1
|
Rethemeier S, Fritzsche S, Mühlen D, Bucher G, Hunnekuhl VS. Differences in size and number of embryonic type II neuroblast lineages correlate with divergent timing of central complex development between beetle and fly. eLife 2025; 13:RP99717. [PMID: 40326533 PMCID: PMC12055003 DOI: 10.7554/elife.99717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
The insect brain and the timing of its development underwent evolutionary adaptations. However, little is known about the underlying developmental processes. The central complex of the brain is an excellent model to understand neural development and divergence. It is produced in large parts by type II neuroblasts, which produce intermediate progenitors, another type of cycling precursor, to increase their neural progeny. Type II neuroblasts lineages are believed to be conserved among insects, but little is known on their molecular characteristics in insects other than flies. Tribolium castaneum has emerged as a model for brain development and evolution. However, type II neuroblasts have so far not been studied in this beetle. We created a fluorescent enhancer trap marking expression of Tc-fez/earmuff, a key marker for intermediate progenitors. Using combinatorial labeling of further markers, including Tc-pointed, we characterized embryonic type II neuroblast lineages. Intriguingly, we found nine lineages per hemisphere in the Tribolium embryo while Drosophila produces only eight per brain hemisphere. These embryonic lineages are significantly larger in Tribolium than they are in Drosophila and contain more intermediate progenitors. Finally, we mapped these lineages to the domains of head patterning genes. Notably, Tc-otd is absent from all type II neuroblasts and intermediate progenitors, whereas Tc-six3 marks an anterior subset of the type II lineages. Tc-six4 specifically marks the territory where anterior-medial type II neuroblasts differentiate. In conclusion, we identified a conserved pattern of gene expression in holometabolan central complex forming type II neuroblast lineages, and conserved head patterning genes emerged as new candidates for conferring spatial identity to individual lineages. The higher number and greater lineage size of the embryonic type II neuroblasts in the beetle correlate with a previously described embryonic phase of central complex formation. These findings stipulate further research on the link between stem cell activity and temporal and structural differences in central complex development.
Collapse
Affiliation(s)
- Simon Rethemeier
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
- University Medical Center Göttingen (UMG)GöttingenGermany
| | - Sonja Fritzsche
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| | - Dominik Mühlen
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| | - Gregor Bucher
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| | - Vera S Hunnekuhl
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| |
Collapse
|
2
|
Sequence heterochrony led to a gain of functionality in an immature stage of the central complex: A fly-beetle insight. PLoS Biol 2020; 18:e3000881. [PMID: 33104689 PMCID: PMC7644108 DOI: 10.1371/journal.pbio.3000881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 11/05/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
Animal behavior is guided by the brain. Therefore, adaptations of brain structure and function are essential for animal survival, and each species differs in such adaptations. The brain of one individual may even differ between life stages, for instance, as adaptation to the divergent needs of larval and adult life of holometabolous insects. All such differences emerge during development, but the cellular mechanisms behind the diversification of brains between taxa and life stages remain enigmatic. In this study, we investigated holometabolous insects in which larvae differ dramatically from the adult in both behavior and morphology. As a consequence, the central complex, mainly responsible for spatial orientation, is conserved between species at the adult stage but differs between larvae and adults of one species as well as between larvae of different taxa. We used genome editing and established transgenic lines to visualize cells expressing the conserved transcription factor retinal homeobox, thereby marking homologous genetic neural lineages in both the fly Drosophila melanogaster and the beetle Tribolium castaneum. This approach allowed us for the first time to compare the development of homologous neural cells between taxa from embryo to the adult. We found complex heterochronic changes including shifts of developmental events between embryonic and pupal stages. Further, we provide, to our knowledge, the first example of sequence heterochrony in brain development, where certain developmental steps changed their position within the ontogenetic progression. We show that through this sequence heterochrony, an immature developmental stage of the central complex gains functionality in Tribolium larvae. The central complex, part of the brain responsible for spatial orientation, differs between insect species and life stages. This study marks and compares the development of homologous neurons between a beetle and a fly, revealing that by heterochronic development an immature form of the central complex becomes functional in beetle larvae.
