1
|
González-Muñoz S, Long Y, Guzmán-Jiménez A, Cerván-Martín M, Higueras-Serrano I, Castilla JA, Clavero A, Garrido N, Luján S, Yang X, Guo X, Liu J, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Bossini-Castillo L, Palomino-Morales RJ, Wang C, Hu Z, Carmona FD. Trans-ethnic GWAS meta-analysis of idiopathic spermatogenic failure highlights the immune-mediated nature of Sertoli cell-only syndrome. Commun Biol 2025; 8:571. [PMID: 40188177 PMCID: PMC11972312 DOI: 10.1038/s42003-025-08001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Non-obstructive azoospermia, a severe form of male infertility caused by spermatogenic failure (SPGF), has a largely unknown genetic basis across ancestries. To our knowledge, this is the first trans-ethnic meta-analysis of genome-wide association studies on SPGF, involving 2255 men with idiopathic SPGF and 3608 controls from European and Asian populations. Using logistic regression and inverse variance methods, we identify two significant genetic associations with Sertoli cell-only (SCO) syndrome, the most extreme SPGF phenotype. The G allele of rs34915133, in the major histocompatibility complex class II region, significantly increases SCO risk (P = 5.25E-10, OR = 1.57), supporting a potential immune-related cause. Additionally, the rs10842262 variant in the SOX5 gene region is also a genetic marker of SCO (P = 5.29E-09, OR = 0.72), highlighting the key role of this gene in the male reproductive function. Our findings reveal shared genetic factors in male infertility across ancestries and provide insights into the molecular mechanisms underlying SCO.
Collapse
Affiliation(s)
- Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Yichen Long
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miriam Cerván-Martín
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, Granada, Spain
| | - Inmaculada Higueras-Serrano
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Nicolás Garrido
- IVIRMA Global Research Alliance. IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
- ToxOmics - Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Center for Predictive and Preventive Genetics, Institute for Cell and Molecular Biology, University of Porto, Porto, Portugal
| | - Sara Larriba
- Immune-Inflammatory Processes and Gene Therapeutics Group, Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
2
|
Martinez MS, Chocobar YA, Fariz Y, Paira DA, Rivero VE, Motrich RD. Effects of semen inflammation on embryo implantation, placentation, pregnancy outcomes and offspring health. Placenta 2025:S0143-4004(25)00035-9. [PMID: 39939266 DOI: 10.1016/j.placenta.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025]
Abstract
This review explores the critical role of semen inflammation in sperm quality, embryo implantation, placentation, and its broader implications on reproductive health. Chronic inflammation of the male genital tract has been increasingly recognized as a significant factor contributing to infertility. This inflammation not only impairs semen quality but also disrupts the intricate immune cross-talk between the male and female genital tracts, which is essential for successful implantation, placentation and pregnancy. The review synthesizes existing research on the mechanisms by which inflammatory mediators in semen influence the female immune environment, leading to altered uterine receptivity, placental formation, and embryo implantation. Furthermore, the impact of these disruptions on the health and development of the offspring is discussed, highlighting the transgenerational effects of male genital tract inflammation. Through an examination of both animal models and human studies, this review underscores the need for a deeper understanding of the immune interactions in reproductive biology and the potential for novel therapeutic interventions aimed at mitigating the adverse outcomes associated with semen inflammation.
Collapse
Affiliation(s)
- María S Martinez
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
| | - Yair A Chocobar
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
| | - Yamila Fariz
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
| | - Daniela A Paira
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
| | - Virginia E Rivero
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
| | - Rubén D Motrich
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; FOCIS Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina.
| |
Collapse
|
3
|
Qu H, Liu Q, Zheng D, Ni Y, Xiao X. A Comprehensive Bibliometric Analysis of Orchitis Research from 1980 to 2023. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:207-243. [PMID: 40301259 DOI: 10.1007/978-3-031-82990-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Orchitis, an inflammation of the testes, presents significant implications for male fertility and has been a focal area of scientific inquiry over the past four decades. This study employs a comprehensive bibliometric analysis to assess the progression of global research on orchitis from 1980 to 2023. Drawing from a dataset of 1586 publications indexed in the Web of Science Core Collection, we uncover emerging patterns, collaborations, and pivotal works that have shaped the field. The United States, China, and Germany emerge as leading contributors, while the Journal of Urology stands out as a primary publishing avenue. The results highlight the increasing recognition of autoimmune responses, alongside infectious agents, as key contributors to orchitis. Moreover, molecules such as TNF-α, IL-6, and IFN-γ are identified as central to the disease's pathology. The dynamic interplay of testosterone and regulatory T cells is underscored as a determinant of the testicular immune milieu. Notably, disruptions in the blood-testis barrier (BTB) and germ cell apoptosis emerge as pivotal consequences of the condition. This analysis underscores the expansive and multidisciplinary nature of orchitis research, revealing a consistent growth in collaborative endeavors. In summary, our findings catalog the evolution of orchitis research, providing a consolidated perspective on past achievements and signposting future research avenues. Such insights are instrumental for researchers aiming to navigate the complexities of orchitis and its multifaceted impact on male reproductive health.
Collapse
Affiliation(s)
- Haoyang Qu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Qiubei Liu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Dongwang Zheng
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Ya Ni
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal's and Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.
- Zhejiang Provincial Laboratory of Experimental Animal's and Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
4
|
Fomichova O, Oliveira PF, Bernardino RL. Exploring the interplay between inflammation and male fertility. FEBS J 2024. [PMID: 39702986 DOI: 10.1111/febs.17366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility. Inflammation is one of the factors that contribute to male infertility. In the testes, it can be brought on by varicocele, obesity, gonadal infections, leukocytospermia, physical obstructions or traumas, and consumption of toxic substances. As a result of prolonged or untreated inflammation, the testicular resident cells that sustain spermatogenesis can suffer DNA damage, lipid and protein oxidation, and mitochondrial dysfunction consequently leading to loss of function in affected Sertoli cells (SCs) and Leydig cells (LCs), and the formation of morphologically abnormal dysfunctional sperm cells that lay in the basis of male infertility and subfertility. This is due mainly to the production and secretion of pro-inflammatory mediators, including cytokines, chemokines, and reactive oxygen species (ROS) by local immune cells (macrophages, lymphocytes T, mast cells) and tissue-specific cells [SCs, LCs, peritubular myoid cells (PMCs) and germ cells (GCs)]. Depending on the location, duration, and intensity of inflammation, these mediators can exert their toxic effect on different elements of the testes. In this review, we discuss the most prevalent inflammatory factors that negatively affect male fertility and describe the different ways inflammation can impair male reproductive function.
