1
|
Ramírez-Ordorica A, Adame-Garnica SG, Ramos-Aboites HE, Winkler R, Macías-Rodríguez L. Volatile Semiochemicals Emitted by Beauveria bassiana Modulate Larval Feeding Behavior and Food Choice Preference in Spodoptera frugiperda (Lepidoptera: Noctuidae). J Fungi (Basel) 2024; 10:438. [PMID: 38921424 PMCID: PMC11204931 DOI: 10.3390/jof10060438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus that parasitizes and kills insects. The role of volatile organic compounds (VOCs) emitted by B. bassiana acting as semiochemicals during its interaction with lepidopterans is poorly explored. Here, we studied the effect of VOCs from B. bassiana and 3-methylbutanol (as a single compound) on the feeding behavior of L2 larvae of Spodoptera frugiperda in sorghum plants. Additionally, we assessed whether fungal VOCs induce chemical modifications in the plants that affect larval food preferences. Metabolomic profiling of plant tissues was performed by mass spectrometry and bioassays in a dual-choice olfactometer. The results showed that the larval feeding behavior was affected by the B. bassiana strain AI2, showing that the insect response is strain-specific. Furthermore, 80 µg of 3-methylbutanol affected the number of bites. The larval feeding choice was dependent on the background context. Fragment spectra and a matching precursor ion mass of 165.882 m/z enabled the putative identification of 4-coumaric acid in sorghum leaves exposed to fungal VOCs, which may be associated with larval deterrent responses. These results provide valuable insights into the bipartite interaction of B. bassiana with lepidopterans through VOC emission, with the plant as a mediator of the interaction.
Collapse
Affiliation(s)
- Arturo Ramírez-Ordorica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| | - Sandra Goretti Adame-Garnica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| | - Hilda Eréndira Ramos-Aboites
- Laboratorio de Análisis Bioquímico e Instrumental, Unidad de Genómica Avanzada, Cinvestav, Km 9.6, Libramiento Norte, Carretera Irapuato-León, Irapuato C.P. 36824, Mexico; (H.E.R.-A.); (R.W.)
| | - Robert Winkler
- Laboratorio de Análisis Bioquímico e Instrumental, Unidad de Genómica Avanzada, Cinvestav, Km 9.6, Libramiento Norte, Carretera Irapuato-León, Irapuato C.P. 36824, Mexico; (H.E.R.-A.); (R.W.)
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| |
Collapse
|
2
|
Koutroumpa F, Monsempès C, Anton S, François MC, Montagné N, Jacquin-Joly E. Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth. Biomolecules 2022; 12:341. [PMID: 35327533 PMCID: PMC8945201 DOI: 10.3390/biom12030341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023] Open
Abstract
Sex pheromone receptors are crucial in insects for mate finding and contribute to species premating isolation. Many pheromone receptors have been functionally characterized, especially in moths, but loss of function studies are rare. Notably, the potential role of pheromone receptors in the development of the macroglomeruli in the antennal lobe (the brain structures processing pheromone signals) is not known. Here, we used CRISPR-Cas9 to knock-out the receptor for the major component of the sex pheromone of the noctuid moth Spodoptera littoralis, and investigated the resulting effects on electrophysiological responses of peripheral pheromone-sensitive neurons and on the structure of the macroglomeruli. We show that the inactivation of the receptor specifically affected the responses of the corresponding antennal neurons did not impact the number of macroglomeruli in the antennal lobe but reduced the size of the macroglomerulus processing input from neurons tuned to the main pheromone component. We suggest that this mutant neuroanatomical phenotype results from a lack of neuronal activity due to the absence of the pheromone receptor and potentially reduced neural connectivity between peripheral and antennal lobe neurons. This is the first evidence of the role of a moth pheromone receptor in macroglomerulus development and extends our knowledge of the different functions odorant receptors can have in insect neurodevelopment.
Collapse
Affiliation(s)
- Fotini Koutroumpa
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - Christelle Monsempès
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| | - Sylvia Anton
- Institute for Genetics, Environment and Plant Protection, INRAE, Institut Agro, Université Rennes 1, 49045 Angers, France;
| | - Marie-Christine François
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| |
Collapse
|
3
|
Ortega Insaurralde I, Minoli S, Toloza AC, Picollo MI, Barrozo RB. The Sensory Machinery of the Head Louse Pediculus humanus capitis: From the Antennae to the Brain. Front Physiol 2019; 10:434. [PMID: 31057423 PMCID: PMC6482248 DOI: 10.3389/fphys.2019.00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/29/2019] [Indexed: 12/29/2022] Open
Abstract
Insect antennae are sophisticated sensory organs, usually covered with sensory structures responsible for the detection of relevant signals of different modalities coming from the environment. Despite the relevance of the head louse Pediculus humanus capitis as a human parasite, the role of its antennal sensory system in the highly dependent relation established with their hosts has been barely studied. In this work, we present a functional description of the antennae of these hematophagous insects by applying different approaches, including scanning electron microscopy (SEM), anterograde antennal fluorescent backfills, and behavioral experiments with intact or differentially antennectomized lice. Results constitute a first approach to identify and describe the head louse antennal sensilla and to determine the role of the antenna in host recognition. SEM images allowed us to identify a total of 35-40 sensilla belonging to seven different morphological types that according to their external architecture are candidates to bear mechano-, thermo-, hygro-, or chemo-receptor functions. The anterograde backfills revealed a direct neural pathway to the ipsilateral antennal lobe, which includes 8-10 glomerular-like diffuse structures. In the two-choice behavioral experiments, intact lice chose scalp chemicals and warm surfaces (i.e., 32°C) and avoided wet substrates. Behavioral preferences disappeared after ablation of the different flagellomeres of their antenna, allowing us to discuss about the location and function of the different identified sensilla. This is the first study that integrates morphological and behavioral aspects of the sensory machinery of head lice involved in host perception.
