding core-shell intermolecular electron transfer between BDPVDA and mPEG-PPDA, remarkable O2∙- can be produced by PBV NPs under near-infrared irradiation even in severe hypoxic environment (2% O2 ), thus to accomplish effective hypoxic-tumor elimination. Simultaneously, the efficient ester-bond hydrolysis of BDPVDA in the acidic tumor microenvironment allows vadimezan release from PBV NPs to disrupt vasculature, facilitating the shut-down of metastatic pathways. As a result, PBV NPs will not only be powerful in resolving the paradox between traditional type II PDT and hypoxia, but also successfully prevent tumor metastasis after type I PDT treatment (no secondary-tumors found in 70 days and 100% survival rate), enabling enhancement of existing hypoxic-and-metastatic tumor treatment.
Collapse
Affiliation(s)
- Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| | - Qing Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| | - Xuan Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| | - Hanming Dai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| | - Tao Luo
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, P. R. China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, P. R. China
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
13
|
Johnson SP, Ogunlade O, Lythgoe MF, Beard P, Pedley RB. Longitudinal Photoacoustic Imaging of the Pharmacodynamic Effect of Vascular Targeted Therapy on Tumors. Clin Cancer Res 2019; 25:7436-7447. [PMID: 31551349 PMCID: PMC7611302 DOI: 10.1158/1078-0432.ccr-19-0360] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/29/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Photoacoustic imaging (PAI) is a novel noninvasive and nonionizing imaging technique that allows longitudinal imaging of tumor vasculature in vivo and monitoring of response to therapy, especially for vascular targeted chemotherapy agents. In this study, we used a novel high-resolution all-optical PAI scanner to observe the pharmacodynamic response to the vascular-disrupting agent OXi4503. EXPERIMENTAL DESIGN Two models of colorectal carcinoma (SW1222 and LS174T) that possess differing pathophysiologic vascularization were established as subcutaneous tumors in mice. Monitoring of response was performed over a 16-day "regrowth" period following treatment at 40 mg/kg, and at day 2 for a "dose response" study at 40 mg/kg, 10 mg/kg, 1 mg/kg, and sham dose. RESULTS Qualitative and quantitative changes in PA signal are observed, with an initial decrease followed by a plateau and subsequent return of signal indicating regrowth. Both tumor types exhibited a decrease in signal; however, the more vascularized SW1222 tumors show greater response to treatment. Decreasing the dose of OXi4503 led to a decrease in PA signal intensity of 60%, 52%, and 20% in SW1222 tumors and 30%, 26%, and 4% for LS174T tumors. CONCLUSIONS We have shown for the first time that PAI can observe the pharmacodynamic response of tumor vasculature to drug treatment both longitudinally and at different dose levels. Assessment of differing response to treatment based on vascular pathophysiologic differences among patients has the potential to provide personalized drug therapy; we have demonstrated that PAI, which is clinically translatable, could be a powerful tool for this purpose.
Collapse
Affiliation(s)
- S Peter Johnson
- UCL Cancer Institute, University College London, London, United Kingdom.
| | - Olumide Ogunlade
- UCL Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Paul Beard
- UCL Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - R Barbara Pedley
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
14
|
Zhou J, Hu P, Si Z, Tan H, Qiu L, Zhang H, Fu Z, Mao W, Cheng D, Shi H. Treatment of Hepatocellular Carcinoma by Intratumoral Injection of 125I-AA98 mAb and Its Efficacy Assessments by Molecular Imaging. Front Bioeng Biotechnol 2019; 7:319. [PMID: 31799244 PMCID: PMC6868101 DOI: 10.3389/fbioe.2019.00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Objective: To investigate the therapeutic efficacy of intratumoral injection of 125I-AA98 mAb for hepatocellular carcinoma (HCC) and its therapy efficacy assessment by 99mTc-HYNIC-duramycin and 99mTc-HYNIC-3PRGD2 SPECT/CT imaging. Methods: HCC xenograft tumor mice models were injected intratumorally with a single dose of normal saline, 10 microcurie (μCi) 125I-AA98 mAb, free 125I, AA98 mAb, 80 μCi 125I-AA98 mAb, and 200 μCi 125I-AA98 mAb. 99mTc-HYNIC-duramycin and 99mTc-HYNIC-3PRGD2 micro-SPECT/CT imaging were performed on days 3 and 7, respectively. The T/M ratio for each imaging was compared with the corresponding immunohistochemical staining at each time point. The relative tumor inhibition rates were documented. Results: In terms of apoptosis, the 200 μCi group demonstrated the highest apoptotic index (11.8 ± 3.8%), and its T/M ratio achieved by 99mTc-HYNIC-duramycin imaging on day 3 was higher than that of the normal saline group, 80 μCi group, 10 μCi group and free 125I group on day 3, respectively (all P < 0.05). On day 3, there was a markedly positive correlation between T/M ratio from 99mTc-HYNIC-duramycin imaging and apoptotic index by TUNEL staining (r = 0.6981; P < 0.05). Moreover, the 200 μCi group showed the lowest T/M ratio on 99mTc-HYNIC-3PRGD2 imaging (1.0 ± 0.5) on day 7 (all P < 0.05) comparing to other groups. The T/M ratio on day 7 was not correlated with integrin ανβ3 staining (P > 0.05). The relative inhibitory rates of tumor on day 14 in the AA98 mAb, 10 μCi, 80 μCi, free 125I, and 200 μCi groups were 26.3, 55.3, 60.5, 66.3, and 69.5%, respectively. Conclusion:125I-AA98 mAb showed more effective apoptosis induced ability for CD146 high expression Hep G2 HCC cells and hold the potential for HCC treatment. Moreover, 99mTc-HYNIC-Duramycin (apoptosis-targeted) imaging and 99mTc-HYNIC-3PRGD2 (angiogenesis-targeted) imaging are reliable non-invasive methods to evaluate the efficacy of targeted treatment of HCC.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Xuhui District Central Hospital of Shanghai, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - He Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
15
|
Kunjachan S, Kotb S, Pola R, Pechar M, Kumar R, Singh B, Gremse F, Taleeli R, Trichard F, Motto-Ros V, Sancey L, Detappe A, Yasmin-Karim S, Protti A, Shanmugam I, Ireland T, Etrych T, Sridhar S, Tillement O, Makrigiorgos M, Berbeco RI. Selective Priming of Tumor Blood Vessels by Radiation Therapy Enhances Nanodrug Delivery. Sci Rep 2019; 9:15844. [PMID: 31676822 PMCID: PMC6825216 DOI: 10.1038/s41598-019-50538-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Effective drug delivery is restricted by pathophysiological barriers in solid tumors. In human pancreatic adenocarcinoma, poorly-permeable blood vessels limit the intratumoral permeation and penetration of chemo or nanotherapeutic drugs. New and clinically viable strategies are urgently sought to breach the neoplastic barriers that prevent effective drug delivery. Here, we present an original idea to boost drug delivery by selectively knocking down the tumor vascular barrier in a human pancreatic cancer model. Clinical radiation activates the tumor endothelial-targeted gold nanoparticles to induce a physical vascular damage due to the high photoelectric interactions. Active modulation of these tumor neovessels lead to distinct changes in tumor vascular permeability. Noninvasive MRI and fluorescence studies, using a short-circulating nanocarrier with MR-sensitive gadolinium and a long-circulating nanocarrier with fluorescence-sensitive nearinfrared dye, demonstrate more than two-fold increase in nanodrug delivery, post tumor vascular modulation. Functional changes in altered tumor blood vessels and its downstream parameters, particularly, changes in Ktrans (permeability), Kep (flux rate), and Ve (extracellular interstitial volume), reflect changes that relate to augmented drug delivery. The proposed dual-targeted therapy effectively invades the tumor vascular barrier and improve nanodrug delivery in a human pancreatic tumor model and it may also be applied to other nonresectable, intransigent tumors that barely respond to standard drug therapies.