Collapse
|
3
|
He B, Buescher M, Farnworth MS, Strobl F, Stelzer EHK, Koniszewski NDB, Muehlen D, Bucher G. An ancestral apical brain region contributes to the central complex under the control of foxQ2 in the beetle Tribolium. eLife 2019; 8:e49065. [PMID: 31625505 PMCID: PMC6837843 DOI: 10.7554/elife.49065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
The genetic control of anterior brain development is highly conserved throughout animals. For instance, a conserved anterior gene regulatory network specifies the ancestral neuroendocrine center of animals and the apical organ of marine organisms. However, its contribution to the brain in non-marine animals has remained elusive. Here, we study the function of the Tc-foxQ2 forkhead transcription factor, a key regulator of the anterior gene regulatory network of insects. We characterized four distinct types of Tc-foxQ2 positive neural progenitor cells based on differential co-expression with Tc-six3/optix, Tc-six4, Tc-chx/vsx, Tc-nkx2.1/scro, Tc-ey, Tc-rx and Tc-fez1. An enhancer trap line built by genome editing marked Tc-foxQ2 positive neurons, which projected through the primary brain commissure and later through a subset of commissural fascicles. Eventually, they contributed to the central complex. Strikingly, in Tc-foxQ2 RNAi knock-down embryos the primary brain commissure did not split and subsequent development of midline brain structures stalled. Our work establishes foxQ2 as a key regulator of brain midline structures, which distinguish the protocerebrum from segmental ganglia. Unexpectedly, our data suggest that the central complex evolved by integrating neural cells from an ancestral anterior neuroendocrine center.
Collapse
Affiliation(s)
- Bicheng He
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Marita Buescher
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Max Stephen Farnworth
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
- Göttingen Graduate Center for Molecular BiosciencesNeurosciences and BiophysicsGöttingenGermany
| | - Frederic Strobl
- Buchmann Institute for Molecular Life Sciences (BMLS)Goethe UniversityFrankfurtGermany
| | - Ernst HK Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS)Goethe UniversityFrankfurtGermany
| | - Nikolaus DB Koniszewski
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Dominik Muehlen
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Gregor Bucher
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| |
Collapse
|
4
|
Boyan GS, Williams L, Müller T, Bacon JP. Ontogeny and development of the tritocerebral commissure giant (TCG): an identified neuron in the brain of the grasshopper Schistocerca gregaria. Dev Genes Evol 2018; 228:149-162. [PMID: 29666910 DOI: 10.1007/s00427-018-0612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 11/26/2022]
Abstract
The tritocerebral commissure giant (TCG) of the grasshopper Schistocerca gregaria is one of the best anatomically and physiologically described arthropod brain neurons. A member of the so-called Ventral Giant cluster of cells, it integrates sensory information from visual, antennal and hair receptors, and synapses with thoracic motor neurons in order to initiate and regulate flight behavior. Its ontogeny, however, remains unclear. In this study, we use bromodeoxyuridine incorporation and cyclin labeling to reveal proliferative neuroblasts in the region of the embryonic brain where the ventral giant cluster is located. Engrailed labeling confirms the deutocerebral identity of this cluster. Comparison of soma locations and initial neurite projections into tracts of the striate deutocerebrum help identify the cells of the ventral cluster in both the embryonic and adult brain. Reconstructions of embryonic cell lineages suggest deutocerebral NB1 as being the putative neuroblast of origin. Intracellular dye injection coupled with immunolabeling against neuron-specific horseradish peroxidase is used to identify the VG1 (TCG) and VG3 neurons from the ventral cluster in embryonic brain slices. Dye injection and backfilling are used to document axogenesis and the progressive expansion of the dendritic arbor of the TCG from mid-embryogenesis up to hatching. Comparative maps of embryonic neuroblasts from several orthopteroid insects suggest equivalent deutocerebral neuroblasts from which the homologous TCG neurons already identified in the adult brain could originate. Our data offer the prospect of identifying further lineage-related neurons from the cluster and so understand a brain connectome from both a developmental and evolutionary perspective.
Collapse
Affiliation(s)
- George Stephen Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Planegg-Martinsried, 82152, Germany.