Collapse
Affiliation(s)
- Isabel Ortega Insaurralde
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN), CONICET- CITEDEF, Buenos Aires, Argentina
| | - Sebastián Minoli
- Laboratorio Fisiología de Insectos, Departamento Biodiversidad y Biología Experimental (DBBE), Facultad Ciencias Exactas y Naturales, Instituto Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ariel Ceferino Toloza
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN), CONICET- CITEDEF, Buenos Aires, Argentina
| | - María Inés Picollo
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN), CONICET- CITEDEF, Buenos Aires, Argentina
| | - Romina B Barrozo
- Laboratorio Fisiología de Insectos, Departamento Biodiversidad y Biología Experimental (DBBE), Facultad Ciencias Exactas y Naturales, Instituto Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Lin T, Li C, Liu J, Smith BH, Lei H, Zeng X. Glomerular Organization in the Antennal Lobe of the Oriental Fruit Fly Bactrocera dorsalis. Front Neuroanat 2018; 12:71. [PMID: 30233333 PMCID: PMC6127620 DOI: 10.3389/fnana.2018.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022] Open
Abstract
The oriental fruit fly, Bactrocera dorsalis is one of the most destructive pests of horticultural crops in tropical and subtropical Asia. The insect relies heavily on its olfactory system to select suitable hosts for development and reproduction. To understand the neural basis of its odor-driven behaviors, it is fundamental to characterize the anatomy of its olfactory system. In this study, we investigated the anatomical organization of the antennal lobe (AL), the primary olfactory center, in B. dorsalis, and constructed a 3D glomerular atlas of the AL based on synaptic antibody staining combined with computerized 3D reconstruction. To facilitate identification of individual glomeruli, we also applied mass staining of olfactory sensory neurons (OSNs) and projection neurons (PNs). In total, 64 or 65 glomeruli are identifiable in both sexes based on their shape, size, and relative spatial relationship. The overall glomerular volume of two sexes is not statistically different. However, eight glomeruli are sexually dimorphic: four (named AM2, C1, L2, and L3) are larger in males, and four are larger in females (A3, AD1, DM3, and M1). The results from anterograde staining, obtained by applying dye in the antennal lobe, show that three typical medial, media lateral, and lateral antennal-lobe tracts form parallel connections between the antennal lobe and protocerebrum. In addition to these three tracts, we also found a transverse antennal-lobe tract. Based on the retrograde staining of the calyx in the mushroom body, we also characterize the arrangement of roots and cell body clusters linked to the medial antennal-lobe tracts. These data provide a foundation for future studies on the olfactory processing of host odors in B. dorsalis.
Collapse
Affiliation(s)
- Tao Lin
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Chaofeng Li
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Jiali Liu
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Mitra S, Karmakar A, Mukherjee A, Barik A. The Role of Leaf Volatiles of Ludwigia octovalvis (Jacq.) Raven in the Attraction of Altica cyanea (Weber) (Coleoptera: Chrysomelidae). J Chem Ecol 2017; 43:679-692. [PMID: 28695387 DOI: 10.1007/s10886-017-0866-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/23/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022]
Abstract
Larvae and adults of Altica cyanea (Weber) (Coleoptera: Chrysomelidae) feed on the rice-field weed Ludwigia octovalvis (Jacq.) Raven (Onagraceae), commonly known as willow primrose, which is considered a biocontrol agent of the weed. Volatile organic compounds from undamaged plants, plants after 4, 12, and 36 h of continuous feeding by A. cyanea larvae or adult females and after mechanical damaging were identified by GC-MS and GC-FID analyses. Twenty nine compounds were identified from undamaged plants. 2Z-Penten-1-ol, geraniol, and 1-tridecanol were present in all plants damaged by larvae. In contrast, feeding by adults caused the release of 2Z-penten-1-ol only after 12 and 36 h; whereas geraniol and 1-tridecanol appeared only after 36 h. Farnesyl acetone was detected after 12 and 36 h of feeding by larvae and after 36 h of feeding by adults. Farnesene was detected after 36 h of feeding by larvae and adults. Linalool was unique after 36 h of feeding by larvae. In Y-shaped glass tube olfactometer bioassays, A. cyanea females were attracted to volatiles after 36 h of feeding by larvae or adults compared to volatiles released by undamaged plants. The insects were attracted to five synthetic compounds: 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol. Synthetic blends were more attractive than individual compounds. Compared to undamaged plants, volatiles released by plants, damaged by conspecific individuals, were more attractive to A. cyanea females, due to elevated emissions of 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol.