Collapse
Affiliation(s)
- Sijumon Kunjachan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.
| | - Shady Kotb
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Robert Pola
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 16206, Prague 6, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 16206, Prague 6, Czech Republic
| | - Rajiv Kumar
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States
| | - Bijay Singh
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States
| | - Felix Gremse
- Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Reza Taleeli
- Division of Medical Physics & Engineering, University of Texas Southwestern Medical Center, Texas, United States
| | - Florian Trichard
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Vincent Motto-Ros
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Lucie Sancey
- Institute for Advanced Biosciences, UGA/INSERM U1209/CNRS UMR 5309 Joint Research Center, Grenoble, France
| | - Alexandre Detappe
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Andrea Protti
- Lurie Family Imaging Center, Department of Radiology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Ilanchezhian Shanmugam
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States
| | - Thomas Ireland
- LA-ICP-MS and ICP-ES Laboratories, Department of Earth and Environmental Sciences, Boston University, Boston, MA, United States
| | - Tomas Etrych
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 16206, Prague 6, Czech Republic
| | - Srinivas Sridhar
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States
| | - Olivier Tillement
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Mike Makrigiorgos
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Ross I Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Kim C, Suh JY, Heo C, Lee CK, Shim WH, Park BW, Cho G, Lee DW, Woo DC, Kim SY, Kim YJ, Bae DJ, Kim JK. Spatiotemporal heterogeneity of tumor vasculature during tumor growth and antiangiogenic treatment: MRI assessment using permeability and blood volume parameters. Cancer Med 2018; 7:3921-3934. [PMID: 29983002 PMCID: PMC6089152 DOI: 10.1002/cam4.1624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Tumor heterogeneity is an important concept when assessing intratumoral variety in vascular phenotypes and responses to antiangiogenic treatment. This study explored spatiotemporal heterogeneity of vascular alterations in C6 glioma mice during tumor growth and antiangiogenic treatment on serial MR examinations (days 0, 4, and 7 from initiation of vehicle or multireceptor tyrosine kinase inhibitor administration). Transvascular permeability (TP) was quantified on dynamic‐contrast‐enhanced MRI (DCE‐MRI) using extravascular extracellular agent (Gd‐DOTA); blood volume (BV) was estimated using intravascular T2 agent (SPION). With regard to region‐dependent variability in vascular phenotypes, the control group demonstrated higher TP in the tumor center than in the periphery, and greater BV in the tumor periphery than in the center. This distribution pattern became more apparent with tumor growth. Antiangiogenic treatment effect was regionally heterogeneous: in the tumor center, treatment significantly suppressed the increase in TP and decrease in BV (ie, typical temporal change in the control group); in the tumor periphery, treatment‐induced vascular alterations were insignificant and BV remained high. On histopathological examination, the control group showed greater CD31, VEGFR2, Ki67, and NG2 expression in the tumor periphery than in the center. After treatment, CD31 and Ki67 expression was significantly suppressed only in the tumor center, whereas VEGFR2 and α‐caspase 3 expression was decreased and NG2 expression was increased in the entire tumor. These results demonstrate that MRI can reliably depict spatial heterogeneity in tumor vascular phenotypes and antiangiogenic treatment effects. Preserved angiogenic activity (high BV on MRI and high CD31) and proliferation (high Ki67) in the tumor periphery after treatment may provide insights into the mechanism of tumor resistance to antiangiogenic treatment.
Collapse
Affiliation(s)
- Cherry Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Yeon Suh
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Changhoe Heo
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chang Kyung Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo Hyun Shim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Bum Woo Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gyunggoo Cho
- Bio-imaging Research Team, Korea Basic Science Institute, Chungbuk, South Korea
| | - Do-Wan Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Yun Jae Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Jeong Kon Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N. An overview on Vadimezan (DMXAA): The vascular disrupting agent. Chem Biol Drug Des 2018; 91:996-1006. [DOI: 10.1111/cbdd.13166] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/29/2017] [Accepted: 12/17/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Amir Daei Farshchi Adli
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Student Research Committee; Tabriz University of Medical Sciences; Tabriz Iran
| | - Khaled Seidi
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sonia Samandari-Rad
- Faculty of Medicine; Physiology Research Center; Tehran University of Medical Sciences; Tehran Iran
- Department of Physiology; Faculty of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Iranian National Science Foundation; Tehran Iran
| |
Collapse
|
18
|
|
19
|
Siemann DW, Chaplin DJ, Horsman MR. Realizing the Potential of Vascular Targeted Therapy: The Rationale for Combining Vascular Disrupting Agents and Anti-Angiogenic Agents to Treat Cancer. Cancer Invest 2017; 35:519-534. [DOI: 10.1080/07357907.2017.1364745] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- D. W. Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | | | - M. R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University, Denmark
| |
Collapse
|
20
|
Li Y, Chen J, Liu Y, Zhang W, He W, Xu H, Liu L, Ma E. Nanoscale quantification of the biophysical characterization of combretastatin A-4-treated tumor cells using atomic force microscopy. PLoS One 2017. [PMID: 28628642 PMCID: PMC5476243 DOI: 10.1371/journal.pone.0179115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As an inhibitor of microtubule assembly, combretastatin A-4 (CA-4)-induced biological responses in tumor cells have been well known, but the corresponding changes in nano-biophysical properties were not investigated given the lack of an ideal tool. Using AFM technique, we investigated the alteration of nano-biophysical properties when CA-4-treated tumor cells underwent the different biological processes, including cell cycle arrest, apoptosis and autophagy. We found that CA-4-resistant cells were rougher with the presence of characteristic “ridges”, indicating that the development of “ridge” structure may be a determinant of the sensitivity of cells to CA-4 compounds. CA-4 induced G2/M arrest and apoptosis in sensitive cells but triggered anti-apoptotic autophagy in resistant cells. CA-4 treatment caused an increase in stiffness in both sensitive and resistant cells. However, these cells exhibited different changes in cell surface roughness. CA-4 decreased Ra and Rq values in sensitive cells but increased these values in resistant cells. The reorganization of F-actin might contribute to the different changes of nano-biophysical properties in CA-4-sensitive and–resistant cells. Our results suggest that cellular nano-biophysical properties, such as “ridges”, roughness and stiffness, could be applied as potential biomarkers for evaluating CA-4 compounds, and knowledge regarding how biological alterations cause changes in cellular nano-biophysical properties is helpful to develop a new high-resolution screening tool for anti-tumor agents.
Collapse
Affiliation(s)
- Yanchun Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, China Academy of Sciences, Shenyang, China
| | - Jv Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yutong Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Weige Zhang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenhui He
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanying Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, China Academy of Sciences, Shenyang, China
| | - Enlong Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- * E-mail:
| |
Collapse
|
21
|
Gao W. Quantitative depth-resolved microcirculation imaging with optical coherence tomography angiography (Part Ι): Blood flow velocity imaging. Microcirculation 2017; 25:e12375. [PMID: 28419622 DOI: 10.1111/micc.12375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022]
Abstract
The research goal of the microvascular network imaging with OCT angiography is to achieve depth-resolved blood flow and vessel imaging in vivo in the clinical management of patents. In this review, we review the main phenomena that have been explored in OCT to image the blood flow velocity vector and the vessels of the microcirculation within living tissues. Parameters that limit the accurate measurements of blood flow velocity are then considered. Finally, initial clinical diagnosis applications and future developments of OCT flow images are discussed.