Collapse
Affiliation(s)
- Oleksandra Fomichova
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Portugal
| | - Raquel L Bernardino
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Portugal
| |
Collapse
|
5
|
Pei C, Todorov P, Kong Q, Cao M, Isachenko E, Rahimi G, Nawroth F, Mallmann-Gottschalk N, Liu W, Isachenko V. Transcriptomic Differences by RNA Sequencing for Evaluation of New Method for Long-Time In Vitro Culture of Cryopreserved Testicular Tissue for Oncologic Patients. Cells 2024; 13:1539. [PMID: 39329723 PMCID: PMC11430757 DOI: 10.3390/cells13181539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Earlier studies have established that culturing human ovarian tissue in a 3D system with a small amount of soluble Matrigel (a basement membrane protein) for 7 days in vitro increased gene fusion and alternative splicing events, cellular functions, and potentially impacted gene expression. However, this method was not suitable for in vitro culture of human testicular tissue. OBJECTIVE To test a new method for long-time in vitro culture of testicular fragments, thawed with two different regimes, with evaluation of transcriptomic differences by RNA sequencing. METHODS Testicular tissue samples were collected, cryopreserved (frozen and thawed), and evaluated immediately after thawing and following one week of in vitro culture. Before in vitro culture, tissue fragments were encapsulated in fibrin. Four experimental groups were formed. Group 1: tissue quickly thawed (in boiling water at 100 °C) and immediately evaluated. Group 2: tissue quickly thawed (in boiling water at 100 °C) and evaluated after one week of in vitro culture. Group 3: tissue slowly thawed (by a physiological temperature 37 °C) and immediately evaluated. Group 4: tissue slowly thawed (by a physiological temperature 37 °C) and evaluated after one week of in vitro culture. RESULTS There are the fewest differentially expressed genes in the comparison between Group 2 and Group 4. In this comparison, significantly up-regulated genes included C4B_2, LOC107987373, and GJA4, while significantly down-regulated genes included SULT1A4, FBLN2, and CCN2. Differential genes in cells of Group 2 were mainly enriched in KEGG: regulation of actin cytoskeleton, lysosome, proteoglycans in cancer, TGF-beta signaling pathway, focal adhesion, and endocytosis. These Group 2- genes were mainly enriched in GO: spermatogenesis, cilium movement, collagen fibril organization, cell differentiation, meiotic cell cycle, and flagellated spermatozoa motility. CONCLUSIONS Encapsulation of testicular tissue in fibrin and long-time in vitro culture with constant stirring in a large volume of culture medium can reduce the impact of thawing methods on cryopreserved testicular tissue.
Collapse
Affiliation(s)
- Cheng Pei
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (M.C.); (E.I.); (G.R.); (N.M.-G.)
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction of Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria;
| | - Qingduo Kong
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (M.C.); (E.I.); (G.R.); (N.M.-G.)
| | - Mengyang Cao
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (M.C.); (E.I.); (G.R.); (N.M.-G.)
| | - Evgenia Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (M.C.); (E.I.); (G.R.); (N.M.-G.)
| | - Gohar Rahimi
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (M.C.); (E.I.); (G.R.); (N.M.-G.)
- Medizinisches Versorgungszentrum AMEDES für IVF- und Pränatalmedizin in Köln GmbH, 50968 Cologne, Germany
| | - Frank Nawroth
- Center for Infertility, Prenatal Medicine, Endocrinology and Osteology, Amedes Medical Center MVZ Hamburg, 20095 Hamburg, Germany;
| | - Nina Mallmann-Gottschalk
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (M.C.); (E.I.); (G.R.); (N.M.-G.)
| | - Wensheng Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510000, China;
| | - Volodimir Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (M.C.); (E.I.); (G.R.); (N.M.-G.)
| |
Collapse
|
6
|
Justin Margret J, Jain SK. The Protective Role of L-Cysteine in the Regulation of Blood-Testis Barrier Functions-A Brief Review. Genes (Basel) 2024; 15:1201. [PMID: 39336792 PMCID: PMC11430845 DOI: 10.3390/genes15091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Blood-testis barrier (BTB) genes are crucial for the cellular mechanisms of spermatogenesis as they protect against detrimental cytotoxic agents, chemicals, and pathogens, thereby maintaining a sterile environment necessary for sperm development. BTB proteins predominantly consist of extensive tight and gap junctions formed between Sertoli cells. These junctions form a crucial immunological barrier restricting the intercellular movement of substances and molecules within the adluminal compartment. Epithelial tight junctions are complex membrane structures composed of various integral membrane proteins, including claudins, zonula occludens-1, and occludin. Inter-testicular cell junction proteins undergo a constant process of degradation and renewal. In addition, the downregulation of genes crucial to the development and preservation of cell junctions could disrupt the functionality of the BTB, potentially leading to male infertility. Oxidative stress and inflammation may contribute to disrupted spermatogenesis, resulting in male infertility. L-cysteine is a precursor to glutathione, a crucial antioxidant that helps mitigate damage and inflammation resulting from oxidative stress. Preclinical research indicates that L-cysteine may offer protective benefits against testicular injury and promote the expression of BTB genes. This review emphasizes various BTB genes essential for preserving its structural integrity and facilitating spermatogenesis and male fertility. Furthermore, it consolidates various research findings suggesting that L-cysteine may promote the expression of BTB-associated genes, thereby aiding in the maintenance of testicular functions.
Collapse
Affiliation(s)
- Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
7
|
Xu L, Shi M, Qin G, Lin X, Huang B. Environmental pollutant Di-(2-ethylhexyl) phthalate induces asthenozoospermia: new insights from network toxicology. Mol Divers 2024:10.1007/s11030-024-10976-9. [PMID: 39259422 DOI: 10.1007/s11030-024-10976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The global decline in sperm quality in men is closely associated with environmental exposure to the plasticizer Di-(2-ethylhexyl) phthalate (DEHP), but the molecular mechanisms underlying its induction of asthenozoospermia (AZS) remain incompletely understood. By integrating the toxicological targets of DEHP and differential genes in AZS patients, and combining machine learning, molecular docking, and dynamics simulations, this study successfully identified hub genes and signaling pathways induced by DEHP in AZS, aiming to provide new strategies for the prevention and treatment of this disease. A total of 26 toxicological targets were identified, with FGFR1, MMP7, and ST14 clearly defined as playing crucial regulatory roles in DEHP-induced AZS. This study also reveals that DEHP may induce reproductive system inflammation, affecting the proliferation and survival of reproductive cells, and subsequently impacting sperm vitality, possibly through regulating the mTORC1 pathway, TNF-α signaling via the NF-κB pathway, and MYC targets v1 pathway. Furthermore, changes in the immune microenvironment revealed the significant impact of immune status on testicular function. In conclusion, this study provides important scientific evidence for understanding the molecular mechanisms of AZS and developing prevention and treatment strategies based on toxicological targets.
Collapse
Affiliation(s)
- Lei Xu
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Menghua Shi
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Guozheng Qin
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, 650021, Yunnan, China
| | - Xuyao Lin
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| | - Bin Huang
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| |
Collapse
|
8
|
Zheng S, Jiang L, Qiu L. The effects of fine particulate matter on the blood-testis barrier and its potential mechanisms. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:233-249. [PMID: 36863426 DOI: 10.1515/reveh-2022-0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 02/17/2024]
Abstract
With the rapid expansion of industrial scale, an increasing number of fine particulate matter (PM2.5) has bringing health concerns. Although exposure to PM2.5 has been clearly associated with male reproductive toxicity, the exact mechanisms are still unclear. Recent studies demonstrated that exposure to PM2.5 can disturb spermatogenesis through destroying the blood-testis barrier (BTB), consisting of different junction types, containing tight junctions (TJs), gap junctions (GJs), ectoplasmic specialization (ES) and desmosomes. The BTB is one of the tightest blood-tissue barriers among mammals, which isolating germ cells from hazardous substances and immune cell infiltration during spermatogenesis. Therefore, once the BTB is destroyed, hazardous substances and immune cells will enter seminiferous tubule and cause adversely reproductive effects. In addition, PM2.5 also has shown to cause cells and tissues injury via inducing autophagy, inflammation, sex hormones disorder, and oxidative stress. However, the exact mechanisms of the disruption of the BTB, induced by PM2.5, are still unclear. It is suggested that more research is required to identify the potential mechanisms. In this review, we aim to understand the adverse effects on the BTB after exposure to PM2.5 and explore its potential mechanisms, which provides novel insight into accounting for PM2.5-induced BTB injury.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianlian Jiang
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P. R. China
| |
Collapse
|
9
|
Seify M, Abedpour N, Talebi SF, Hazari V, Mehrara M, Koohestanidehaghi Y, Shoorei H, Bhandari RK. Impacts of Acrylamide on testis and spermatozoa. Mol Biol Rep 2024; 51:739. [PMID: 38874886 DOI: 10.1007/s11033-024-09677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
Acrylamide (ACR) is an industrial chemical used to produce polyacrylamide, a synthetic polymer with a wide range of applications. Depending on the dosage, its presence in occupational and environmental sources poses potential health risks to humans and animals. ACR can be formed in starchy foods cooked at high temperatures. Its effects on human sperm are not well understood. Animal studies indicate that ACR induces toxicity in the male reproductive system through oxidative stress mechanisms. Exposure to ACR alters the normal structure of testicular tubules, leading to congestion, interstitial edema, degeneration of spermatogenic cells, formation of abnormal spermatid giant cells, and necrosis and apoptosis. It also disrupts the balance of important biomarkers such as malondialdehyde, nitric oxide, superoxide dismutase, catalase, and glutathione. ACR has a negative impact on mitochondrial function, antioxidant enzymes, ATP production, and sperm membrane integrity, resulting in decreased sperm quality. Furthermore, it interferes with the expression of steroidogenic genes associated with testosterone biosynthesis. This review explores the detrimental effects of ACR on sperm and testicular function and discusses the potential role of antioxidants in mitigating the adverse effects of ACR on male reproduction.