| | - Leslie Williams
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Planegg-Martinsried, 82152, Germany
| | - Tobias Müller
- Faculty of Biology, University of Konstanz, 78457, Constance, Germany
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Jonathan P Bacon
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
5
|
Boyan G, Graf P, Ehrhardt E. Patterns of cell death in the embryonic antenna of the grasshopper Schistocerca gregaria. Dev Genes Evol 2018; 228:105-118. [PMID: 29511851 DOI: 10.1007/s00427-018-0607-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022]
Abstract
We have investigated the pattern of apoptosis in the antennal epithelium during embryonic development of the grasshopper Schistocerca gregaria. The molecular labels lachesin and annulin reveal that the antennal epithelium becomes subdivided into segment-like meristal annuli within which sensory cell clusters later differentiate. To determine whether apoptosis is involved in the development of such sensory cell clusters, we examined the expression pattern of the cell death labels acridine orange and TUNEL in the epithelium. We found stereotypic, age-dependent, wave-like patterns of cell death in the antenna. Early in embryogenesis, apoptosis is restricted to the most basal meristal annuli but subsequently spreads to encompass almost the entire antenna. Cell death then declines in more basal annuli and is only found in the tip region later in embryogenesis. Apoptosis is restricted throughout to the midregion of a given annulus and away from its border with neighboring annuli, arguing against a causal role in annular formation. Double-labeling for cell death and sensory cell differentiation reveals apoptosis occurring within bands of differentiating sensory cell clusters, matching the meristal organization of the apical antenna. Examination of the individual epithelial lineages which generate sensory cells reveals that apoptosis begins peripherally within a lineage and with age expands to encompass the differentiated sensory cell at the base. We conclude that complete lineages can undergo apoptosis and that the youngest cells in these lineages appear to die first, with the sensory neuron dying last. Lineage-based death in combination with cell death patterns in different regions of the antenna may contribute to odor-mediated behaviors in the grasshopper.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2 Martinsried, 82152, Planegg, Germany.
| | - Philip Graf
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA
| | - Erica Ehrhardt
- Section of Neurobiology, Department of Biology II, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2 Martinsried, 82152, Planegg, Germany
| |
Collapse
|
6
|
Lovick JK, Omoto JJ, Ngo KT, Hartenstein V. Development of the anterior visual input pathway to the Drosophila central complex. J Comp Neurol 2017; 525:3458-3475. [PMID: 28675433 DOI: 10.1002/cne.24277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
The anterior visual pathway (AVP) conducts visual information from the medulla of the optic lobe via the anterior optic tubercle (AOTU) and bulb (BU) to the ellipsoid body (EB) of the central complex. The anatomically defined neuron classes connecting the AOTU, BU, and EB represent discrete lineages, genetically and developmentally specified sets of cells derived from common progenitors (Omoto et al., Current Biology, 27, 1098-1110, 2017). In this article, we have analyzed the formation of the AVP from early larval to adult stages. The immature fiber tracts of the AVP, formed by secondary neurons of lineages DALcl1/2 and DALv2, assemble into structurally distinct primordia of the AOTU, BU, and EB within the late larval brain. During the early pupal period (P6-P48) these primordia grow in size and differentiate into the definitive subcompartments of the AOTU, BU, and EB. The primordium of the EB has a complex composition. DALv2 neurons form the anterior EB primordium, which starts out as a bilateral structure, then crosses the midline between P6 and P12, and subsequently bends to adopt the ring shape of the mature EB. Columnar neurons of the central complex, generated by the type II lineages DM1-4, form the posterior EB primordium. Starting out as an integral part of the fan-shaped body primordium, the posterior EB primordium moves forward and merges with the anterior EB primordium. We document the extension of neuropil glia around the nascent EB and BU, and analyze the relationship of primary and secondary neurons of the AVP lineages.
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
7
|
Boyan GS, Liu Y. Development of the Neurochemical Architecture of the Central Complex. Front Behav Neurosci 2016; 10:167. [PMID: 27630548 PMCID: PMC5005427 DOI: 10.3389/fnbeh.2016.00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/16/2016] [Indexed: 11/13/2022] Open
Abstract
The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors.
Collapse
Affiliation(s)
- George S. Boyan
- Developmental Neurobiology Group, Department of Biology II, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Yu Liu
- Developmental Neurobiology Group, Department of Biology II, Ludwig-Maximilians-UniversitätMunich, Germany
| |
Collapse
|
8
|
Koniszewski NDB, Kollmann M, Bigham M, Farnworth M, He B, Büscher M, Hütteroth W, Binzer M, Schachtner J, Bucher G. The insect central complex as model for heterochronic brain development-background, concepts, and tools. Dev Genes Evol 2016; 226:209-19. [PMID: 27056385 PMCID: PMC4896989 DOI: 10.1007/s00427-016-0542-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/17/2016] [Indexed: 11/28/2022]
Abstract
The adult insect brain is composed of neuropils present in most taxa. However, the relative size, shape, and developmental timing differ between species. This diversity of adult insect brain morphology has been extensively described while the genetic mechanisms of brain development are studied predominantly in Drosophila melanogaster. However, it has remained enigmatic what cellular and genetic mechanisms underlie the evolution of neuropil diversity or heterochronic development. In this perspective paper, we propose a novel approach to study these questions. We suggest using genome editing to mark homologous neural cells in the fly D. melanogaster, the beetle Tribolium castaneum, and the Mediterranean field cricket Gryllus bimaculatus to investigate developmental differences leading to brain diversification. One interesting aspect is the heterochrony observed in central complex development. Ancestrally, the central complex is formed during embryogenesis (as in Gryllus) but in Drosophila, it arises during late larval and metamorphic stages. In Tribolium, it forms partially during embryogenesis. Finally, we present tools for brain research in Tribolium including 3D reconstruction and immunohistochemistry data of first instar brains and the generation of transgenic brain imaging lines. Further, we characterize reporter lines labeling the mushroom bodies and reflecting the expression of the neuroblast marker gene Tc-asense, respectively.