Collapse
Affiliation(s)
- Wanrong Gao
- Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.,MIIT Key Laboratory of Advanced soIid Laser, Nanjing University of science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Berbeco RI, Detappe A, Tsiamas P, Parsons D, Yewondwossen M, Robar J. Low Z target switching to increase tumor endothelial cell dose enhancement during gold nanoparticle-aided radiation therapy. Med Phys 2016; 43:436. [PMID: 26745936 DOI: 10.1118/1.4938410] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Previous studies have introduced gold nanoparticles as vascular-disrupting agents during radiation therapy. Crucial to this concept is the low energy photon content of the therapy radiation beam. The authors introduce a new mode of delivery including a linear accelerator target that can toggle between low Z and high Z targets during beam delivery. In this study, the authors examine the potential increase in tumor blood vessel endothelial cell radiation dose enhancement with the low Z target. METHODS The authors use Monte Carlo methods to simulate delivery of three different clinical photon beams: (1) a 6 MV standard (Cu/W) beam, (2) a 6 MV flattening filter free (Cu/W), and (3) a 6 MV (carbon) beam. The photon energy spectra for each scenario are generated for depths in tissue-equivalent material: 2, 10, and 20 cm. The endothelial dose enhancement for each target and depth is calculated using a previously published analytic method. RESULTS It is found that the carbon target increases the proportion of low energy (<150 keV) photons at 10 cm depth to 28% from 8% for the 6 MV standard (Cu/W) beam. This nearly quadrupling of the low energy photon content incident on a gold nanoparticle results in 7.7 times the endothelial dose enhancement as a 6 MV standard (Cu/W) beam at this depth. Increased surface dose from the low Z target can be mitigated by well-spaced beam arrangements. CONCLUSIONS By using the fast-switching target, one can modulate the photon beam during delivery, producing a customized photon energy spectrum for each specific situation.
Collapse
Affiliation(s)
- Ross I Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Alexandre Detappe
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Panogiotis Tsiamas
- Department of Radiation Oncology, St. Jude Children's Hospital, Memphis, Tennessee 38105
| | - David Parsons
- Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 1V7, Canada
| | - Mammo Yewondwossen
- Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 1V7, Canada
| | - James Robar
- Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 1V7, Canada
| |
Collapse
|
23
|
Horsman MR, Overgaard J. The impact of hypoxia and its modification of the outcome of radiotherapy. JOURNAL OF RADIATION RESEARCH 2016; 57 Suppl 1:i90-i98. [PMID: 26983987 PMCID: PMC4990104 DOI: 10.1093/jrr/rrw007] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/14/2015] [Accepted: 01/01/2016] [Indexed: 05/21/2023]
Abstract
Since the initial observations made at the beginning of the last century, it has been established that solid tumors contain regions of low oxygenation (hypoxia). Tumor cells can survive in these hypoxic conditions and are a major factor in tumor radioresistance. This significance has resulted in hypoxia becoming the most cited biological topic in translational radiation oncology. Identifying hypoxic cells in human tumors has become paramount, and the ability to do this has been improved by the help of new imaging techniques and the use of predictive gene profiles. Substantial data confirm the presence of hypoxia in many types of human tumors, although with considerable heterogeneity among individual tumors. Various approaches have been investigated for eliminating the hypoxic population. These include increasing oxygen availability, directly radiosensitizing or killing the hypoxic cells, indirectly affecting them by targeting the tumor vascular supply, increasing the radiation dose to this resistant population, or by using radiation with a high linear energy transfer, for which hypoxia is believed to be less of an issue. Many of these approaches have undergone controlled clinical trials during the last 50 years, and the results have shown that hypoxic radiation resistance can indeed be overcome. Thus, ample data exists to support a high level of evidence for the benefit of hypoxic modification. However, such hypoxic modification still has no impact on general clinical practice. In this review we summarize the biological rationale, and the current activities and trials, related to identifying and overcoming hypoxia in modern radiotherapy.
Collapse
Affiliation(s)
- Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, Building 5, DK-8000 Aarhus C, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, Building 5, DK-8000 Aarhus C, Denmark
| |
Collapse
|
24
|
Li J, Zhou M, Liu F, Xiong C, Wang W, Cao Q, Wen X, Robertson JD, Ji X, Wang YA, Gupta S, Li C. Hepatocellular Carcinoma: Intra-arterial Delivery of Doxorubicin-loaded Hollow Gold Nanospheres for Photothermal Ablation-Chemoembolization Therapy in Rats. Radiology 2016; 281:427-435. [PMID: 27347765 DOI: 10.1148/radiol.2016152510] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose To determine if combretastatin A-4 phosphate disodium (CA4P) can enhance the tumor uptake of doxorubicin (Dox)-loaded, polyethylene glycol (PEG)-coated hollow gold nanospheres (HAuNS) mixed with ethiodized oil for improved photothermal ablation (PTA)-chemoembolization therapy (CET) of hepatocellular carcinoma (HCC) in rats. Materials and Methods Animal experiments were approved by the institutional animal care and use committee and performed from February 2014 to April 2015. Male Sprague-Dawley rats (n = 45; age, 12 weeks) were inoculated with N1S1 HCC cells in the liver, and 8 days later, were randomly divided into two groups of 10 rats. Group 1 rats received intrahepatic arterial injection of PEG-HAuNS and ethiodized oil alone; group 2 received pretreatment with CA4P and injection of PEG-HAuNS and ethiodized oil 5 minutes later. The gold content of tumor and liver tissue at 1 hour or 24 hours after injection was quantified by using neutron activation analysis (n = 5 per time point). Five rats received pretreatment CA4P, PEG-copper 64-HAuNS, and ethiodized oil and underwent micro-positron emission tomography (PET)/computed tomography (CT). In a separate study, three groups of six rats with HCC were injected with saline solution (control group); CA4P, Dox-loaded PEG-coated HAuNS (Dox@PEG-HAuNS), and ethiodized oil (CET group); or CA4P, Dox@PEG-HAuNS, ethiodized oil, and near-infrared irradiation (PTA-CET group). Temperature was recorded during laser irradiation. Findings were verified at postmortem histopathologic and/or autoradiographic examination. Wilcoxon rank-sum test and Pearson correlation analyses were performed. Results PEG-HAuNS uptake in CA4P-pretreated HCC tumors was significantly higher than that in non-CA4P-pretreated tumors at both 1 hour (P < .03) and 24 hours (P < .01). Mean ± standard deviation of tumor-to-liver PEG-HAuNS uptake ratios at 1 hour and 24 hours, respectively, were 5.63 ± 3.09 and 1.68 ± 0.77 in the CA4P-treated group and 1.29 ± 2.40 and 0.14 ± 0.11 in the non-CA4P-treated group. Micro-PET/CT allowed clear delineation of tumors, enabling quantitative imaging analysis. Laser irradiation increased temperature to 60°C and 43°C in the tumor and adjacent liver, respectively. Mean HCC tumor volumes 10 days after therapy were 1.68 cm3 ± 1.01, 3.96 cm3 ± 1.75, and 6.13 cm3 ± 2.27 in the PTA-CET, CET, and control groups, respectively, with significant differences between the PTA-CET group and other groups (P < .05). Conclusion CA4P pretreatment caused a higher concentration of Dox@PEG-HAuNS to be trapped inside the tumor, thereby enhancing the efficacy of anti-HCC treatment with PTA-CET in rats. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Junjie Li
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Min Zhou
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Fengyong Liu
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Chiyi Xiong
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Wanqin Wang
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Qizhen Cao
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Xiaoxia Wen
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - J David Robertson
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Xin Ji
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Y Andrew Wang
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Sanjay Gupta
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Chun Li
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| |
Collapse
|
25
|
Bar-Zion A, Yin M, Adam D, Foster FS. Functional Flow Patterns and Static Blood Pooling in Tumors Revealed by Combined Contrast-Enhanced Ultrasound and Photoacoustic Imaging. Cancer Res 2016; 76:4320-31. [PMID: 27325651 DOI: 10.1158/0008-5472.can-16-0376] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/26/2016] [Indexed: 11/16/2022]
Abstract
Alterations in tumor perfusion and microenvironment have been shown to be associated with aggressive cancer phenotypes, raising the need for noninvasive methods of tracking these changes. Dynamic contrast-enhanced ultrasound (DCEUS) and photoacoustic (PA) imaging serve as promising candidates-one has the ability to measure tissue perfusion, whereas the other can be used to monitor tissue oxygenation and hemoglobin concentration. In this study, we investigated the relationship between the different functional parameters measured with DCEUS and PA imaging, using two morphologically different hind-limb tumor models and drug-induced alterations in an orthotopic breast tumor model. Imaging results showed some correlation between perfusion and oxygen saturation maps and the ability to sensitively monitor antivascular treatment. In addition, DCEUS measurements revealed different vascular densities in the core of specific tumors compared with their rims. Noncorrelated perfusion and hemoglobin concentration measurements facilitated discrimination between blood lakes and necrotic areas. Taken together, our results illustrate the utility of a combined contrast-enhanced ultrasound method with photoacoustic imaging to visualize blood flow patterns in tumors. Cancer Res; 76(15); 4320-31. ©2016 AACR.