Collapse
Affiliation(s)
- Saubhik Mitra
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713 104, India
| | - Amarnath Karmakar
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713 104, India
| | - Abhishek Mukherjee
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713 104, India
| | - Anandamay Barik
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713 104, India.
| |
Collapse
|
6
|
Nirazawa T, Fujii T, Seki Y, Namiki S, Kazawa T, Kanzaki R, Ishikawa Y. Morphology and physiology of antennal lobe projection neurons in the hawkmoth Agrius convolvuli. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:214-222. [PMID: 28118991 DOI: 10.1016/j.jinsphys.2017.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
The neuronal pathways involved in the processing of sex pheromone information were investigated in the hawkmoth Agrius convolvuli (Lepidoptera: Sphingidae), which uses (E,E)-11,13-hexadecadienal (E11,E13-16:Ald) as the single sex pheromone component. We first clarified the anatomical organization of the antennal lobe of A. convolvuli. Subsequently, central neurons in the antennal lobe that responded to E11,E13-16:Ald were identified. The dendritic processes of these neurons were confined within a specific glomerulus (cumulus) in the antennal lobe. The axons of these neurons projected to the inferior lateral protocerebrum and mushroom body calyx. Although the anatomical organization and morphology of individual neurons in A. convolvuli were similar to other species in the superfamily Bombycoidea, the use of cumulus as the single pathway for sex pheromone information processing was characteristic to this species.
Collapse
Affiliation(s)
- Takuya Nirazawa
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8567, Japan
| | - Takeshi Fujii
- Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8567, Japan.
| | - Yoichi Seki
- Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shigehiro Namiki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Tomoki Kazawa
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Yukio Ishikawa
- Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8567, Japan
| |
Collapse
|
7
|
A global-wide search for sexual dimorphism of glomeruli in the antennal lobe of female and male Helicoverpa armigera. Sci Rep 2016; 6:35204. [PMID: 27725758 PMCID: PMC5057091 DOI: 10.1038/srep35204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/26/2016] [Indexed: 11/17/2022] Open
Abstract
By using immunostaining and three-dimensional reconstruction, the anatomical organization of the antennal lobe glomeruli of the female cotton bollworm Helicoverpa armigera was investigated. Eighty-one glomeruli were identified, 15 of which were not previously discovered. The general anatomical organization of the AL of female is similar to that of male and all glomeruli were classified into four sub-groups, including the female-specific glomerular complex, posterior complex, labial-palp pit organ glomerulus, and ordinary glomeruli. A global-wide comparison on the complete glomerular map of female and male was performed and for the first time the quantitative difference in volume for each individual homologous glomerulus was analyzed. We found that the sexual dimorphism includes not only the sex-specific glomeruli but also some of the other glomeruli. The findings in the present study may provide a reference to examine the antennal-lobe organization more in detail and to identify new glomeruli in other moth species. In addition, the complete identification and global-wide comparison of the sexes provide an important basis for mapping the function of distinct glomeruli and for understanding neural mechanisms underlying sexually dimorphic olfactory behaviors.
Collapse
|
8
|
Zhao XC, Chen QY, Guo P, Xie GY, Tang QB, Guo XR, Berg BG. Glomerular identification in the antennal lobe of the male mothHelicoverpa armigera. J Comp Neurol 2016; 524:2993-3013. [DOI: 10.1002/cne.24003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Qiu-Yan Chen
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Pei Guo
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Gui-Ying Xie
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Qing-Bo Tang
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Xian-Ru Guo
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
- Collaborative Innovation Center of Henan Grain Crops; Zhengzhou 450002 China
| | - Bente G. Berg
- Department of Psychology; Norwegian University of Science and Technology; Trondheim 7489 Norway
| |
Collapse
|
9
|
Solari P, Corda V, Sollai G, Kreissl S, Galizia CG, Crnjar R. Morphological characterization of the antennal lobes in the Mediterranean fruit fly Ceratitis capitata. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 202:131-46. [PMID: 26660070 DOI: 10.1007/s00359-015-1059-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/30/2022]
Abstract
The medfly Ceratitis capitata is one of the most important pests for horticulture worldwide. The knowledge about anatomy and function of the medfly olfactory system is still limited. The first brain structure to process olfactory information in insects is the antennal lobe (AL), which is composed of its functional and morphological units, the olfactory glomeruli. Here, we present a morphological three-dimensional reconstruction of AL glomeruli in adult brains. We used unilateral antennal backfills of olfactory receptor neurons (ORNs) with neural tracers, revealing the AL structure. We recorded confocal stacks acquired from whole-mount specimens, and analyzed them with the software AMIRA. The ALs in C. capitata are organized in glomeruli which are more tightly packed in the anterior part than the posterior one. Axons of ORNs bilaterally connect the ALs through a commissure between the two ALs. This commissure is formed by several distinct fascicles. Contralateral dye transfer suggests the presence of gap junctions connecting ORNs from both antennae. There was no statistical difference between the average volumes of female ALs (204,166 ± 12,554 μm(3)) and of male ALs (190,287 ± 11,823 μm(3)). In most specimens, we counted 53 glomeruli in each AL, seven of which were sexually dimorphic in size.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy
| | - Valentina Corda
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy
| | - Sabine Kreissl
- Department of Neurobiology, University of Konstanz, 78457, Constance, Germany
| | - C Giovanni Galizia
- Department of Neurobiology, University of Konstanz, 78457, Constance, Germany
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy.