Collapse
Affiliation(s)
- Nikolaus Dieter Bernhard Koniszewski
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany.,Institute of Medical Microbiology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Martin Kollmann
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Mahdiyeh Bigham
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Max Farnworth
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Bicheng He
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Marita Büscher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Wolf Hütteroth
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany.,Department of Biology, Neurobiology, University of Konstanz, Constance, Germany
| | - Marlene Binzer
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Joachim Schachtner
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany.
| |
Collapse
|
9
|
Ehrhardt E, Kleele T, Boyan G. A method for immunolabeling neurons in intact cuticularized insect appendages. Dev Genes Evol 2015; 225:187-94. [PMID: 25868908 DOI: 10.1007/s00427-015-0499-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/30/2015] [Indexed: 12/27/2022]
Abstract
The antennae of the grasshopper Schistocerca gregaria possess a pair of nerve pathways which are established by so-called pioneer neurons early in embryonic development. Subsequently, sensory cell clusters mediating olfaction, flight, optomotor responses, and phase changes differentiate from the antennal epithelium at stereotypic locations and direct their axons onto those of the pioneers to then project to the brain. Early in embryonic development, before the antennae become cuticularized, immunolabeling can be used to follow axogenesis in these pioneers and sensory cells. At later stages, immunolabeling becomes problematical as the cuticle is laid down and masks internal antigen sites. In order to immunolabel the nervous system of cuticularized late embryonic and first instar grasshopper antennae, we modified a procedure known as sonication in which the appendage is exposed to ultrasound thereby rendering it porous to antibodies. Comparisons of the immunolabeled nervous system of sectioned and sonicated antennae show that the cellular organization of sensory clusters and their axon projections is intact. The expression patterns of neuron-specific, microtubule-specific, and proliferative cell-specific labels in treated antennae are consistent with those reported for earlier developmental stages where sonication is not necessary, suggesting that these molecular epitopes are also conserved. The method ensures reliable immunolabeling in intact, cuticularized appendages so that the peripheral nervous system can be reconstructed directly via confocal microscopy throughout development.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
| | | | | |
Collapse
|
10
|
Boyan G, Williams L, Liu Y. Conserved patterns of axogenesis in the panarthropod brain. ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:101-112. [PMID: 25483803 DOI: 10.1016/j.asd.2014.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/11/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
Neuropils in the cerebral midline of Panarthropoda exhibit a wide spectrum of neuroarchitectures--from rudimentary to highly elaborated--and which at first sight defy a unifying neuroarchitectural principle. Developmental approaches have shown that in model arthropods such as insects, conserved cellular and molecular mechanisms first establish a simple axon scaffold in the brain. However, to be adapted for adult life, this immature ground plan is transformed by a developmental process--known in the grasshopper as "fascicle switching"--in which subsets of neurons systematically redirect their growth cones at stereotypic locations across the brain midline. A topographic system of choice points along the transverse brain axis where axons decussate features in all panarthropods studied even though different modes of neurogenesis and varying degrees of neuropilar elaboration are involved. This suggests that the molecular mechanisms regulating choice point selection may be conserved. In combination with recent cladistic interpretations of arthropod phylogeny based on nuclear protein-coding sequences the data argue for this topographic decussation as having evolved early and being a conserved feature of the Panarthropoda. Differences in elaboration likely reflect both the extent to which neuropilar reorganization has progressed during development and the lifestyle of the individual organism.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| | - Leslie Williams
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Yu Liu
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Ehrhardt E, Liu Y, Boyan G. Axogenesis in the antennal nervous system of the grasshopper Schistocerca gregaria revisited: the base pioneers. Dev Genes Evol 2015; 225:39-45. [PMID: 25527188 DOI: 10.1007/s00427-014-0485-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022]
Abstract