Collapse
Affiliation(s)
- Avinoam Bar-Zion
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Melissa Yin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Dan Adam
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - F Stuart Foster
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
26
|
Nepali K, Ojha R, Lee HY, Liou JP. Early investigational tubulin inhibitors as novel cancer therapeutics. Expert Opin Investig Drugs 2016; 25:917-36. [PMID: 27186892 DOI: 10.1080/13543784.2016.1189901] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Microtubules represent one of the most logical and strategic molecular targets amongst the current targets for chemotherapy, alongside DNA. In the past decade, tubulin inhibitors as cancer therapeutics have been an area of focus due to the improved understanding and biological relevance of microtubules in cellular functions. Fueled by the objective of developing novel chemotherapeutics and with the aim of establishing the benefits of tubulin inhibition, several clinical trials have been conducted with others ongoing. AREA COVERED At present, the antitubulin development pipeline contains an armful of agents under clinical investigation. This review focuses on novel tubulin inhibitors as cancer therapeutics. The article covers the agents which have completed the phase II studies along with the agents demonstrating promising results in phase I studies. EXPERT OPINION Countless clinical trials evaluating the efficacy, safety and pharmacokinetics of novel tubulin inhibitors highlights the scientific efforts being paid to establish their candidature as cancer therapeutics. Colchicine binding site inhibitors as vascular disrupting agents (VDAs) and new taxanes appear to be the most likely agents for future clinical interest. Numerous agents have demonstrated clinical benefits in terms of efficacy and survival in phase I and II studies. However conclusive benefits can only be ascertained on the basis of phase III studies.
Collapse
Affiliation(s)
- Kunal Nepali
- a School of Pharmacy, College of Pharmacy , Taipei Medical University , Taipei , Taiwan
| | - Ritu Ojha
- a School of Pharmacy, College of Pharmacy , Taipei Medical University , Taipei , Taiwan
| | - Hsueh-Yun Lee
- a School of Pharmacy, College of Pharmacy , Taipei Medical University , Taipei , Taiwan
| | - Jing-Ping Liou
- a School of Pharmacy, College of Pharmacy , Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
27
|
Zhang Q, Lin Z, Yin X, Tang L, Luo H, Li H, Zhang Y, Luo W. In vitro and in vivo study of hydralazine, a potential anti-angiogenic agent. Eur J Pharmacol 2016; 779:138-46. [PMID: 26968484 DOI: 10.1016/j.ejphar.2016.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 02/05/2023]
Abstract
Hydralazine (HYD), an old routine clinical anti-hypertension drug, is rarely used in clinic nowadays. Since the strategy of repositioning old drugs was put forward, HYD has been reported to possess various biological activities, including antitumor efficacy and reducing intra-tumor microvessel. Here, we investigated that whether HYD had the ability of anti-angiogeneis and its underlying mechanism. Cells proliferation, wound-healing, Transwell migration and invasion, tube formation and rat aortic ring assays in vitro and chicken chorioallantoic membrane (CAM) model in vivo were designed to investigated HYD's anti-angiogenic effect. Levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were assessed by enzyme-linked immune sorbent assay (ELISA). Hepatocellular carcinoma (HCC) mice model was used to evaluate HYD's effect on tumor growth and microvessel density. Our results showed that HYD not only inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, wound-healing, Transwell migration and invasion and tube formation, but also suppressed the microvessel outgrowth of rat aortic ring in vitro and the neovascularzation of CAM in vivo. Furthermore, we demonstrated that HYD attenuated tumor angiogenesis and tumor growth. In the co-culture system of Transwell migration, the secretion of VEGF and bFGF was reduced by HYD respectively. In sum, our data indicate that HYD has the pharmacological effect of ant-angiogenesis by interference with VEGF and bFGF signaling pathways in endothelial cells. These findings suggest that HYD might be a promising angiogenesis inhibitor and a potential effective therapeutic agent for cancer therapy.
Collapse
Affiliation(s)
- Quanwei Zhang
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhexuan Lin
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiukai Yin
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Lingzhi Tang
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Hongjun Luo
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Hui Li
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yuan Zhang
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenhong Luo
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
28
|
Shao H, Zhang J, Sun Z, Chen F, Dai X, Li Y, Ni Y, Xu K. Necrosis targeted radiotherapy with iodine-131-labeled hypericin to improve anticancer efficacy of vascular disrupting treatment in rabbit VX2 tumor models. Oncotarget 2016; 6:14247-59. [PMID: 26036625 PMCID: PMC4546464 DOI: 10.18632/oncotarget.3679] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 03/03/2015] [Indexed: 11/25/2022] Open
Abstract
A viable rim of tumor cells surrounding central necrosis always exists and leads to tumor recurrence after vascular disrupting treatment (VDT). A novel necrosis targeted radiotherapy (NTRT) using iodine-131-labeled hypericin (131I-Hyp) was specifically designed to treat viable tumor rim and improve tumor control after VDT in rabbit models of multifocal VX2 tumors. NTRT was administered 24 hours after VDT. Tumor growth was significantly slowed down by NTRT with a smaller tumor volume and a prolonged tumor doubling time (14.4 vs. 5.7 days), as followed by in vivo magnetic resonance imaging over 12 days. The viable tumor rims were well inhibited in NTRT group compared with single VDT control group, as showed on tumor cross sections at day 12 (1 vs. 3.7 in area). High targetability of 131I-Hyp to tumor necrosis was demonstrated by in vivo SPECT as high uptake in tumor regions lasting over 9 days with 4.26 to 98 times higher radioactivity for necrosis versus the viable tumor and other organs by gamma counting, and with ratios of 7.7-11.7 and 10.5-13.7 for necrosis over peri-tumor tissue by autoradiography and fluorescence microscopy, respectively. In conclusion, NTRT improved the anticancer efficacy of VDT in rabbits with VX2 tumors.