| |
Collapse
|
10
|
Anton S, Chabaud MA, Schmidt-Büsser D, Gadenne B, Iqbal J, Juchaux M, List O, Gaertner C, Devaud JM. Brief sensory experience differentially affects the volume of olfactory brain centres in a moth. Cell Tissue Res 2015; 364:59-65. [PMID: 26463049 DOI: 10.1007/s00441-015-2299-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
Experience modifies behaviour in animals so that they adapt to their environment. In male noctuid moths, Spodoptera littoralis, brief pre-exposure to various behaviourally relevant sensory signals modifies subsequent behaviour towards the same or different sensory modalities. Correlated with a behavioural increase in responses of male moths to the female-emitted sex pheromone after pre-exposure to olfactory, acoustic or gustatory stimuli, an increase in sensitivity of olfactory neurons within the primary olfactory centre, the antennal lobe, is found for olfactory and acoustic stimuli, but not for gustatory stimuli. Here, we investigated whether anatomical changes occurring in the antennal lobes and in the mushroom bodies (the secondary olfactory centres) possibly correlated with the changes observed in behaviour and in olfactory neuron physiology. Our results showed that significant volume changes occurred in glomeruli (olfactory units) responsive to sex pheromone following exposure to both pheromone and predator sounds. The volume of the mushroom body input region (calyx) also increased significantly after pheromone and predator sound treatment. However, we found no changes in the volume of antennal lobe glomeruli or of the mushroom body calyx after pre-exposure to sucrose. These findings show a relationship of antennal lobe sensitivity changes to the pheromone with changes in the volume of the related glomeruli and the output area of antennal lobe projection neurons elicited by sensory cues causing a behavioural change. Behavioural changes observed after sucrose pre-exposure must originate from changes in higher integration centres in the brain.
Collapse
Affiliation(s)
- Sylvia Anton
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647, USC INRA 1330, SFR 4207 QUASAV, 42 Rue Georges Morel, 49071, Beaucouzé, France. .,Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, Route de Saint Cyr, 78026, Versailles cedex, France.
| | - Marie-Ange Chabaud
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647, USC INRA 1330 SFR, 4207 QUASAV, Université d'Angers, UFR Sciences, Angers, France
| | - Daniela Schmidt-Büsser
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, Route de Saint Cyr, 78026, Versailles cedex, France
| | - Bruno Gadenne
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, Route de Saint Cyr, 78026, Versailles cedex, France
| | - Javaid Iqbal
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, Route de Saint Cyr, 78026, Versailles cedex, France.,Department of Entomology, University College of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Olivier List
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647, USC INRA 1330 SFR, 4207 QUASAV, Université d'Angers, UFR Sciences, Angers, France
| | - Cyril Gaertner
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, Route de Saint Cyr, 78026, Versailles cedex, France.,Centre de Recherches sur la Cognition Animale, Université de Toulouse, UPS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Jean-Marc Devaud
- Centre de Recherches sur la Cognition Animale, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
11
|
Hatano E, Saveer AM, Borrero-Echeverry F, Strauch M, Zakir A, Bengtsson M, Ignell R, Anderson P, Becher PG, Witzgall P, Dekker T. A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways. BMC Biol 2015; 13:75. [PMID: 26377197 PMCID: PMC4571119 DOI: 10.1186/s12915-015-0188-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/05/2015] [Indexed: 01/15/2023] Open
Abstract
Background Plants under herbivore attack release volatiles that attract natural enemies, and herbivores in turn avoid such plants. Whilst herbivore-induced plant volatile blends appeared to reduce the attractiveness of host plants to herbivores, the volatiles that are key in this process and particularly the way in which deterrence is coded in the olfactory system are largely unknown. Here we demonstrate that herbivore-induced cotton volatiles suppress orientation of the moth Spodoptera littoralis to host plants and mates. Results We found that (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), an induced volatile, is key in herbivore deterrence: DMNT suppressed plant odour- and pheromone-induced behaviours. We then dissected the neurophysiological basis of this interaction. DMNT-responding glomeruli were also activated by other plant compounds, suggesting that S. littoralis possesses no segregated olfactory circuit dedicated exclusively to DMNT. Instead, DMNT suppressed responses to the main pheromone component, (Z)-9-(E)-11-tetradecenyl acetate, and primarily to (Z)-3-hexenyl acetate, a host plant attractant. Conclusion Our study shows that olfactory sensory inhibition, which has previously been reported without reference to an animal’s ecology, can be at the core of coding of ecologically relevant odours. As DMNT attracts natural enemies and deters herbivores, it may be useful in the development or enhancement of push-pull strategies for sustainable agriculture. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0188-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eduardo Hatano
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Ahmed M Saveer
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden. .,Present address: Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Felipe Borrero-Echeverry
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden. .,Biological Control Laboratory, Colombian Corporation for Agricultural Research, Km 14 via Mosquera-Bogotá, Mosquera, Colombia.