Collapse
Affiliation(s)
- Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Neda Abedpour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | | | - Vajihe Hazari
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehrdad Mehrara
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Shoorei
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
10
|
Rindone GM, Dasso ME, Centola CL, Sobarzo CM, Galardo MN, Meroni SB, Riera MF. Effect of Metformin on Sertoli Cell Fatty Acid Metabolism and Blood-Testis Barrier Formation. BIOLOGY 2024; 13:330. [PMID: 38785812 PMCID: PMC11117697 DOI: 10.3390/biology13050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Sertoli cells (SCs) are essential to maintaining germ cell development. Metformin, the main pharmacologic treatment for pediatric type 2 diabetes, is administered to children during SC maturation. The present study aimed to analyze whether metformin affects SC energy metabolism and blood-testis barrier (BTB) integrity. Primary SC cultures were used for the in vitro studies. In vivo effects were studied in Sprague-Dawley rats treated with 200 mg/kg metformin from Pnd14 to Pnd30. Metformin decreased fatty acid oxidation and increased 3-hydroxybutyrate production in vitro. Moreover, it decreased the transepithelial electrical resistance across the monolayer and induced ZO-1 redistribution, suggesting an alteration of cell junctions. In vivo, a mild but significant increase in BTB permeability and ZO-1 expression was observed in the metformin group, without changes in testicular histology and meiosis progression. Additionally, adult rats that received metformin treatment during the juvenile period showed no alteration in BTB permeability or daily sperm production. In conclusion, metformin exposure may affect BTB permeability in juvenile rats, but this seems not to influence spermatogenesis progression. Considering the results obtained in adult animals, it is possible to speculate that metformin treatment during the juvenile period does not affect testicular function in adulthood.
Collapse
Affiliation(s)
- Gustavo Marcelo Rindone
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| | - Marina Ercilia Dasso
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| | - Cecilia Lucia Centola
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| | - Cristian Marcelo Sobarzo
- Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires C1121ABG, Argentina;
| | - María Noel Galardo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| | - María Fernanda Riera
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI–División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina; (G.M.R.); (M.E.D.); (C.L.C.); (M.N.G.); (S.B.M.)
| |
Collapse
|
11
|
Zhang Y, Hou B, Liu T, Wu Y, Wang Z. Probiotics improve polystyrene microplastics-induced male reproductive toxicity in mice by alleviating inflammatory response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115248. [PMID: 37441951 DOI: 10.1016/j.ecoenv.2023.115248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
As a new type of environmental pollutant, microplastics have been garnered increasing attention, especially in regard to their effects on the reproductive system. However, researchers have yet to report whether prevention and treatment measures exist for reproductive injury caused by microplastics. The aim of this study was therefore to explore the mechanism of spermatogenic injury induced by polystyrene microplastics (PS-MPs) and the intervention effect of probiotics based on the gut microbiota-testis axis. Mice were orally exposed for 35 days to 5 µm of PS-MPs with a gavage dose was 0.1 mg/day, and the intervention group was given probiotics (Lactobacillus, Bifidobacterium longum, and Enterococcus) orally. Fecal samples were then subjected to 16 S rRNA sequencing analysis, and sperm motion was analyzed by a Hamilton-Thorne Sperm analyzer. The results showed that PS-MPs exposed mice had significant spermatogenic dysfunction and testicular inflammation. In addition, the intestinal microbial structure of exposed mice changed significantly; the abundance of Lactobacillus decreased, and the abundance of Prevotella increased. Furthermore, with fecal microbiota transplantation, the recipient mice showed a significant decrease in sperm quality. However, probiotics supplementation helped inhibit the activation of IL-17A signaling driven by gut microbes, thereby alleviating the inflammatory response and improving sperm quality decline caused by PS-MPs. These results may provide a scientific basis for further understanding of the mechanism of male reproductive damage caused by environmental pollutants such as microplastics and for novel reproductive damage intervention measures.
Collapse
Affiliation(s)
- Yecui Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baolian Hou
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanling Wu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
12
|
Pallotti F, Esteves SC, Faja F, Buonacquisto A, Conflitti AC, Hirsch MN, Lenzi A, Paoli D, Lombardo F. COVID-19 and its treatments: lights and shadows on testicular function. Endocrine 2023; 79:243-251. [PMID: 36260234 PMCID: PMC9579574 DOI: 10.1007/s12020-022-03221-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/02/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE The SARS-CoV-2 pandemic has rapidly spread worldwide and, among the others, the male gender was quickly recognized as an independent risk factor for both the disease and its consequences. Since the possibility of long-term hormonal axis changes and male gamete impairment have been hypothesized but a relatively low levels of evidence has been reached, we focused this narrative mini-review on summarizing key state-of-the-art knowledge on male reproductive effects of COVID-19 as a quick reference for reproductive health specialists. METHODS A comprehensive Medline/PubMed and Embase search was performed selecting all relevant, peer-reviewed papers in English published from 2020. Other relevant papers were selected from the reference lists. RESULTS Available evidence indicates that the likelihood of direct testicular damage from SARS-CoV-2 is somewhat low, but there are many indirect ways (fever, cytokine imbalance, and drugs) through which the pituitary-gonadal axis and spermatogenesis may be disrupted. These alterations are probably transient, but as available evidence is low quality, it cannot be excluded that previous pathologies or comorbidities might modulate the risk of their persistence. On the other hand, available evidence shows high safety regarding andrological health for available vaccines, although studies are mainly focused on mRNA vaccines. CONCLUSION A careful andrological evaluation of men recovering from COVID-19 is highly recommended. Since available evidence is relatively scarce, a careful andrological follow-up and counseling of these patients are mandatory.