The antennal nervous system of the grasshopper Schistocerca gregaria comprises two parallel pathways projecting to the brain, each pioneered early in embryogenesis by a pair of sibling cells located at the antennal tip. En route, the growth cones of pioneers from one pathway have been shown to contact a guidepost-like cell called the base pioneer. Its role in axon guidance remains unclear as do the cellular guidance cues regulating axogenesis in the other pathway supposedly without a base pioneer. Further, while the tip pioneers are known to delaminate from the antennal epithelium into the lumen, the origin of this base pioneer is unknown. Here, we use immunolabeling and immunoblocking methods to clarify these issues. Co-labeling against the neuron-specific marker horseradish peroxidase and the pioneer-specific cell surface glycoprotein Lazarillo identifies not only the tip pioneers but also a base pioneer associated with each of the developing antennal pathways. Both base pioneers co-express the mesodermal label Mes3, consistent with a lumenal origin, whereas the tip pioneers proved Mes3-negative confirming their affiliation with the ectodermal epithelium. Lazarillo antigen expression in the antennal pioneers followed a different temporal dynamic: continuous in the tip pioneers, but in the base pioneers, only at the time their filopodia and those of the tip pioneers first recognize one another. Immunoblocking of Lazarillo expression in cultured embryos disrupts this recognition resulting in misguided axogenesis in both antennal pathways.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
| | | | | |
Collapse
|
12
|
Boyan G, Liu Y. Timelines in the insect brain: fates of identified neural stem cells generating the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2014; 224:37-51. [PMID: 24343526 DOI: 10.1007/s00427-013-0462-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
This study employs labels for cell proliferation and cell death, as well as classical histology to examine the fates of all eight neural stem cells (neuroblasts) whose progeny generate the central complex of the grasshopper brain during embryogenesis. These neuroblasts delaminate from the neuroectoderm between 25 and 30 % of embryogenesis and form a linear array running from ventral (neuroblasts Z, Y, X, and W) to dorsal (neuroblasts 1-2, 1-3, 1-4, and 1-5) along the medial border of each protocerebral hemisphere. Their stereotypic location within the array, characteristic size, and nuclear morphologies, identify these neuroblasts up to about 70 % of embryogenesis after which cell shrinkage and shape changes render progressively more cells histologically unrecognizable. Molecular labels show all neuroblasts in the array are proliferative up to 70 % of embryogenesis, but subsequently first the more ventral cells (72-75 %), and then the dorsal ones (77-80 %), cease proliferation. By contrast, neuroblasts elsewhere in the brain and optic lobe remain proliferative. Apoptosis markers label the more ventral neuroblasts first (70-72 %), then the dorsal cells (77 %), and the absence of any labeling thereafter confirms that central complex neuroblasts have exited the cell cycle via programmed cell death. Our data reveal appearance, proliferation, and cell death proceeding as successive waves from ventral to dorsal along the array of neuroblasts. The resulting timelines offer a temporal blueprint for building the neuroarchitecture of the various modules of the central complex.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany,
| | | |
Collapse
|
13
|
Gliogenesis in the embryonic brain of the grasshopper Schistocerca gregaria with particular focus on the protocerebrum prior to mid-embryogenesis. Cell Tissue Res 2013; 354:697-705. [PMID: 23917388 DOI: 10.1007/s00441-013-1682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
I investigate the pattern of gliogenesis in the brain of the grasshopper Schistocerca gregaria prior to mid-embryogenesis, with particular focus on the protocerebrum. Using the glia-specific marker Repo and the neuron-specific marker HRP, I identify three types of glia with respect to their respective positions in the brain: surface glia form the outmost cell layer ensheathing the brain; cortex glia are intermingled with neuronal somata forming the brain cortex; and neuropil glia are associated with brain neuropils. The ontogeny of each glial type has also been studied. At 24% of embryogenesis, a few glia are observed in each hemisphere of the proto-, deuto- and tritocerebrum. In each protocerebral hemisphere, such glia form a cluster that expands rapidly during later development. Closer examination reveals proliferative glia in such clusters at ages spanning from 24 to 36% of embryogenesis, indicating that glial proliferation may account for the expansion of the clusters. Data derived from 33-39% of embryogenesis suggest that, in the protocerebrum, each type of glia is likely to be generated by its respective progenitor-forming clusters. Moreover, the glial cluster located at the anterior end of the brain can give rise to both surface glia and cortex glia that populate the protocerebrum via subsequent migration. Proliferation is observed for all three glial types, indicating a possible source for the glia.