| | - Martin Strauch
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany. .,Present address: Institute of Imaging & Computer Vision, RWTH Aachen University, Kopernikusstr. 16, 52074, Aachen, Germany.
| | - Ali Zakir
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden. .,Present address: Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan.
| | - Marie Bengtsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Rickard Ignell
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Teun Dekker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| |
Collapse
|
12
|
Kromann SH, Saveer AM, Binyameen M, Bengtsson M, Birgersson G, Hansson BS, Schlyter F, Witzgall P, Ignell R, Becher PG. Concurrent modulation of neuronal and behavioural olfactory responses to sex and host plant cues in a male moth. Proc Biol Sci 2015; 282:20141884. [PMID: 25621329 DOI: 10.1098/rspb.2014.1884] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mating has profound effects on animal physiology and behaviour, not only in females but also in males, which we show here for olfactory responses. In cotton leafworm moths, Spodoptera littoralis, odour-mediated attraction to sex pheromone and plant volatiles are modulated after mating, producing a behavioural response that matches the physiological condition of the male insect. Unmated males are attracted by upwind flight to sex pheromone released by calling females, as well as to volatiles of lilac flowers and green leaves of the host plant cotton, signalling adult food and mating sites, respectively. Mating temporarily abolishes male attraction to females and host plant odour, but does not diminish attraction to flowers. This behavioural modulation is correlated with a response modulation in the olfactory system, as shown by electro-physiological recordings from antennae and by functional imaging of the antennal lobe, using natural odours and synthetic compounds. An effect of mating on the olfactory responses to pheromone and cotton plant volatiles but not to lilac flowers indicates the presence of functionally independent neural circuits within the olfactory system. Our results indicate that these circuits interconnect and weigh perception of social and habitat odour signals to generate appropriate behavioural responses according to mating state.
Collapse
|
13
|
Montgomery SH, Ott SR. Brain composition in Godyris zavaleta, a diurnal butterfly, Reflects an increased reliance on olfactory information. J Comp Neurol 2015; 523:869-91. [PMID: 25400217 PMCID: PMC4354442 DOI: 10.1002/cne.23711] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 11/15/2022]
Abstract
Interspecific comparisons of brain structure can inform our functional understanding of brain regions, identify adaptations to species-specific ecologies, and explore what constrains adaptive changes in brain structure, and coevolution between functionally related structures. The value of such comparisons is enhanced when the species considered have known ecological differences. The Lepidoptera have long been a favored model in evolutionary biology, but to date descriptions of brain anatomy have largely focused on a few commonly used neurobiological model species. We describe the brain of Godyris zavaleta (Ithomiinae), a member of a subfamily of Neotropical butterflies with enhanced reliance on olfactory information. We demonstrate for the first time the presence of sexually dimorphic glomeruli within a distinct macroglomerular complex (MGC) in the antennal lobe of a diurnal butterfly. This presents a striking convergence with the well-known moth MGC, prompting a discussion of the potential mechanisms behind the independent evolution of specialized glomeruli. Interspecific analyses across four Lepidoptera further show that the relative size of sensory neuropils closely mirror interspecific variation in sensory ecology, with G. zavaleta displaying levels of sensory investment intermediate between the diurnal monarch butterfly (Danaus plexippus), which invests heavily in visual neuropil, and night-flying moths, which invest more in olfactory neuropil. We identify several traits that distinguish butterflies from moths, and several that distinguish D. plexippus and G. zavaleta. Our results illustrate that ecological selection pressures mold the structure of invertebrate brains, and exemplify how comparative analyses across ecologically divergent species can illuminate the functional significance of variation in brain structure.