Collapse
Affiliation(s)
- Haibo Shao
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ziping Sun
- Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Feng Chen
- Department of Imaging & Pathology, Theragnostic Laboratory, University of Leuven, Leuven, Belgium
| | - Xu Dai
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yaming Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yicheng Ni
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China.,Laboratory of Translational Medicine, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, China.,Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, China.,Department of Imaging & Pathology, Theragnostic Laboratory, University of Leuven, Leuven, Belgium
| | - Ke Xu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Horsman MR. Realistic biological approaches for improving thermoradiotherapy. Int J Hyperthermia 2015; 32:14-22. [DOI: 10.3109/02656736.2015.1099169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Kunjachan S, Detappe A, Kumar R, Ireland T, Cameron L, Biancur DE, Motto-Ros V, Sancey L, Sridhar S, Makrigiorgos GM, Berbeco RI. Nanoparticle Mediated Tumor Vascular Disruption: A Novel Strategy in Radiation Therapy. NANO LETTERS 2015; 15:7488-96. [PMID: 26418302 PMCID: PMC5507193 DOI: 10.1021/acs.nanolett.5b03073] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
More than 50% of all cancer patients receive radiation therapy. The clinical delivery of curative radiation dose is strictly restricted by the proximal healthy tissues. We propose a dual-targeting strategy using vessel-targeted-radiosensitizing gold nanoparticles and conformal-image guided radiation therapy to specifically amplify damage in the tumor neoendothelium. The resulting tumor vascular disruption substantially improved the therapeutic outcome and subsidized the radiation/nanoparticle toxicity, extending its utility to intransigent or nonresectable tumors that barely respond to standard therapies.
Collapse
Affiliation(s)
- Sijumon Kunjachan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Alexandre Detappe
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
- Institut Lumière Matière, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69007 Lyon, France
| | - Rajiv Kumar
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas Ireland
- LA-ICP-MS and ICP-ES Laboratories, Boston University, Boston, Massachusetts 02215, United States
| | - Lisa Cameron
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Douglas E. Biancur
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Vincent Motto-Ros
- Institut Lumière Matière, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69007 Lyon, France
| | - Lucie Sancey
- Institut Lumière Matière, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69007 Lyon, France
| | - Srinivas Sridhar
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ross I. Berbeco
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
31
|
Schuemann J, Berbeco R, Chithrani DB, Cho SH, Kumar R, McMahon SJ, Sridhar S, Krishnan S. Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization. Int J Radiat Oncol Biol Phys 2015; 94:189-205. [PMID: 26700713 DOI: 10.1016/j.ijrobp.2015.09.032] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/16/2015] [Accepted: 09/21/2015] [Indexed: 11/26/2022]
Abstract
The past decade has seen a dramatic increase in interest in the use of gold nanoparticles (GNPs) as radiation sensitizers for radiation therapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs' efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X rays as well as charged particles. Despite this experimental validation, there has been limited translation of GNP-mediated radiation sensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes, and preparations. As a result, mechanisms of uptake and radiation sensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiation sensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage.
Collapse
Affiliation(s)
- Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | | | - Sang Hyun Cho
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajiv Kumar
- Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Stephen J McMahon
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Srinivas Sridhar
- Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
32
|
Abstract
BACKGROUND Hypoxia is a characteristic feature of solid tumours that significantly reduces the efficacy of conventional radiation therapy. In this study we investigated the role of hypoxia in a stereotactic radiation schedule by using a variety of hypoxic modifiers in a preclinical tumour model. MATERIAL AND METHODS C3H mammary carcinomas were irradiated with 3 × 15 Gy during a one-week period, followed three days later by a clamped top-up dose to produce a dose response curve; the endpoint was tumour control. The hypoxic modifiers were nimorazole (200 mg/kg), nicotinamide (120 mg/kg) and carbogen (95% O2 + 5% CO2) breathing, OXi4503 (10 mg/kg), and hyperthermia (41.5°C; 1 h). RESULTS The radiation dose controlling 50% of clamped tumours (TCD50) following 3 × 15 Gy was 30 Gy. Giving nimorazole or nicotinamide+ carbogen prior to the final 15 Gy fraction non-significantly (χ(2)-test; p < 0.05) reduced this TCD50 to 20-23 Gy; when administered with each 3 × 15 Gy fraction these values were significantly reduced to ≤ 2.5 Gy. Injecting OXi4503 or heating after irradiating significantly reduced the TCD50 to 9-12 Gy regardless of whether administered with one or all three 15 Gy fractions. Combining OXi4503 and heat with the final 15 Gy had a significantly larger effect (TCD50 = 2 Gy). CONCLUSIONS Clinically relevant modifiers of hypoxia effectively enhanced an equivalent stereotactic radiation treatment confirming the importance of hypoxia in such schedules.
Collapse
Affiliation(s)
- Thomas R Wittenborn
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Michael R Horsman
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
33
|
The vascular disrupting activity of OXi8006 in endothelial cells and its phosphate prodrug OXi8007 in breast tumor xenografts. Cancer Lett 2015; 369:229-41. [PMID: 26325604 DOI: 10.1016/j.canlet.2015.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022]
Abstract
This study describes the vascular disrupting ability and the mechanism of action of the indole-based tubulin-binding compound, OXi8006, and its water-soluble phosphate prodrug OXi8007. Treatment of rapidly proliferating human umbilical vein endothelial cells (HUVECs), used as a model for the tumor vasculature, with OXi8006 or OXi8007, caused potent microtubule disruption followed by extensive reorganization of the cytoskeletal network. The mechanism of action involved an increase in focal adhesion formation associated with an increase in phosphorylation of both non-muscle myosin light chain and focal adhesion kinase. These effects were dramatically diminished by an inhibitor of RhoA kinase, a downstream effector of RhoA. Cell cycle blockade at G2/M and cytotoxicity toward rapidly proliferating HUVECs were also observed. Capillary-like networks of HUVECs were disrupted by the action of both OXi8006 and OXi8007. The prodrug OXi8007 exhibited potent and rapid dose-dependent antivascular activity assessed by dynamic bioluminescence imaging (BLI) in an MDA-MB-231-luc breast cancer xenograft mouse model. By 6 hours post treatment, over 93% of the BLI signal was abolished with only a slight recovery at 24 hours. These findings were confirmed by histology. The results from this study demonstrate that OXi8007 is a potent vascular disrupting agent acting through an anti-microtubule mechanism involving RhoA.