Collapse
Affiliation(s)
- Francesco Pallotti
- Laboratory of Seminology - Sperm Bank "Loredana Gandini", Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - Sandro C Esteves
- Andrology and Human Reproduction Clinic, Av. Dr. Heitor Penteado, 1464, Campinas, Brazil
- Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Fabiana Faja
- Laboratory of Seminology - Sperm Bank "Loredana Gandini", Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - Alessandra Buonacquisto
- Laboratory of Seminology - Sperm Bank "Loredana Gandini", Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - Anna Chiara Conflitti
- Laboratory of Seminology - Sperm Bank "Loredana Gandini", Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - Maria Neve Hirsch
- Laboratory of Seminology - Sperm Bank "Loredana Gandini", Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - Andrea Lenzi
- Laboratory of Seminology - Sperm Bank "Loredana Gandini", Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology - Sperm Bank "Loredana Gandini", Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - Francesco Lombardo
- Laboratory of Seminology - Sperm Bank "Loredana Gandini", Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
13
|
Chen J, Chen J, Fang Y, Shen Q, Zhao K, Liu C, Zhang H. Microbiology and immune mechanisms associated with male infertility. Front Immunol 2023; 14:1139450. [PMID: 36895560 PMCID: PMC9989213 DOI: 10.3389/fimmu.2023.1139450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Up to 50% of infertility is caused by the male side. Varicocele, orchitis, prostatitis, oligospermia, asthenospermia, and azoospermia are common causes of impaired male reproductive function and male infertility. In recent years, more and more studies have shown that microorganisms play an increasingly important role in the occurrence of these diseases. This review will discuss the microbiological changes associated with male infertility from the perspective of etiology, and how microorganisms affect the normal function of the male reproductive system through immune mechanisms. Linking male infertility with microbiome and immunomics can help us recognize the immune response under different disease states, providing more targeted immune target therapy for these diseases, and even the possibility of combined immunotherapy and microbial therapy for male infertility.
Collapse
Affiliation(s)
- Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuzi Shen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Liu H, Wang Z, Xie Q, Chi A, Li Y, Dai J, Zhang M, Deng C, Liu G. Ningmitai capsules have anti-inflammatory and pain-relieving effects in the chronic prostatitis/chronic pelvic pain syndrome mouse model through systemic immunity. Front Pharmacol 2022; 13:949316. [PMID: 36263126 PMCID: PMC9574058 DOI: 10.3389/fphar.2022.949316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) seriously affects the physical and mental health of approximately 90% of males. Due to its complex and unclear etiology, the treatment methods that are currently available for chronic prostatitis/chronic pelvic pain syndrome are controversial, and their efficacy is unsatisfactory. At present, most researchers believe that this kind of prostatitis is caused by autoimmune inflammation. Chinese herbs, which are the essence of traditional Chinese medicine (TCM), are emerging treatment options for inflammation and immune diseases. In this experiment, we investigated the effect of Ningmitai capsules (a kind of traditional Chinese medicine widely used to treat lower urinary tract inflammation and pain in males) on chronic prostatitis/chronic pelvic pain syndrome in a non-obese diabetes-experimental autoimmune prostatitis (NOD-EAP) mouse model. First, by using bioinformatics analysis of data from the Encyclopedia of Traditional Chinese Medicine (ETCM) database, we found that quercetin, which is one of the main components of Ningmitai capsules, could reduce the secretion of CCL2 by inhibiting the MAPK pathway. In animal experiments, it was found that after Ningmitai treatment, the inflammation in mouse prostates was alleviated, the expression of CCL2, which is related to pain, and MAPK pathway components were downregulated, and the activation of the inflammatory NF–κB and STAT3 pathways was reduced. Pelvic pain and inflammation were relieved in mice with EAP. Due to the presence of the blood–prostate barrier, the drug may not completely reach the prostate directly and take effect locally. However, we found that after Ningmitai treatment, the proportions of proinflammatory CD11b+Ly6Chigh immune cells in the spleen, bloodstream (systemic immunity), and prostate (local immunity) were reduced. The infiltration of CD11b+ immune cells into the spleen and prostate was decreased. These findings suggested that Ningmitai can treat chronic prostatitis/chronic pelvic pain syndrome by affecting systemic and local immunities through the CCL2–MAPK pathway.
Collapse
Affiliation(s)
- Hanchao Liu
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenqing Wang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qigen Xie
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ani Chi
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanqing Li
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Dai
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chunhua Deng, ; Guihua Liu, ; Min Zhang,
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chunhua Deng, ; Guihua Liu, ; Min Zhang,
| | - Guihua Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chunhua Deng, ; Guihua Liu, ; Min Zhang,
| |
Collapse
|
15
|
Shen Y, You Y, Zhu K, Fang C, Yu X, Chang D. Bibliometric and visual analysis of blood-testis barrier research. Front Pharmacol 2022; 13:969257. [PMID: 36071829 PMCID: PMC9441755 DOI: 10.3389/fphar.2022.969257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Extensive research on the blood-testis barrier has been undertaken in recent years. However, no systematic bibliometric study has been conducted on this subject. Our research aimed to identify the hotspots and frontiers of blood-testis barrier research and to serve as a guide for future scientific research and decision-making in the field.Methods: Studies on the blood-testis barrier were found in the Web of Science Core Collection. VOSviewer, CiteSpace, and Microsoft Excel were used to conduct the bibliometric and visual analyses.Results: We found 942 blood-testis barrier studies published in English between 1992 and 2022. The number of annual publications and citations increased significantly between 2011 and 2022, notably in the United States. China and the United States, the US Population Council, Endocrinology, and Cheng C. Yan were the most productive countries, institution, journal, and author, respectively. The study keywords indicated that blood-testis barrier research involves a variety of compositional features (tight junctions, cytoskeleton, adherens junctions), cell types (Sertoli cells, germ cells, Leydig cells, stem cells), reproductive toxicity (cadmium, nanoparticles, bisphenol-a), and relevant mechanisms (spermatogenesis, apoptosis, oxidative stress, dynamics, inflammation, immune privilege).Conclusion: The composition and molecular processes of the blood-testis barrier as well as the blood-testis barrier in male infertility patients are the primary research hotspots in this field. In addition, future research will likely focus on treatment and the development of novel medications that target signal pathways in oxidative stress and apoptosis to preserve the blood-testis barrier. Further studies must extend to clinical diagnosis and therapy.
Collapse
|
16
|
Hypertension Induces Gonadal Macrophage Imbalance, Inflammation, Lymphangiogenesis, and Dysfunction. Clin Sci (Lond) 2022; 136:879-894. [PMID: 35532133 DOI: 10.1042/cs20220117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
Hypertension (HTN) is associated with gonadal dysfunction and impaired reproductive health in both men and women. An imbalance in the systemic and renal pro-inflammatory (M1)/anti-inflammatory (M2) macrophage ratio, increased inflammation, and inflammation-associated lymphangiogenesis have been observed in animals with HTN. However, the impact of HTN on gonadal macrophages, inflammation, and lymphatics remains obscure. We hypothesized that salt-sensitive HTN (SSHTN) and HTN alters gonadal macrophage polarization, which is associated with inflammation, inflammation-associated lymphangiogenesis and reproductive dysfunction. Flow cytometry analyses revealed a significant increase in M1 macrophages in the testes of SSHTN and nitric oxide synthase inhibition-induced HTN (LHTN) mice, with a concurrent decrease in M2 macrophages in SSHTN mice yet an increase in M2 macrophages in LHTN mice. Ovaries from SSHTN mice exhibited increase in M1 and a decrease in M2 macrophages, while ovaries from LHTN mice had a significant increase in M2 and a decrease in M1 macrophages. Gene expression patterns of pro-inflammatory cytokines revealed gonadal inflammation in all hypertensive mice. Increased lymphatic vessel density in the gonads of both male and female hypertensive mice was confirmed by immunofluorescence staining for LYVE-1. HTN adversely affected the expression pattern of steroidogenic enzymes, hormone receptors, and secretory proteins in both the testes and ovaries. In line with these results, male hypertensive mice also presented with decreased sperm concentration, and increased percentage of sperm with abnormal morphology, damaged acrosome, and non-functional mitochondrial activity. These data demonstrate that HTN alters gonadal macrophage polarization, which is associated with gonadal inflammation, inflammation-associated lymphangiogenesis, and dysfunction.