Collapse
Affiliation(s)
- Stephen H Montgomery
- Department of Genetics, Evolution & Environment, University College LondonLondon, UK, WC1E 6BT
| | - Swidbert R Ott
- Department of Biology, University of LeicesterLeicester, UK, LE1 7RH
| |
Collapse
|
14
|
|
15
|
Poivet E, Gallot A, Montagné N, Glaser N, Legeai F, Jacquin-Joly E. A comparison of the olfactory gene repertoires of adults and larvae in the noctuid moth Spodoptera littoralis. PLoS One 2013; 8:e60263. [PMID: 23565215 PMCID: PMC3614943 DOI: 10.1371/journal.pone.0060263] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/24/2013] [Indexed: 11/18/2022] Open
Abstract
To better understand the olfactory mechanisms in a lepidopteran pest model species, the cotton leafworm Spodoptera littoralis, we have recently established a partial transcriptome from adult antennae. Here, we completed this transcriptome using next generation sequencing technologies, namely 454 and Illumina, on both adult antennae and larval tissues, including caterpillar antennae and maxillary palps. All sequences were assembled in 77,643 contigs. Their analysis greatly enriched the repertoire of chemosensory genes in this species, with a total of 57 candidate odorant-binding and chemosensory proteins, 47 olfactory receptors, 6 gustatory receptors and 17 ionotropic receptors. Using RT-PCR, we conducted the first exhaustive comparison of olfactory gene expression between larvae and adults in a lepidopteran species. All the 127 candidate olfactory genes were profiled for expression in male and female adult antennae and in caterpillar antennae and maxillary palps. We found that caterpillars expressed a smaller set of olfactory genes than adults, with a large overlap between these two developmental stages. Two binding proteins appeared to be larvae-specific and two others were adult-specific. Interestingly, comparison between caterpillar antennae and maxillary palps revealed numerous organ-specific transcripts, suggesting the complementary involvement of these two organs in larval chemosensory detection. Adult males and females shared the same set of olfactory transcripts, except two male-specific candidate pheromone receptors, two male-specific and two female-specific odorant-binding proteins. This study identified transcripts that may be important for sex-specific or developmental stage-specific chemosensory behaviors.
Collapse
Affiliation(s)
- Erwan Poivet
- INRA, UMR 1272, Physiologie de l’Insecte, Signalisation et Communication, Versailles, France
| | - Aurore Gallot
- INRA, UMR 1272, Physiologie de l’Insecte, Signalisation et Communication, Versailles, France
- IRISA, Équipe GenScale, Campus Universitaire de Beaulieu, Rennes, France
| | - Nicolas Montagné
- UPMC - Université Paris 6, UMR 1272, Physiologie de l’Insecte, Signalisation et Communication, Paris, France
| | - Nicolas Glaser
- INRA, UMR 1272, Physiologie de l’Insecte, Signalisation et Communication, Versailles, France
| | - Fabrice Legeai
- IRISA, Équipe GenScale, Campus Universitaire de Beaulieu, Rennes, France
| | - Emmanuelle Jacquin-Joly
- INRA, UMR 1272, Physiologie de l’Insecte, Signalisation et Communication, Versailles, France
| |
Collapse
|
16
|
Das P, Fadamiro HY. Species and sexual differences in antennal lobe architecture and glomerular organization in two parasitoids with different degree of host specificity, Microplitis croceipes and Cotesia marginiventris. Cell Tissue Res 2013; 352:227-35. [DOI: 10.1007/s00441-013-1568-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
17
|
Guerrieri F, Gemeno C, Monsempes C, Anton S, Jacquin-Joly E, Lucas P, Devaud JM. Experience-dependent modulation of antennal sensitivity and input to antennal lobes in male moths (Spodoptera littoralis) pre-exposed to sex pheromone. ACTA ACUST UNITED AC 2012; 215:2334-41. [PMID: 22675195 DOI: 10.1242/jeb.060988] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sex pheromones are intraspecific olfactory signals emitted by one sex to attract a potential mating partner. Behavioural responses to sex pheromones are generally highly stereotyped. However, they can be modulated by experience, as male moths previously exposed to female sex pheromone respond with a lower threshold upon further detection, even after long delays. Here, we address the question of the neural mechanisms underlying such long-term modulation. As previous work has shown increased responses to pheromone in central olfactory neurons, we asked whether brief exposure to the pheromone increases input activity from olfactory receptor neurons. Males pre-exposed to sex pheromone exhibited increased peripheral sensitivity to the main pheromone component. Among nine antennal genes targeted as putatively involved in pheromone reception, one encoding a pheromone-binding protein showed significant upregulation upon exposure. In the primary olfactory centre (antennal lobe), the neural compartment processing the main pheromone component was enlarged after a brief pheromone exposure, thus suggesting enduring structural changes. We hypothesise that higher peripheral sensitivity following pre-exposure leads to increased input to the antennal lobe, thus contributing to the structural and functional reorganization underlying a stable change in behaviour.