Collapse
|
14
|
Liu Y, Boyan G. Glia associated with central complex lineages in the embryonic brain of the grasshopper Schistocerca gregaria. Dev Genes Evol 2013; 223:213-23. [PMID: 23494665 DOI: 10.1007/s00427-013-0439-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
Abstract
We have investigated the pattern of glia associated with central complex lineages in the embryonic brain of the grasshopper Schistocerca gregaria. Using the glia-specific marker Repo, we identified glia associated externally with such lineages, termed lineage-extrinsic glia, and glia located internally within the lineages, termed lineage-intrinsic glia. Populations of both glial types increase up to 60 % of embryogenesis, and thereafter decrease. Extrinsic glia change their locations over time, while intrinsic ones are consistently found in the more apical part of a lineage. Apoptosis is not observed for either glial type, suggesting migration is a likely mechanism accounting for changes in glial number. Proliferative glia are present both within and without individual lineages and two glial clusters associated with the lineages, one apically and the other basally, may represent sources of glia.
Collapse
Affiliation(s)
- Yu Liu
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstr. 2, 82152, Martinsried, Germany.
| | | |
Collapse
|
15
|
Eickhoff R, Bicker G. Developmental expression of cell recognition molecules in the mushroom body and antennal lobe of the locust Locusta migratoria. J Comp Neurol 2012; 520:2021-40. [PMID: 22173776 DOI: 10.1002/cne.23026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We examined the development of olfactory neuropils in the hemimetabolous insect Locusta migratoria with an emphasis on the mushroom bodies, protocerebral integration centers implicated in memory formation. Using a marker of the cyclic adenosine monophosphate (cAMP) signaling cascade and lipophilic dye labeling, we obtained new insights into mushroom body organization by resolving previously unrecognized accessory lobelets arising from Class III Kenyon cells. We utilized antibodies against axonal guidance cues, such as the cell surface glycoproteins Semaphorin 1a (Sema 1a) and Fasciclin I (Fas I), as embryonic markers to compile a comprehensive atlas of mushroom body development. During embryogenesis, all neuropils of the olfactory pathway transiently expressed Sema 1a. The immunoreactivity was particularly strong in developing mushroom bodies. During late embryonic stages, Sema 1a expression in the mushroom bodies became restricted to a subset of Kenyon cells in the core region of the peduncle. Sema 1a was differentially sorted to the Kenyon cell axons and absent in the dendrites. In contrast to Drosophila, locust mushroom bodies and antennal lobes expressed Fas I, but not Fas II. While Fas I immunoreactivity was widely distributed in the midbrain during embryogenesis, labeling persisted into adulthood only in the mushroom bodies and antennal lobes. Kenyon cells proliferated throughout the larval stages. Their neurites retained the embryonic expression pattern of Sema 1a and Fas I, suggesting a role for these molecules in developmental mushroom body plasticity. Our study serves as an initial step toward functional analyses of Sema 1a and Fas I expression during locust mushroom body formation.
Collapse
Affiliation(s)
- René Eickhoff
- University of Veterinary Medicine Hannover, Division of Cell Biology, D-30173 Hannover, Germany
| | | |
Collapse
|
16
|
Boyan GS, Liu Y, Loser M. A cellular network of dye-coupled glia associated with the embryonic central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2012; 222:125-38. [PMID: 22460819 DOI: 10.1007/s00427-012-0394-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/11/2012] [Indexed: 12/25/2022]
Abstract
The central complex of the grasshopper (Schistocerca gregaria) brain comprises a modular set of neuropils, which develops after mid-embryogenesis and is functional on hatching. Early in embryogenesis, Repo-positive glia cells are found intermingled among the commissures of the midbrain, but then redistribute as central complex modules become established and, by the end of embryogenesis, envelop all midbrain neuropils. The predominant glia associated with the central body during embryogenesis are glutamine synthetase-/Repo-positive astrocyte-like glia, which direct extensive processes (gliopodia) into and around midbrain neuropils. We used intracellular dye injection in brain slices to ascertain whether such glia are dye-coupled into a communicating cellular network during embryogenesis. Intracellular staining of individual cells located at any one of four sites around the central body revealed a population of dye-coupled cells whose number and spatial distribution were stereotypic for each site and comparable at both 70 and 100% of embryogenesis. Subsequent immunolabeling confirmed these dye-coupled cells to be astrocyte-like glia. The addition of n-heptanol to the bathing saline prevented all dye coupling, consistent with gap junctions linking the glia surrounding the central body. Since dye coupling also occurred in the absence of direct intersomal contacts, it might additionally involve the extensive array of gliopodia, which develop after glia are arrayed around the central body. Collating the data from all injection sites suggests that the developing central body is surrounded by a network of dye-coupled glia, which we speculate may function as a positioning system for the developing neuropils of the central complex.