Collapse
|
17
|
Paira DA, Silvera-Ruiz S, Tissera A, Molina RI, Olmedo JJ, Rivero VE, Motrich RD. Interferon γ, IL-17, and IL-1β impair sperm motility and viability and induce sperm apoptosis. Cytokine 2022; 152:155834. [PMID: 35217429 DOI: 10.1016/j.cyto.2022.155834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
Abstract
Urogenital inflammation is a known cause of male infertility. Increased levels of inflammatory cytokines, leukocyte counts and oxidative stress are highly detrimental for sperm quality thus compromising male fertility. Although cytokines affect sperm by recruiting and activating leukocytes consequently inducing tissue inflammation and oxidative stress, scarce to absent data have been reported about the putative direct effects of inflammatory cytokines on spermatozoa. Herein, we analyzed whether IFNγ, IL-17A, IL-1β, and IL-8 can alter human sperm motility and viability per se. Fractions of viable and motile spermatozoa from normospermic healthy donors were in vitro incubated with recombinant human IFNγ, IL-17A, IL-1β or IL-8 and sperm ROS production, motility, viability and apoptosis were analyzed. Sperm exposed to different concentrations of IFNγ, IL-17A and IL-1β, or a combination of them, for either 1 or 3 h showed significantly increased levels of mitochondrial ROS production and reduced motility and viability with respect to sperm incubated with vehicle. Moreover, the exposure to IFNγ, IL-17A and IL-1β resulted in significantly higher levels of early and/or late apoptotic and/or necrotic spermatozoa. Interestingly, no significant differences in sperm motility, viability and apoptosis were observed in sperm incubated with the concentrations of IL-8 analyzed, for either 1 or 3 h, with respect to sperm incubated with vehicle. In conclusion, our results indicate that IFNγ, IL-17A and IL-1β per se impair sperm motility and decreases viability by triggering increased mitochondrial ROS production and inducing sperm apoptosis. Our results suggest that screening inflammatory cytokines in semen would be an additional helpful tool for the diagnostic workup of male infertility.
Collapse
Affiliation(s)
- Daniela Andrea Paira
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silene Silvera-Ruiz
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Tissera
- Laboratorio de Andrología y Reproducción (LAR), Córdoba, Argentina
| | | | - José Javier Olmedo
- Fundación Urológica Córdoba para la Docencia e Investigación Médica (FUCDIM), Córdoba, Argentina
| | - Virginia Elena Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ruben Dario Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
18
|
Wang S, Qian Z, Ge X, Li C, Xue M, Liang K, Ma R, Ouyang L, Zheng L, Jing J, Cao S, Zhang Y, Yang Y, Chen Y, Ma J, Yao B. LncRNA Tug1 maintains blood-testis barrier integrity by modulating Ccl2 expression in high-fat diet mice. Cell Mol Life Sci 2022; 79:114. [PMID: 35103851 PMCID: PMC11073184 DOI: 10.1007/s00018-022-04142-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/02/2023]
Abstract
Sertoli cells are essential for spermatogenesis in the testicular seminiferous tubules by forming blood-testis barrier (BTB) and creating a unique microenvironment for spermatogenesis. Many lncRNAs have been reported to participate in spermatogenesis. However, the role of long noncoding RNAs (lncRNAs) in Sertoli cells has rarely been examined. Herein, we found that a high-fat diet (HFD) decreased sperm quality, impaired BTB integrity and resulted in accumulation of saturated fatty acids (SFAs), especially palmitic acid (PA), in mouse testes. PA decreased the expression of tight junction (TJ)-related proteins, increased permeability and decreased transepithelial electrical resistance (TER) in primary Sertoli cells and TM4 cells. Moreover, lncRNA Tug1 was found to be involved in PA-induced BTB disruption by RNA-seq. Tug1 depletion distinctly impaired the TJs of Sertoli cells and overexpression of Tug1 alleviated the disruption of BTB integrity induced by PA. Moreover, Ccl2 was found to be a downstream target of Tug1, and decreased TJ-related protein levels and TER and increased FITC-dextran permeability in vitro. Furthermore, the addition of Ccl2 damaged BTB integrity after overexpression of Tug1 in the presence of PA. Mechanistically, we found that Tug1 could directly bind to EZH2 and regulate H3K27me3 occupancy in the Ccl2 promoter region by RNA immunoprecipitation and chromatin immunoprecipitation assays. Our study revealed an important role of Tug1 in the BTB integrity of Sertoli cells and provided a new view of the role of lncRNAs in male infertility.
Collapse
Affiliation(s)
- Shuxian Wang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Zhang Qian
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xie Ge
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chuwei Li
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Mengqi Xue
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Kuan Liang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu, China
| | - Rujun Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Lei Ouyang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Lu Zheng
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jun Jing
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Siyuan Cao
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yu Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yang Yang
- Basic Medical Laboratory, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China.
| | - Bing Yao
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China.
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
19
|
Hasan H, Bhushan S, Fijak M, Meinhardt A. Mechanism of Inflammatory Associated Impairment of Sperm Function, Spermatogenesis and Steroidogenesis. Front Endocrinol (Lausanne) 2022; 13:897029. [PMID: 35574022 PMCID: PMC9096214 DOI: 10.3389/fendo.2022.897029] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Infection and inflammation are relevant entities of male reproductive disorders that can lead to sub-/infertility. Associated damage of the testis of affected men and in rodent models include leukocytic infiltration, edema formation, fibrosis, germ cell loss and reduced androgen levels. Negative effects on spermatogenesis are thought to be elicited by oxidative stress sustained mostly by increased levels of ROS and pro-inflammatory cytokines. Under normal conditions these cytokines have physiological functions. However, increased levels as seen in inflammation and infection, but also in obesity and cancer are harmful for germ cells and impair steroidogenesis. As a summary, there is mounting evidence that the activation of inflammatory pathways is a rather common feature in various forms of male testicular disorders that extends beyond established infectious/inflammatory cues. This mini review will focus on relevant entities and the mechanisms of how a dysbalance of local testicular factors contributes to disturbances of spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
| | | | - Monika Fijak
- *Correspondence: Andreas Meinhardt, ; Monika Fijak,
| | | |
Collapse
|
20
|
Pan Z, Gao Y, Liu S, Ke Z, Guo J, Ma W, Cui T, Liu B, Zhang X. Wu-Zi-Yan-Zong-Wan protects mouse blood-testis barrier from Tripterygium wilfordii Hook. f. multiglycoside-induced disruption by regulating proinflammatory cytokines. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114440. [PMID: 34293456 DOI: 10.1016/j.jep.2021.114440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wu-Zi-Yan-Zong-Wan (WZYZW) is a classical traditonal Chinese herbal formula and a Chinese patent medicine used to treat male infertility. However, the chemical components of WZYZW and its mechanism are not yet fully clarified. AIM OF THE STUDY The purpose of this study is to observe the effect and underlying mechanism of WZYZW on ameliorating blood-testis barrier (BTB) dysfunction in mice with spermatogenic dysfunction induced by administration of Tripterygium wilfordii Hook. f. multiglycosides (GTW). MATERIALS AND METHODS WZYZW was administered by gavage to mice with GTW-induced spermatogenic dysfunction (kidney essence deficiency pattern) for 40 days. Testis tissues were obtained for subsequent histopathological analysis. Biotin tracing was used to evaluate the permeability of Sertoli cell tight junctions. The levels of proinflammatory cytokines including interleukin (IL)-6, IL-17A, IL-1α and tumor necrosis factor (TNF)-α were analyzed by ELISA. The expression levels of proteins related to tight junction including ZO-1, JAM-A and occludin were analyzed by western blotting. The ultrastructures of tight junctions were observed by transmission electron microscopy. RESULTS WZYZW ameliorated GTW-induced testicular spermatogenic dysfunction. Levels of IL-6, IL-17A, IL-1α, and TNF-α in the groups receiving low, medium, and high doses of WZYZW decreased in a dose-dependent manner. WZYZW impeded a biotin tracer from permeating the BTB, protecting its integrity in GTW-treated mice. In addition, our results showed no significant changes in the protein expressions of ZO-1, JAM-A, and occludin after WZYZW administration compared with the GTW group. Meanwhile, WZYZW exhibited a linear arrangement and restored the typical "sandwich" structure of BTB. No acute poisoning incidences were observed in all groups during the experiment. CONCLUSIONS Our findings demonstrate that WZYZW may ameliorate some GTW-induced BTB dysfunction, possibly by regulating proinflammatory cytokine levels. In vitro studies on the regulation of BTB permeability by WZYZW and its active components are further required.