Collapse
Affiliation(s)
- Fernando Guerrieri
- Centre de Recherches sur la Cognition Animale (UMR 5169), CNRS/Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Braubach OR, Fine A, Croll RP. Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish (Danio rerio). J Comp Neurol 2012; 520:2317-39, Spc1. [PMID: 22581687 DOI: 10.1002/cne.23075] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Odor molecules are transduced by thousands of olfactory sensory neurons (OSNs) located in the nasal cavity. Each OSN expresses a single functional odorant receptor protein and projects an axon from the sensory epithelia to an olfactory bulb glomerulus, which is selectively innervated by only one or a few OSN types. We used whole-mount immunocytochemistry to study the neurochemistry and anatomical organization of glomeruli in the zebrafish olfactory system. By employing combinations of antibodies against G-protein α subunits, calcium-binding proteins, and general neuronal markers, we selectively labeled various OSN types, their axonal projections to glomeruli, and the detailed anatomical distributions of individual glomeruli in different regions of the olfactory bulb. In this way we identified ≈140 glomeruli in each olfactory bulb of mature zebrafish. A small subset (27) of these glomeruli was unambiguously identifiable in nearly all animals examined. These units were large and, located mainly in the medial olfactory bulbs. Most glomeruli, however, were comparatively small, anatomically indistinguishable, and located in coarsely circumscribed regions; almost all of these latter glomeruli were innervated by OSNs that were labeled with anti-G(α s/olf) and/or anti-calretinin antibodies. Collectively, our results provide a uniquely detailed description of a vertebrate olfactory system and highlight anatomically distinct parallel neural pathways that mediate early aspects of olfactory processing in the zebrafish.
Collapse
Affiliation(s)
- Oliver R Braubach
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
19
|
Jacquin-Joly E, Legeai F, Montagné N, Monsempes C, François MC, Poulain J, Gavory F, Walker WB, Hansson BS, Larsson MC. Candidate chemosensory genes in female antennae of the noctuid moth Spodoptera littoralis. Int J Biol Sci 2012; 8:1036-50. [PMID: 22904672 PMCID: PMC3421235 DOI: 10.7150/ijbs.4469] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 07/31/2012] [Indexed: 01/25/2023] Open
Abstract
Chemical senses are crucial for all organisms to detect various environmental information. Different protein families, expressed in chemosensory organs, are involved in the detection of this information, such as odorant-binding proteins, olfactory and gustatory receptors, and ionotropic receptors. We recently reported an Expressed Sequence Tag (EST) approach on male antennae of the noctuid moth, Spodoptera littoralis, with which we could identify a large array of chemosensory genes in a species for which no genomic data are available. Here we describe a complementary EST project on female antennae in the same species. 18,342 ESTs were sequenced and their assembly with our previous male ESTs led to a total of 13,685 unigenes, greatly improving our description of the S. littoralis antennal transcriptome. Gene ontology comparison between male and female data suggested a similar complexity of antennae of both sexes. Focusing on chemosensation, we identified 26 odorant-binding proteins, 36 olfactory and 5 gustatory receptors, expressed in the antennae of S. littoralis. One of the newly identified gustatory receptors appeared as female-enriched. Together with its atypical tissue-distribution, this suggests a role in oviposition. The compilation of male and female antennal ESTs represents a valuable resource for exploring the mechanisms of olfaction in S. littoralis.
Collapse
Affiliation(s)
- Emmanuelle Jacquin-Joly
- INRA, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, route de Saint-Cyr, F-78026 Versailles Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Namiki S, Kanzaki R. Heterogeneity in dendritic morphology of moth antennal lobe projection neurons. J Comp Neurol 2012; 519:3367-86. [PMID: 21858820 DOI: 10.1002/cne.22754] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A population of projection neurons (PNs) in the antennal lobe (AL) integrates sensory information from the antenna and is essential for processing odor information in the insect brain. We examined the anatomy of this neuronal population in the brain of the silkmoth Bombyx mori. Using intracellular dye injection, we labeled a total of 246 PNs and systematically analyzed their morphological features, including the soma position, antennocerebral tract, and number of innervating glomeruli. For example, we analyzed PNs that had somata in the different cell clusters, innervated overlapping but different groups of glomeruli, and ran through different pathways. We also identified glomeruli innervated by PNs using a previously established procedure that first classifies glomeruli into regional groups and then identifies individual glomeruli. We analyzed uniglomerular PNs (75.6% of the total) and found heterogeneity in the dendritic morphology of the PNs that was dependent on the regions and/or the innervating glomeruli. For example, most PNs innervating the macroglomerular complex did not have extraglomerular processes, whereas most PNs innervating ordinary glomeruli did. Moreover, PNs innervating the toroid glomerulus showed heterogeneity in their dendritic morphology. These PNs had dendritic arborization in different areas within the glomerulus. We found that, in some cases, the innervation pattern of the PN dendrite correlated with individual variation in the glomerular organization. These results indicate that PNs are not homogeneous populations, and in some cases morphological heterogeneity in PNs correlated with change in glomerular organization in the silkmoth AL.