Collapse
|
34
|
Siemann DW, Horsman MR. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther 2015; 153:107-24. [PMID: 26073310 DOI: 10.1016/j.pharmthera.2015.06.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment is increasingly recognized as a major factor influencing the success of therapeutic treatments and has become a key focus for cancer research. The progressive growth of a tumor results in an inability of normal tissue blood vessels to oxygenate and provide sufficient nutritional support to tumor cells. As a consequence the expanding neoplastic cell population initiates its own vascular network which is both structurally and functionally abnormal. This aberrant vasculature impacts all aspects of the tumor microenvironment including the cells, extracellular matrix, and extracellular molecules which together are essential for the initiation, progression and spread of tumor cells. The physical conditions that arise are imposing and manifold, and include elevated interstitial pressure, localized extracellular acidity, and regions of oxygen and nutrient deprivation. No less important are the functional consequences experienced by the tumor cells residing in such environments: adaptation to hypoxia, cell quiescence, modulation of transporters and critical signaling molecules, immune escape, and enhanced metastatic potential. Together these factors lead to therapeutic barriers that create a significant hindrance to the control of cancers by conventional anticancer therapies. However, the aberrant nature of the tumor microenvironments also offers unique therapeutic opportunities. Particularly interventions that seek to improve tumor physiology and alleviate tumor hypoxia will selectively impair the neoplastic cell populations residing in these environments. Ultimately, by combining such therapeutic strategies with conventional anticancer treatments it may be possible to bring cancer growth, invasion, and metastasis to a halt.
Collapse
Affiliation(s)
- Dietmar W Siemann
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, FL, USA.
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital-NBG, Aarhus, Denmark
| |
Collapse
|
35
|
Cogle CR, Bosse RC, Brewer T, Migdady Y, Shirzad R, Kampen KR, Saki N. Acute myeloid leukemia in the vascular niche. Cancer Lett 2015; 380:552-560. [PMID: 25963886 DOI: 10.1016/j.canlet.2015.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/26/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
The greatest challenge in treating acute myeloid leukemia (AML) is refractory disease. With approximately 60-80% of AML patients dying of relapsed disease, there is an urgent need to define and target mechanisms of drug resistance. Unfortunately, targeting cell-intrinsic resistance has failed to improve clinical outcomes in AML. Emerging data show that cell-extrinsic factors in the bone marrow microenvironment protect and support AML cells. The vascular niche, in particular, regulates AML cell survival and cell cycling by both paracrine secretion and adhesive contact with endothelial cells. Moreover, AML cells can functionally integrate within vascular endothelia, undergo quiescence, and resist cytotoxic chemotherapy. Together, these findings support the notion of blood vessels as sanctuary sites for AML. Therefore, vascular targeting agents may serve to remit AML. Several early phase clinical trials have tested anti-angiogenic agents, leukemia mobilizing agents, and vascular disrupting agents in AML patients. In general, these agents can be safely administered to AML patients and cardiovascular side effects were reported. Response rates to vascular targeting agents in AML have been modest; however, a majority of vascular targeting trials in AML are monotherapy in design and indiscriminate in patient recruitment. When considering the chemosensitizing effects of targeting the microenvironment, there is a strong rationale to build upon these early phase clinical trials and initiate phase IB/II trials of combination therapy where vascular targeting agents are positioned as priming agents for cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Christopher R Cogle
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Raphael C Bosse
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Takae Brewer
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yazan Migdady
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Reza Shirzad
- Health research institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kim Rosalie Kampen
- Department of Pediatric Oncology/Hematology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Najmaldin Saki
- Health research institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Horsman MR. Therapeutic potential of using the vascular disrupting agent OXi4503 to enhance mild temperature thermoradiation. Int J Hyperthermia 2015; 31:453-9. [PMID: 25915829 DOI: 10.3109/02656736.2015.1024289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The response of tissues to radiation with mild temperature hyperthermia is dependent on the interval between the two modalities. This study investigated the effect that the vascular disrupting agent OXi4503 had on this time-interval interaction. METHODS The normal right rear foot of female CDF1 mice or foot-implanted C3H mammary carcinomas were locally irradiated (230 kV X-rays) and heated (41.5 °C for 60 min) by foot immersion in a water bath. OXi4503 (50 mg/kg) was injected intraperitoneally 1.5 h before irradiating. Irradiation was performed either in the middle of the heating period (simultaneous treatment) or at 1 or 4 h prior to starting the heating (sequential treatments). Response was the percentage of mice showing local tumour control at 90 days or skin moist desquamation between days 11-23. From the radiation dose response curves the dose producing tumour control (TCD(50)) or moist desquamation (MDD50) in 50% of mice was calculated. RESULTS The TCD(50) and MDD50 values for radiation alone were 54 Gy and 29 Gy, respectively. Simultaneously heating the tissues enhanced radiation response, the respective TCD(50) and MDD50 values being significantly (chi-square test, p < 0.05) reduced to 33 Gy and 14 Gy. A smaller enhancement was obtained with a sequential treatment in both tissues. OXi4503 enhanced the radiation response of tumour and skin. Combined with radiation and heat, the only effect was in tumours where OXi4503 prevented the decrease in sensitisation seen with the sequential treatment. CONCLUSION Combining OXi4503 with a sequential radiation and heat treatment resulted in a 1.4-fold therapeutic gain.
Collapse
Affiliation(s)
- Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
37
|
Wragg JW, Durant S, McGettrick HM, Sample KM, Egginton S, Bicknell R. Shear stress regulated gene expression and angiogenesis in vascular endothelium. Microcirculation 2015; 21:290-300. [PMID: 24471792 DOI: 10.1111/micc.12119] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/22/2014] [Indexed: 01/13/2023]
Abstract
The behavior of vascular EC is greatly altered in sites of pathological angiogenesis, such as a developing tumor or atherosclerotic plaque. Until recently it was thought that this was largely due to abnormal chemical signaling, i.e., endothelial cell chemo transduction, at these sites. However, we now demonstrate that the shear stress intensity encountered by EC can have a profound impact on their gene expression and behavior. We review the growing body of evidence suggesting that mechanotransduction, too, is a major regulator of pathological angiogenesis. This fits with the evolving story of physiological angiogenesis, where a combination of metabolic and mechanical signaling is emerging as the probable mechanism by which tight feedback regulation of angiogenesis is achieved in vivo.
Collapse
Affiliation(s)
- Joseph W Wragg
- Angiogenesis Group, Centre for Cardiovascular Sciences, Institute for Biomedical Research, Schools of Immunity and Infection and Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Ferguson HJM, Wragg J, Ismail T, Bicknell R. Vaccination against tumour blood vessels in colorectal cancer. Eur J Surg Oncol 2013; 40:133-6. [PMID: 24388410 DOI: 10.1016/j.ejso.2013.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 12/27/2022] Open
Affiliation(s)
- H J M Ferguson
- School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Colorectal Surgery, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2TH, UK.
| | - J Wragg
- School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - T Ismail
- Department of Colorectal Surgery, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2TH, UK.
| | - R Bicknell
- School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
40
|
Abstract
INTRODUCTION Microtubules play an important role in several cellular processes, particularly in the formation of the mitotic spindle during the process of mitosis. These highly dynamic mitotic-spindle microtubules have become a successful target of cancer therapy. Microtubule-targeting agents, such as vinca alkaloids and taxanes, were used in clinic over 50 years. In past decades, development of new antimicrotubule agents that possess different structure and binding sites of tubulin has shown potent activity against the proliferation of various cancer cells, as well as in multidrug-resistant cancers. Interestingly, many of these agents represent an attractive ability that targeting the tumor blood vessels results in tumor vascular disruption. Therefore, exploring new agents and strategies may provide more effective therapeutic options in the related treatment of cancer. AREAS COVERED In past few years, there are many chemical compounds that successfully interferes the microtubules and display antitumor effect. In these, published compounds supply the fresh minds in modification of present drugs and new insights into the development of tubulin inhibitors. EXPERT OPINION This article arranges the microtubule-targeting agents that have published in patent in recent years. It may help in the investigation of new tubulin binding site and development of novel drug candidate in the future.