Collapse
Affiliation(s)
- Zhenkun Pan
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Yunxiao Gao
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Shuang Liu
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New District, Chongqing, 401121, China.
| | - Zhenghao Ke
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Jianqiang Guo
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wenjing Ma
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Tianwei Cui
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Baoxing Liu
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Xiuping Zhang
- Department of Gynecology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China.
| |
Collapse
|
21
|
Li Y, Zhao Y, Wang J, Cheng M, Wang J. Interleukin 17A deficiency alleviates fluoride-induced testicular injury by inhibiting the immune response and apoptosis. CHEMOSPHERE 2021; 263:128178. [PMID: 33297146 DOI: 10.1016/j.chemosphere.2020.128178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
The reproductive toxicity of fluoride (F) has been verified by various epidemiological and experimental studies. Our previous work suggested that the interleukin 17A (IL-17A) is involved in the testicular damage induced by excessive F exposure. In this study, we further investigated the role of IL-17A in F-induced testicular injury. Wild type (WT) and IL-17A knockout (IL-17A-/-) mice were exposed to 0, 25, 50, or 100 mg/L sodium fluoride (NaF) for 90 days. We found that exposure to excessive F levels caused testicular damage, decreased semen quality, negatively affected testicular morphology, and increased the inflammatory response. Specifically, excessive F intake increased the expression levels of IL-17A in the testis and increased the protein levels of Act1, NF-κB, IL-17R, C/EBP-α, and TRAF6 in the IL-17A signaling pathway. The increase in IL-17A expression corresponded to increases expression of IL-17R, IL-6, IL-23, IL-1β, TGF-β and TNF-α as assessed by RT-PCR and ELISA assays. Remarkably, IL-17A knockout in mice ameliorated the effects of F on testicular damage, semen quality, testicular morphology, and the immune response. Additionally, we found the in vitro exposure of Leydig cells to NaF and recombinant IL-17A led to abnormal apoptosis and a decrease in testosterone secretion. Our findings prove that IL-17A plays a key role in the exacerbation of testicular injuries in F-exposed mice, and that IL-17A deficiency can alleviate F-induced injury by inhibiting the immune response and apoptosis in the testis. These data suggest that targeting IL-17A may be a useful therapeutic strategy for treating F-mediated toxicity in the testis.
Collapse
Affiliation(s)
- Yanyan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yangfei Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jinming Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Min Cheng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
22
|
Gong J, Zeng Q, Yu D, Duan YG. T Lymphocytes and Testicular Immunity: A New Insight into Immune Regulation in Testes. Int J Mol Sci 2020; 22:ijms22010057. [PMID: 33374605 PMCID: PMC7793097 DOI: 10.3390/ijms22010057] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The immune privilege of the testes is necessary to prevent immune attacks to gamete-specific antigens and paternal major histocompatibility complex (MHC) antigens, allowing for normal spermatogenesis. However, infection and inflammation of the male genital tract can break the immune tolerance and represent a significant cause of male infertility. Different T cell subsets have been identified in mammalian testes, which may be involved in the maintenance of immune tolerance and pathogenic immune responses in testicular infection and inflammation. We reviewed the evidence in the published literature on different T subtypes (regulatory T cells, helper T cells, cytotoxic T cells, γδ T cells, and natural killer T cells) in human and animal testes that support their regulatory roles in infertility and the orchitis pathology. While many in vitro studies have indicated the regulation potential of functional T cell subsets and their possible interaction with Sertoli cells, Leydig cells, and spermatogenesis, both under physiological and pathological processes, there have been no in situ studies to date. Nevertheless, the normal distribution and function of T cell subsets are essential for the immune privilege of the testes and intact spermatogenesis, and T cell-mediated immune response drives testicular inflammation. The distinct function of different T cell subsets in testicular homeostasis and the orchitis pathology suggests a considerable potential of targeting specific T cell subsets for therapies targeting chronic orchitis and immune infertility.
Collapse
Affiliation(s)
- Jialei Gong
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Qunxiong Zeng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
23
|
Lustig L, Guazzone VA, Theas MS, Pleuger C, Jacobo P, Pérez CV, Meinhardt A, Fijak M. Pathomechanisms of Autoimmune Based Testicular Inflammation. Front Immunol 2020; 11:583135. [PMID: 33101310 PMCID: PMC7546798 DOI: 10.3389/fimmu.2020.583135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Infection and inflammation of the male reproductive tract are relevant causes of infertility. Inflammatory damage occurs in the special immunosuppressive microenvironment of the testis, a hallmark termed testicular immune privilege, which allows tolerance to neo-antigens from developing germ cells appearing at puberty, long after the establishment of systemic immune tolerance. Experimental autoimmune orchitis (EAO) is a well-established rodent model of chronic testicular inflammation and organ specific autoimmunity that offers a valuable in vivo tool to investigate the pathological and molecular mechanisms leading to the breakdown of the testicular immune privilege. The disease is characterized by the infiltration of the interstitium by immune cells (mainly macrophages, dendritic cells, and T cells), formation of autoantibodies against testicular antigens, production of pro-inflammatory mediators such as NO, MCP1, TNFα, IL6, or activins and dysregulation of steroidogenesis with reduced levels of serum testosterone. EAO leads to sloughing of germ cells, atrophic seminiferous tubules and fibrotic remodeling, parameters all found similarly to changes in human biopsies from infertile patients with inflammatory infiltrates. Interestingly, testosterone supplementation during the course of EAO leads to expansion of the regulatory T cell population and inhibition of disease development. Knowledge of EAO pathogenesis aims to contribute to a better understanding of human testicular autoimmune disease as an essential prerequisite for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Livia Lustig
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Vanesa A Guazzone
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - María S Theas
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Christiane Pleuger
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Patricia Jacobo
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Cecilia V Pérez
- Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
24
|
Natural killer and NKT cells in the male reproductive tract. J Reprod Immunol 2020; 142:103178. [PMID: 32739646 DOI: 10.1016/j.jri.2020.103178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023]
Abstract
Natural killer (NK) cells are important effector lymphocytes that play a pivotal role in the innate and adaptive immune responses to tumors and viral infection. NKT cells are a heterogeneous group of T cells that share properties with both T cells and NK cells. They display immunoregulatory properties as they facilitate the cell-mediated immune response to tumors and infectious diseases, and inhibit cell-mediated immunity associated with autoimmune diseases and allograft rejection. However, the roles of NK and NKT cells in the male reproductive tract remain largely unexplored, in particular, NKT cells, tissue distribution, and state of health or disease. Infection and inflammation of the male genital tract are thought to be the primary etiological factors of male infertility. In this review, we considered this complex and rapidly growing field. We summarize the recent findings and the characterization and roles of NK and NKT cells in the male reproductive tract, including the testis, epididymis, prostate, seminal vesicle, and semen, to enhance our understanding of the immunological mechanisms of male infertility and for the design effective vaccines for male reproductive health in the future.