Collapse
Affiliation(s)
- Shigehiro Namiki
- Intelligent Cooperative Systems Laboratory, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
21
|
Bisch-Knaden S, Carlsson MA, Sugimoto Y, Schubert M, Mißbach C, Sachse S, Hansson BS. Olfactory coding in five moth species from two families. J Exp Biol 2012; 215:1542-51. [DOI: 10.1242/jeb.068064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The aim of the present study was to determine what impact phylogeny and life history might have on the coding of odours in the brain. Using three species of hawk moths (Sphingidae) and two species of owlet moths (Noctuidae), we visualized neural activity patterns in the antennal lobe, the first olfactory neuropil in insects, evoked by a set of ecologically relevant plant volatiles. Our results suggest that even between the two phylogenetically distant moth families, basic olfactory coding features are similar. But we also found different coding strategies in the moths’ antennal lobe; namely, more specific patterns for chemically similar odorants in the two noctuid species than in the three sphingid species tested. This difference demonstrates the impact of the phylogenetic distance between species from different families despite some parallel life history traits found in both families. Furthermore, pronounced differences in larval and adult diet among the sphingids did not translate into differences in the olfactory code; instead, the three species had almost identical coding patterns.
Collapse
Affiliation(s)
- Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Mikael A. Carlsson
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Yuki Sugimoto
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Marco Schubert
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Christine Mißbach
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|
22
|
Legeai F, Malpel S, Montagné N, Monsempes C, Cousserans F, Merlin C, François MC, Maïbèche-Coisné M, Gavory F, Poulain J, Jacquin-Joly E. An Expressed Sequence Tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genomics 2011; 12:86. [PMID: 21276261 PMCID: PMC3045336 DOI: 10.1186/1471-2164-12-86] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 01/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nocturnal insects such as moths are ideal models to study the molecular bases of olfaction that they use, among examples, for the detection of mating partners and host plants. Knowing how an odour generates a neuronal signal in insect antennae is crucial for understanding the physiological bases of olfaction, and also could lead to the identification of original targets for the development of olfactory-based control strategies against herbivorous moth pests. Here, we describe an Expressed Sequence Tag (EST) project to characterize the antennal transcriptome of the noctuid pest model, Spodoptera littoralis, and to identify candidate genes involved in odour/pheromone detection. RESULTS By targeting cDNAs from male antennae, we biased gene discovery towards genes potentially involved in male olfaction, including pheromone reception. A total of 20760 ESTs were obtained from a normalized library and were assembled in 9033 unigenes. 6530 were annotated based on BLAST analyses and gene prediction software identified 6738 ORFs. The unigenes were compared to the Bombyx mori proteome and to ESTs derived from Lepidoptera transcriptome projects. We identified a large number of candidate genes involved in odour and pheromone detection and turnover, including 31 candidate chemosensory receptor genes, but also genes potentially involved in olfactory modulation. CONCLUSIONS Our project has generated a large collection of antennal transcripts from a Lepidoptera. The normalization process, allowing enrichment in low abundant genes, proved to be particularly relevant to identify chemosensory receptors in a species for which no genomic data are available. Our results also suggest that olfactory modulation can take place at the level of the antennae itself. These EST resources will be invaluable for exploring the mechanisms of olfaction and pheromone detection in S. littoralis, and for ultimately identifying original targets to fight against moth herbivorous pests.
Collapse
Affiliation(s)
- Fabrice Legeai
- 1IRISA, Equipe Symbiose, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Watanabe H, Nishino H, Nishikawa M, Mizunami M, Yokohari F. Complete mapping of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach Periplaneta americana. J Comp Neurol 2010; 518:3907-30. [PMID: 20737592 DOI: 10.1002/cne.22452] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glomeruli are structural and functional units in the primary olfactory center in vertebrates and insects. In the cockroach Periplaneta americana, axons of different types of sensory neurons housed in sensilla on antennae form dorsal and ventral antennal nerves and then project to a number of glomeruli. In this study, we identified all antennal lobe (AL) glomeruli based on detailed innervation patterns of sensory tracts in addition to the shape, size, and locations in the cockroach. The number of glomeruli is approximately 205, and no sex-specific difference is observed. Anterograde dye injections into the antennal nerves revealed that axons supplying the AL are divided into 10 sensory tracts (T1-T10). Each of T1-T3 innervates small, oval glomeruli in the anteroventral region of the AL, with sensory afferents invading each glomerulus from multiple directions, whereas each of T4-T10 innervates large glomeruli with various shapes in the posterodorsal region, with a bundle of sensory afferents invading each glomerulus from one direction. The topographic branching patterns of all these tracts are conserved among individuals. Sensory afferents in a sub-tract of T10 had axon terminals in the dorsal margin of the AL and the protocerebrum, where they form numerous small glomerular structures. Sensory nerve branching pattern should reflect developmental processes to determine spatial arrangement of glomeruli, and thus the complete map of glomeruli based on sensory nerve branching pattern should provide a basis for studying the functional significance of spatial arrangement of glomeruli and its developmental basis.
Collapse
|
24
|
Varela N, Couton L, Gemeno C, Avilla J, Rospars JP, Anton S. Three-dimensional antennal lobe atlas of the oriental fruit moth, Cydia molesta (Busck) (Lepidoptera: Tortricidae): comparison of male and female glomerular organization. Cell Tissue Res 2009; 337:513-26. [DOI: 10.1007/s00441-009-0839-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/30/2009] [Indexed: 11/28/2022]
|