Collapse
Affiliation(s)
- Yi-Min Liu
- Taipei Medical University, School of Pharmacy, College of Pharmacy , 250 Wuxing Street, Taipei 11031, Taiwan , Republic of China +886 2 2736 1661, ext 6130 ;
| | | | | | | |
Collapse
|
41
|
Scharf VF, Farese JP, Coomer AR, Milner RJ, Taylor DP, Salute ME, Chang MN, Neal D, Siemann DW. Effect of bevacizumab on angiogenesis and growth of canine osteosarcoma cells xenografted in athymic mice. Am J Vet Res 2013; 74:771-8. [PMID: 23627391 DOI: 10.2460/ajvr.74.5.771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Objective-To investigate the effects of bevacizumab, a human monoclonal antibody against vascular endothelial growth factor, on the angiogenesis and growth of canine osteosarcoma cells xenografted in mice. Animals-27 athymic nude mice. Procedures-To each mouse, highly metastasizing parent osteosarcoma cells of canine origin were injected into the left gastrocnemius muscle. Each mouse was then randomly allocated to 1 of 3 treatment groups: high-dose bevacizumab (4 mg/kg, IP), low-dose bevacizumab (2 mg/kg, IP), or control (no treatment). Tumor growth (the number of days required for the tumor to grow from 8 to 13 mm), vasculature, histomorphology, necrosis, and pulmonary metastasis were evaluated. Results-Mice in the high-dose bevacizumab group had significantly delayed tumor growth (mean ± SD, 13.4 ± 3.8 days; range, 9 to 21 days), compared with that for mice in the low-dose bevacizumab group (mean ± SD, 9.4 ± 1.5 days; range, 7 to 11 days) or control group (mean ± SD, 7. 2 ± 1.5 days; range, 4 to 9 days). Mice in the low-dose bevacizumab group also had significantly delayed tumor growth, compared with that for mice in the control group. Conclusions and Clinical Relevance-Results indicated that bevacizumab inhibited growth of canine osteosarcoma cells xenografted in mice, which suggested that vascular endothelial growth factor inhibitors may be clinically useful for the treatment of osteosarcoma in dogs. Impact for Human Medicine-Canine osteosarcoma is used as a research model for human osteosarcoma; therefore, bevacizumab may be clinically beneficial for the treatment of osteosarcoma in humans.
Collapse
Affiliation(s)
- Valery F Scharf
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Interstitial fluid flow and drug delivery in vascularized tumors: a computational model. PLoS One 2013; 8:e70395. [PMID: 23940570 PMCID: PMC3734291 DOI: 10.1371/journal.pone.0070395] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/18/2013] [Indexed: 01/15/2023] Open
Abstract
Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP) is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider-with the help of a theoretical model-the tumor IFP, interstitial fluid flow (IFF) and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy's law) and sources (vessels) and sinks (lymphatics) for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss various strategies to increase drug exposure time of tumor cells.
Collapse
|
43
|
Diverse responses to vascular disrupting agent combretastatin a4 phosphate: a comparative study in rats with hepatic and subcutaneous tumor allografts using MRI biomarkers, microangiography, and histopathology. Transl Oncol 2013; 6:42-50. [PMID: 23418616 DOI: 10.1593/tlo.12367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/25/2012] [Accepted: 12/31/2012] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Differently located tumors of the same origin may exhibit diverse responses to the same therapeutics. To test this hypothesis, we compared the responses of rodent hepatic and subcutaneous engrafts of rhabdomyosarcoma-1 (R1) to a vascular disrupting agent Combretastatin A4 phosphate (CA4P). METHODS Twelve WAG/Rij rats, each bearing three R1 implanted in the right and left hepatic lobes and subcutaneously in the thoracic region, received CA4P intravenously at 5 mg/kg (n = 6) or solvent (n = 6). Therapeutic responses were compared interindividually and intraindividually among tumors of different sites till 48 hours after injection using in vivo MRI, postmortem digital microangiography, and histopathology. RESULTS MRI revealed that the subcutaneous tumors (STs) significantly increased in volume than hepatic tumors (HTs) 48 hours after CA4P (P < .05). Relative to vehicle controls and treated group at baseline, necrosis ratio, apparent diffusion coefficient, and enhancement ratio changed slightly with the STs but significantly with HTs (P < .05) after CA4P treatment. Vessel density derived from microangiography was significantly lower in STs compared to HTs without CA4P treatment. CA4P treatment resulted in decreased vessel density in HTs, while it did not affect vessel density in STs. MRI and microangiography outcomes were supported by histopathologic findings. CONCLUSIONS MRI and microangiography allowed quantitative comparison of therapeutic responses to CA4P in rats with multifocal tumors. The discovered diverse effects of the same drug on tumors of the same origin but different locations emphasize the presence of cancer heterogeneity and the importance of individualization of drug delivery.
Collapse
|
44
|
Li J, Oyen R, Verbruggen A, Ni Y. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications. J Cancer 2013; 4:133-45. [PMID: 23412554 PMCID: PMC3572405 DOI: 10.7150/jca.5635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/03/2013] [Indexed: 01/02/2023] Open
Abstract
Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely 131I-hypericin (131I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications.
Collapse
Affiliation(s)
- Junjie Li
- 1. Department of Imaging and Pathology, Biomedical Sciences Group; KU Leuven, Belgium. ; 2. Molecular Small Animal Imaging Center, Faculty of Medicine; KU Leuven, Belgium
| | | | | | | |
Collapse
|
45
|
Spatial morphological and molecular differences within solid tumors may contribute to the failure of vascular disruptive agent treatments. BMC Cancer 2012; 12:522. [PMID: 23153292 PMCID: PMC3583184 DOI: 10.1186/1471-2407-12-522] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 11/07/2012] [Indexed: 01/25/2023] Open
Abstract
Background Treatment of solid tumors with vascular disrupting agent OXi4503 results in over 90% tumor destruction. However, a thin rim of viable cells persists in the tumor periphery following treatment, contributing to subsequent recurrence. This study investigates inherent differences in the microenvironment of the tumor periphery that contribute to treatment resistance. Methods Using a murine colorectal liver metastases model, spatial morphological and molecular differences within the periphery and the center of the tumor that may account for differences in resistance to OXi4503 treatment were investigated. H&E staining and immunostaining were used to examine vessel maturity and stability, hypoxia and HIF1α levels, accumulation of immune cells, expression of proangiogenic factors/receptors (VEGF, TGF-β, b-FGF, and AT1R) and expression of EMT markers (ZEB1, vimentin, E-cadherin and β-catenin) in the periphery and center of established tumors. The effects of OXi4503 on tumor vessels and cell kinetics were also investigated. Results Significant differences were found between tumor periphery and central regions, including association of the periphery with mature vessels, higher accumulation of immune cells, increased growth factor expression, minimal levels of hypoxia and increased evidence of EMT. OXi4503 treatment resulted in collapse of vessels in the tumor center; however vasculature in the periphery remained patent. Similarly, tumor apoptosis and proliferation were differentially modulated between centre and periphery after treatment. Conclusions The molecular and morphological differences between tumor periphery and center may account for the observed differential resistance to OXi4503 treatment and could provide targets for drug development to totally eliminate metastases.