Collapse
|
25
|
Gorga A, Rindone GM, Centola CL, Sobarzo C, Pellizzari EH, Camberos MDC, Cigorraga SB, Riera MF, Galardo MN, Meroni SB. In vitro effects of glyphosate and Roundup on Sertoli cell physiology. Toxicol In Vitro 2020; 62:104682. [PMID: 31626902 DOI: 10.1016/j.tiv.2019.104682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Roundup (R), a formulation that contains glyphosate (G) as the active ingredient, is a commonly used nonselective herbicide that has been proposed to affect male fertility. It is well known that an adequate Sertoli cell function is essential to maintain germ cell development. The aim of the present study was to analyze whether G and R are able to affect Sertoli cell functions, such as energy metabolism and blood-testis barrier (BTB) integrity. Sertoli cell cultures from 20-day-old rats were exposed to 10 and 100 ppm of G or R, doses which do not decrease cell viability. Neither G nor R caused impairment in lactate production or fatty acid oxidation. G and R decreased Transepithelial Electrical Resistance, which indicates the establishment of a Sertoli cell junction barrier. However, neither G nor R modified the expression of claudin11, ZO1 and occludin, proteins that constitute the BTB. Analysis of cellular distribution of claudin11 by immunofluorescence showed that G and R induced a delocalization of the signal from membrane to the cytoplasm. The results suggest that G and R could alter an important function of Sertoli cell such as BTB integrity and thus they could compromise the normal development of spermatogenesis.
Collapse
Affiliation(s)
- Agostina Gorga
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Gustavo Marcelo Rindone
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Cecilia Lucia Centola
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Cristian Sobarzo
- Facultad de Medicina, UBA, Instituto de Investigaciones Biomédicas (INBIOMED), Argentina
| | - Eliana Herminia Pellizzari
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - María Del Carmen Camberos
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Selva Beatriz Cigorraga
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Maria Fernanda Riera
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Maria Noel Galardo
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Silvina Beatriz Meroni
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina.
| |
Collapse
|
26
|
Ramirez R, Herrera AM, Ramirez J, Qian C, Melton DW, Shireman PK, Jin YF. Deriving a Boolean dynamics to reveal macrophage activation with in vitro temporal cytokine expression profiles. BMC Bioinformatics 2019; 20:725. [PMID: 31852428 PMCID: PMC6921543 DOI: 10.1186/s12859-019-3304-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages show versatile functions in innate immunity, infectious diseases, and progression of cancers and cardiovascular diseases. These versatile functions of macrophages are conducted by different macrophage phenotypes classified as classically activated macrophages and alternatively activated macrophages due to different stimuli in the complex in vivo cytokine environment. Dissecting the regulation of macrophage activations will have a significant impact on disease progression and therapeutic strategy. Mathematical modeling of macrophage activation can improve the understanding of this biological process through quantitative analysis and provide guidance to facilitate future experimental design. However, few results have been reported for a complete model of macrophage activation patterns. RESULTS We globally searched and reviewed literature for macrophage activation from PubMed databases and screened the published experimental results. Temporal in vitro macrophage cytokine expression profiles from published results were selected to establish Boolean network models for macrophage activation patterns in response to three different stimuli. A combination of modeling methods including clustering, binarization, linear programming (LP), Boolean function determination, and semi-tensor product was applied to establish Boolean networks to quantify three macrophage activation patterns. The structure of the networks was confirmed based on protein-protein-interaction databases, pathway databases, and published experimental results. Computational predictions of the network evolution were compared against real experimental results to validate the effectiveness of the Boolean network models. CONCLUSION Three macrophage activation core evolution maps were established based on the Boolean networks using Matlab. Cytokine signatures of macrophage activation patterns were identified, providing a possible determination of macrophage activations using extracellular cytokine measurements.
Collapse
Affiliation(s)
- Ricardo Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Allen Michael Herrera
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Joshua Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Chunjiang Qian
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - David W Melton
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Paula K Shireman
- Department of Surgery, Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
27
|
Theas MS. Germ cell apoptosis and survival in testicular inflammation. Andrologia 2018; 50:e13083. [DOI: 10.1111/and.13083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/13/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- María Susana Theas
- Cátedra II de Histología, Departamento de Biología Celular, Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED); CONICET-Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
28
|
Fijak M, Pilatz A, Hedger MP, Nicolas N, Bhushan S, Michel V, Tung KSK, Schuppe HC, Meinhardt A. Infectious, inflammatory and 'autoimmune' male factor infertility: how do rodent models inform clinical practice? Hum Reprod Update 2018; 24:416-441. [PMID: 29648649 PMCID: PMC6016649 DOI: 10.1093/humupd/dmy009] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/02/2018] [Accepted: 03/10/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Infection and inflammation of the reproductive tract are significant causes of male factor infertility. Ascending infections caused by sexually transmitted bacteria or urinary tract pathogens represent the most frequent aetiology of epididymo-orchitis, but viral, haematogenous dissemination is also a contributory factor. Limitations in adequate diagnosis and therapy reflect an obvious need for further understanding of human epididymal and testicular immunopathologies and their contribution to infertility. A major obstacle for advancing our knowledge is the limited access to suitable tissue samples. Similarly, the key events in the inflammatory or autoimmune pathologies affecting human male fertility are poorly amenable to close examination. Moreover, the disease processes generally have occurred long before the patient attends the clinic for fertility assessment. In this regard, data obtained from experimental animal models and respective comparative analyses have shown promise to overcome these restrictions in humans. OBJECTIVE AND RATIONALE This narrative review will focus on male fertility disturbances caused by infection and inflammation, and the usefulness of the most frequently applied animal models to study these conditions. SEARCH METHODS An extensive search in Medline database was performed without restrictions until January 2018 using the following search terms: 'infection' and/or 'inflammation' and 'testis' and/or 'epididymis', 'infection' and/or 'inflammation' and 'male genital tract', 'male infertility', 'orchitis', 'epididymitis', 'experimental autoimmune' and 'orchitis' or 'epididymitis' or 'epididymo-orchitis', antisperm antibodies', 'vasectomy'. In addition to that, reference lists of primary and review articles were reviewed for additional publications independently by each author. Selected articles were verified by each two separate authors and discrepancies discussed within the team. OUTCOMES There is clear evidence that models mimicking testicular and/or epididymal inflammation and infection have been instructive in a better understanding of the mechanisms of disease initiation and progression. In this regard, rodent models of acute bacterial epididymitis best reflect the clinical situation in terms of mimicking the infection pathway, pathogens selected and the damage, such as fibrotic transformation, observed. Similarly, animal models of acute testicular and epididymal inflammation using lipopolysaccharides show impairment of reproduction, endocrine function and histological tissue architecture, also seen in men. Autoimmune responses can be studied in models of experimental autoimmune orchitis (EAO) and vasectomy. In particular, the early stages of EAO development showing inflammatory responses in the form of peritubular lymphocytic infiltrates, thickening of the lamina propria of affected tubules, production of autoantibodies against testicular antigens or secretion of pro-inflammatory mediators, replicate observations in testicular sperm extraction samples of patients with 'mixed atrophy' of spermatogenesis. Vasectomy, in the form of sperm antibodies and chronic inflammation, can also be studied in animal models, providing valuable insights into the human response. WIDER IMPLICATIONS This is the first comprehensive review of rodent models of both infectious and autoimmune disease of testis/epididymis, and their clinical implications, i.e. their importance in understanding male infertility related to infectious and non-infectious/autoimmune disease of the reproductive organs.