Collapse
Affiliation(s)
- George S Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Martinsried, Germany.
| | | | | |
Collapse
|
17
|
Sintoni S, Benton JL, Beltz BS, Hansson BS, Harzsch S. Neurogenesis in the central olfactory pathway of adult decapod crustaceans: development of the neurogenic niche in the brains of procambarid crayfish. Neural Dev 2012; 7:1. [PMID: 22225949 PMCID: PMC3266201 DOI: 10.1186/1749-8104-7-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/06/2012] [Indexed: 12/13/2022] Open
Abstract
Background In the decapod crustacean brain, neurogenesis persists throughout the animal's life. After embryogenesis, the central olfactory pathway integrates newborn olfactory local and projection interneurons that replace old neurons or expand the existing population. In crayfish, these neurons are the descendants of precursor cells residing in a neurogenic niche. In this paper, the development of the niche was documented by monitoring proliferating cells with S-phase-specific markers combined with immunohistochemical, dye-injection and pulse-chase experiments. Results Between the end of embryogenesis and throughout the first post-embryonic stage (POI), a defined transverse band of mitotically active cells (which we will term 'the deutocerebral proliferative system' (DPS) appears. Just prior to hatching and in parallel with the formation of the DPS, the anlagen of the niche appears, closely associated with the vasculature. When the hatchling molts to the second post-embryonic stage (POII), the DPS differentiates into the lateral (LPZ) and medial (MPZ) proliferative zones. The LPZ and MPZ are characterized by a high number of mitotically active cells from the beginning of post-embryonic life; in contrast, the developing niche contains only very few dividing cells, a characteristic that persists in the adult organism. Conclusions Our data suggest that the LPZ and MPZ are largely responsible for the production of new neurons in the early post-embryonic stages, and that the neurogenic niche in the beginning plays a subordinate role. However, as the neuroblasts in the proliferation zones disappear during early post-embryonic life, the neuronal precursors in the niche gradually become the dominant and only mechanism for the generation of new neurons in the adult brain.
Collapse
Affiliation(s)
- Silvia Sintoni
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|
18
|
Schmidt M, Derby CD. Cytoarchitecture and ultrastructure of neural stem cell niches and neurogenic complexes maintaining adult neurogenesis in the olfactory midbrain of spiny lobsters, Panulirus argus. J Comp Neurol 2011; 519:2283-319. [PMID: 21523781 DOI: 10.1002/cne.22657] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
New interneurons are continuously generated in small proliferation zones within neuronal somata clusters in the olfactory deutocerebrum of adult decapod crustaceans. Each proliferation zone is connected to a clump of cells containing one neural stem cell (i.e., adult neuroblast), thus forming a "neurogenic complex." Here we provide a detailed analysis of the cytoarchitecture of neurogenic complexes in adult spiny lobsters, Panulirus argus, based on transmission electron microscopy and labeling with cell-type-selective markers. The clump of cells is composed of unique bipolar clump-forming cells that collectively completely envelop the adult neuroblast and are themselves ensheathed by a layer of processes of multipolar cell body glia. An arteriole is attached to the clump of cells, but dye perfusion experiments show that hemolymph has no access to the interior of the clump of cells. Thus, the clump of cells fulfills morphological criteria of a protective stem cell niche, with clump-forming cells constituting the adult neuroblast's microenvironment together with the cell body glia processes separating it from other tissue components. Bromodeoxyuridine pulse-chase experiments with short survival times suggest that adult neuroblasts are not quiescent but rather cycle actively during daytime. We propose a cell lineage model in which an asymmetrically dividing adult neuroblast repopulates the pool of neuronal progenitor cells in the associated proliferation zone. In conclusion, as in mammalian brains, adult neurogenesis in crustacean brains is fueled by neural stem cells that are maintained by stem cell niches that preserve elements of the embryonic microenvironment and contain glial and vascular elements.