Collapse
|
46
|
Mechanisms of tumor resistance to small-molecule vascular disrupting agents: treatment and rationale of combination therapy. J Formos Med Assoc 2012; 112:115-24. [PMID: 23473523 DOI: 10.1016/j.jfma.2012.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/13/2022] Open
Abstract
Small-molecule vascular disrupting agents (VDAs) target the established tumor blood vessels, resulting in rapidly and selectively widespread ischemia and necrosis of central tumor; meanwhile, blood flow in normal tissues is relatively unaffected. Although VDAs therapy is considered an important option for treatment, its use is still limited. The tumor cells at the periphery are less sensitive to vascular shutdown than those at the center, and subsequently avoid a nutrient-deprived environment. This phenomenon is referred to as tumor resistance to VDAs treatment. The viable periphery rim of tumor cells contributes to tumor regeneration, metastasis, and ongoing progression. However, there is no systematic review of the plausible mechanisms of repopulation of the viable tumor cells following VDAs therapy. The purpose of this review is to provide insights into mechanisms of tumor surviving small-molecule VDAs therapy, and the synergetic treatment to the remaining viable tumor cells at the periphery.
Collapse
|
47
|
Tubulin-destabilizing agent BPR0L075 induces vascular-disruption in human breast cancer mammary fat pad xenografts. PLoS One 2012; 7:e43314. [PMID: 22937031 PMCID: PMC3427339 DOI: 10.1371/journal.pone.0043314] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/19/2012] [Indexed: 12/19/2022] Open
Abstract
BPR0L075, 6-methoxy-3-(3′,4′,5′-trimethoxy-benzoyl)-1H-indole, is a tubulin-binding agent that inhibits tubulin polymerization by binding to the colchicine-binding site. BPR0L075 has shown antimitotic and antiangiogenic activity in vitro. The current study evaluated the vascular-disrupting activity of BPR0L075 in human breast cancer mammary fat pad xenografts using dynamic bioluminescence imaging. A single dose of BPR0L075 (50 mg/kg, intraperitoneally (i.p.)) induced rapid, temporary tumor vascular shutdown (at 2, 4, and 6 hours); evidenced by rapid and reproducible decrease of light emission from luciferase-expressing orthotopic MCF7 and MDA-MB-231 breast tumors after administration of luciferin substrate. A time-dependent reduction of tumor perfusion after BPR0L075 treatment was confirmed by immunohistological staining of the perfusion marker Hoechst 33342 and tumor vasculature marker CD31. The vasculature showed distinct recovery within 24 hours post therapy. A single i.p. injection of 50 mg/kg of BPR0L075 initially produced plasma concentrations in the micromolar range within 6 hours, but subsequent drug distribution and elimination caused BPR0L075 plasma levels to drop rapidly into the nanomolar range within 24 h. Tests with human umbilical vein endothelial (HUVEC) cells and tumor cells in culture showed that BPR0L075 was cytotoxic to both tumor cells and proliferating endothelial cells, and disrupted pre-established vessels in vitro and ex vivo. In conclusion, BPR0L075 caused rapid, albeit, temporary tumor vascular shutdown and led to reduction of tumor perfusion in orthotopic human breast cancer xenografts, suggesting that this antimitotic agent may be useful as a vascular-disrupting cancer therapy.
Collapse
|
48
|
Salmon HW, Guha A, Rojiani AM, Siemann DW. Vascular development in mouse lung metastases. Am J Cancer Res 2012; 2:581-588. [PMID: 22957309 PMCID: PMC3433106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023] Open
Abstract
Dissemination of cancer cells is strongly associated with reduction in quality of life, worsening of prognosis, and remains the primary cause of therapeutic failure and high mortality in cancer. A crucial factor in the progression of metastases is the ability to establish a functioning blood vessel network. Consequently therapeutic strategies which selectively target tumor vasculature may hold promise for the treatment of metastatic disease. A complicating factor in the assessment of the efficacy of vascular targeting therapies is that the metastatic process can result in multiple neoplastic lesions at various stages of growth and vascularity in a single organ. The goal of this project was to utilize a rodent squamous cell carcinoma (SCCVII) model to characterize the development of metastatic lung lesions and their associated vasculature. Mice were injected with tumor cells via the tail vein to introduce a reproducible number of lung metastases. At various times after cell injection, lungs were removed and serial sections were taken throughout the lobes for morphometric analysis. Tumor volumes were calculated for each nodule using 2 hematoxylin and eosin (H&E) stained sections that were a known distance apart. Sections adjacent to those used for size determination were reserved for immunohistochemical staining with CD31 to identify blood vessels associated with each nodule. The results showed that although the median tumor volume increased from 0.006 to 0.51 mm(3) between 7 and 18 days post SCCVII cell injection, a range of tumor sizes existed at all-times. Irrespective of the time of assessment, nodules with volumes ≤ 0.5 mm(3) had a constant vessel density while those with volumes >0.5 mm(3) showed increasing vessel densities with increasing size. These findings indicate that the methodology outlined in this study can identify metastases in various stages of vascular development and could therefore be applied to evaluate and distinguish therapeutic interventions that seek to prevent the initiation of blood vessel networks and those targeting already established expanding tumor vasculature. Examining the efficacy of such approaches, alone or in combination, in the treatment of metastases in a preclinical model could lead to the development of more effective therapeutic strategies for metastatic disease.
Collapse
|
49
|
Conroy L, DaCosta RS, Vitkin IA. Quantifying tissue microvasculature with speckle variance optical coherence tomography. OPTICS LETTERS 2012; 37:3180-2. [PMID: 22859125 DOI: 10.1364/ol.37.003180] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this Letter, we demonstrate high resolution, three-dimensional optical imaging of in vivo blood vessel networks using speckle variance optical coherence tomography, and the quantification of these images through the development of biologically relevant metrics using image processing and segmentation techniques. Extracted three-dimensional metrics include vascular density, vessel tortuosity, vascular network fractal dimension, and tissue vascularity. We demonstrate the ability of this quantitative imaging approach to characterize normal and tumor vascular networks in a preclinical animal model and the potential for quantitative, longitudinal vascular treatment response monitoring.
Collapse
Affiliation(s)
- Leigh Conroy
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
50
|
Siemann DW, Dong M, Pampo C, Shi W. Src-signaling interference impairs the dissemination of blood-borne tumor cells. Cell Tissue Res 2012; 349:541-50. [PMID: 22526632 DOI: 10.1007/s00441-012-1415-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/19/2012] [Indexed: 12/21/2022]
Abstract
Although solid tumors continuously shed cells, only a small fraction of the neoplastic cells that enter the blood stream are capable of establishing metastases. In order to be successful, these cells must attach, extravasate, proliferate and induce angiogenesis. Preclinical studies have shown that small-molecule ATP-competitive Src kinase inhibitors can effectively impair metastasis-associated tumor cell functions in vitro. However, the impact of these agents on the metastatic cascade in vivo is less well understood. In the present studies, we have examined the ability of saracatinib, a dual-specific, orally available inhibitor of Src and Abl protein tyrosine kinases, to interfere with the establishment of lung metastases in mice by tumor cells introduced into the blood stream. The results demonstrate that Src inhibition most effectively interferes with the establishment of secondary tumor deposits when treatments are administered while tumor cells are in the initial phases of dissemination.
Collapse
Affiliation(s)
- Dietmar W Siemann
- Department of Radiation Oncology and Shands Cancer Center, University of Florida, 2000 SW Archer Road, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|