Collapse
Affiliation(s)
- Manfred Schmidt
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, Georgia 30302-5030, USA.
| | | |
Collapse
|
19
|
Boyan G, Loser M, Williams L, Liu Y. Astrocyte-like glia associated with the embryonic development of the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2011; 221:141-55. [PMID: 21556852 DOI: 10.1007/s00427-011-0366-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/07/2011] [Indexed: 01/16/2023]
Abstract
In this study we employed the expression of the astrocyte-specific enzyme glutamine synthetase, in addition to the glia-specific marker Repo, to characterize glia cell types associated with the embryonic development of the central complex in the grasshopper Schistocerca gregaria. Double labeling experiments reveal that all glutamine synthetase-positive cells associated with the central complex are also Repo-positive and horseradish peroxidase-negative, confirming they are glia. Early in embryogenesis, prior to development of the central complex, glia form a continuous population extending from the pars intercerebralis into the region of the commissural fascicles. Subsequently, these glia redisperse to envelop each of the modules of the central complex. No glial somata are found within the central complex neuropils themselves. Since glutamine synthetase is expressed cortically in glia, it allows their processes as well as their soma locations to be visualized. Single cell reconstructions reveal one population of glia as directing extensive ensheathing processes around central complex neuropils such as the central body, while another population projects columnar-like arborizations within the central body. Such arborizations are only seen in central complex modules after their neuroarchitecture has been established suggesting that the glial arborizations project onto a prior scaffold of neurons or tracheae.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Martinsried, Germany.
| | | | | | | |
Collapse
|
20
|
Boyan G, Williams L. Embryonic development of the insect central complex: insights from lineages in the grasshopper and Drosophila. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:334-348. [PMID: 21382507 DOI: 10.1016/j.asd.2011.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 02/16/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
The neurons of the insect brain derive from neuroblasts which delaminate from the neuroectoderm at stereotypic locations during early embryogenesis. In both grasshopper and Drosophila, each developing neuroblast acquires an intrinsic capacity for neuronal proliferation in a cell autonomous manner and generates a specific lineage of neural progeny which is nearly invariant and unique. Maps revealing numbers and distributions of brain neuroblasts now exist for various species, and in both grasshopper and Drosophila four putatively homologous neuroblasts have been identified whose progeny direct axons to the protocerebral bridge and then to the central body via an equivalent set of tracts. Lineage analysis in the grasshopper nervous system reveals that the progeny of a neuroblast maintain their topological position within the lineage throughout embryogenesis. We have taken advantage of this to study the pioneering of the so-called w, x, y, z tracts, to show how fascicle switching generates central body neuroarchitecture, and to evaluate the roles of so-called intermediate progenitors as well as programmed cell death in shaping lineage structure. The novel form of neurogenesis involving intermediate progenitors has been demonstrated in grasshopper, Drosophila and mammalian cortical development and may represent a general strategy for increasing brain size and complexity. An analysis of gap junctional communication involving serotonergic cells reveals an intrinsic cellular organization which may relate to the presence of such transient progenitors in central complex lineages.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2, 82152 Martinsried, Germany.
| | | |
Collapse
|
21
|
Boyan GS, Reichert H. Mechanisms for complexity in the brain: generating the insect central complex. Trends Neurosci 2011; 34:247-57. [PMID: 21397959 DOI: 10.1016/j.tins.2011.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/04/2011] [Accepted: 02/04/2011] [Indexed: 02/07/2023]
|
22
|
Boyan G, Niederleitner B. Patterns of dye coupling involving serotonergic neurons provide insights into the cellular organization of a central complex lineage of the embryonic grasshopper Schistocerca gregaria. Dev Genes Evol 2011; 220:297-313. [PMID: 21190117 DOI: 10.1007/s00427-010-0348-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
All eight neuroblasts from the pars intercerebralis of one protocerebral hemisphere whose progeny contribute fibers to the central complex in the embryonic brain of the grasshopper Schistocerca gregaria generate serotonergic cells at stereotypic locations in their lineages. The pattern of dye coupling involving these neuroblasts and their progeny was investigated during embryogenesis by injecting fluorescent dye intracellularly into the neuroblast and/or its progeny in brain slices. The tissue was then processed for anti-serotonin immunohistochemistry. A representative lineage, that of neuroblast 1-3, was selected for detailed study. Stereotypic patterns of dye coupling were observed between progeny of the lineage throughout embryogenesis. Dye injected into the soma of a serotonergic cell consistently spread to a cluster of between five and eight neighboring non-serotonergic cells, but never to other serotonergic cells. Dye injected into a non-serotonergic cell from such a cluster spread to other non-serotonergic cells of the cluster, and to the immediate serotonergic cell, but never to further serotonergic cells. Serotonergic cells tested from different locations within the lineage repeat this pattern of dye coupling. All dye coupling was blocked on addition of an established gap junctional blocker (n-heptanol) to the bathing medium. The lack of coupling among serotonergic cells in the lineage suggests that each, along with its associated cluster of dye-coupled non-serotonergic cells, represents an independent communicating pathway (labeled line) to the developing central complex neuropil. The serotonergic cell may function as the coordinating element in such a projection system.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | | |
Collapse
|