Collapse
Affiliation(s)
- Monika Fijak
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Adrian Pilatz
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig University of Giessen, Germany
| | - Mark P Hedger
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Nour Nicolas
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Vera Michel
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Kenneth S K Tung
- Departments of Pathology and Microbiology, Beirne Carter Center for Immunology Research, University of Virginia, 345 Crispell Drive, Charlottesville, VA, USA
| | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig University of Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| |
Collapse
|
29
|
Zake T, Skuja S, Kalere I, Konrade I, Groma V. Heterogeneity of tissue IL-17 and tight junction proteins expression demonstrated in patients with autoimmune thyroid diseases. Medicine (Baltimore) 2018; 97:e11211. [PMID: 29924048 PMCID: PMC6024462 DOI: 10.1097/md.0000000000011211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Th17 cells together with their hallmark cytokine interleukin (IL)-17 were identified as crucial contributing factors in the pathogenesis of thyroid autoimmunity. The cytokine-regulated tight junction (Tj) disruption is thought to be essential in the initiation and/or development of several diseases. Still, the role of IL-17 maintaining Tj integrity in autoimmune thyroid diseases (AITDs) has not yet been evaluated. We aimed to investigate integrity of the thyroid follicle by studying immunoexpression of cellular Tj - zonula occludens (ZO)-1 and claudin-1 proteins coupled to IL-17A and CD68 detection in AITD patients compared with controls.Thirty-five adult patients undergoing thyroidectomy and presenting 18 cases of Hashimoto thyroiditis (HT), 7 of Graves' disease (GD) as well as 10 subjects of colloid goiter without autoimmune component served as controls were enrolled in this study. An immunohistochemical analysis including IL-17A, ZO-1, claudin-1, and CD68 detection was performed in each case. The correlation of IL-17A with Tj and CD68 in patients with AITD was also analyzed.Apart from inflammatory cells, we evidenced a stronger expression level of IL17A in the thyroid follicular cells in HT patients when compared with GD or colloid goiter. A significant reduction of ZO-1 immunoreactivity was observed in the thyrocytes in HT patients, whereas no significant differences were found in claudin-1 expression in HT and GD compared with colloid goiter patients. A significantly higher number of thyroid follicles with CD68-positive cells was found in HT patients than that in patients with GD or colloid goiter. In HT patients, the expression of IL-17A in the follicular cells was positively correlated with CD68 immunopositivity, whereas no association with claudin-1 or ZO-1 expression was found. GD patients did not reveal any significant correlation of IL-17A with Tj and CD68.Strong overexpression of IL-17A observed in the thyroid epithelial cells is associated with the presence of intrafollicular CD68-positive cells in HT patients. We evidenced the changes in molecules of thyrocyte junctional complexes highlighting impairment of the thyroid follicle integrity in HT, but no association with IL-17A was found.
Collapse
Affiliation(s)
- Tatjana Zake
- Institute of Anatomy and Anthropology
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
| | | | - Ieva Kalere
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
| | - Ilze Konrade
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
| | | |
Collapse
|
30
|
Retamozo S, Flores-Chavez A, Consuegra-Fernández M, Lozano F, Ramos-Casals M, Brito-Zerón P. Cytokines as therapeutic targets in primary Sjögren syndrome. Pharmacol Ther 2017; 184:81-97. [PMID: 29092775 DOI: 10.1016/j.pharmthera.2017.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Primary Sjögren syndrome (SjS) is a systemic autoimmune disease that may affect 1 in 1000 people (overwhelmingly women) and that can be a serious disease with excess mortality due to severe organ-specific involvements and the development of B cell lymphoma; systemic involvement clearly marks the disease prognosis, and strongly suggests the need for closer follow-up and more robust therapeutic management. Therapy is established according to the organ involved and severity. As a rule, the management of systemic SjS should be organ-specific, with glucocorticoids and immunosuppressive agents limited to potentially-severe involvements; unfortunately, the limited evidence available for these drugs, together with the potential development of serious adverse events, makes solid therapeutic recommendations difficult. The emergence of biological therapies has increased the therapeutic armamentarium available to treat primary SjS. Biologics currently used in SjS patients are used off-label and are overwhelmingly agents targeting B cells, but the most recent studies are moving on into the evaluation of targeting specific cytokines involved in the SjS pathogenesis. The most recent etiopathogenic advances in SjS are shedding some light in the search for new highly-selective biological therapies without the adverse effects of the standard drugs currently used (corticosteroids and immunosuppressant drugs). This review summarizes the potential pharmacotherapeutic options targeting the main cytokine families involved in the etiopathogenesis of primary SjS and analyzes potential insights for developing new therapies.
Collapse
Affiliation(s)
- Soledad Retamozo
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (INICSA-UNC-CONICET), Córdoba, Argentina; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain
| | - Alejandra Flores-Chavez
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Biomedical Research Unit 02, Clinical Epidemiology Research Unit, UMAE, Specialties Hospital, Western Medical Center, Mexican Institute for Social Security (IMSS), Guadalajara, Mexico; Postgraduate Program of Medical Science, University Center for Biomedical Research (CUIB), University of Colima, Colima, Mexico; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain
| | - Marta Consuegra-Fernández
- Immunoreceptors del Sistema Innat I Adaptatiu, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat I Adaptatiu, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
| | - Manuel Ramos-Casals
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain.
| | - Pilar Brito-Zerón
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Autoimmune Diseases Unit, Department of Medicine, Hospital CIMA-Sanitas, Barcelona, Spain; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain
| |
Collapse
|
31
|
Abstract
The purpose of this review is to describe the endocrine and local testicular factors that contribute to the regulation of the blood-testis barrier (BTB), using information gained from in vivo and in vitro models of BTB formation during/after puberty, and from the maintenance of BTB function during adulthood. In vivo the BTB, in part comprised of tight junctions between adjacent somatic Sertoli cells, compartmentalizes meiotic spermatocytes and post-meiotic spermatids away from the vasculature, and therefore prevents autoantibody production by the immune system against these immunogenic germ cells. This adluminal compartment also features a unique biochemical milieu required for the completion of germ cell development. During the normal process of spermatogenesis, earlier germ cells continually cross into the adluminal compartment, but the regulatory mechanisms and changes in junctional proteins that allow this translocation step without causing a 'leak' remain poorly understood. Recent data describing the roles of FSH and androgen on the regulation of Sertoli cell tight junctions and tight junction proteins will be discussed, followed by an examination of the role of paracrine factors, including members of the TGFβ superfamily (TGFβ3, activin A) and retinoid signalling, as potential mediators of junction assembly and disassembly during the translocation process.
Collapse
Affiliation(s)
- Peter G Stanton
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Dept. of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
32
|
Zhang LW, Cong X, Zhang Y, Wei T, Su YC, Serrão ACA, Brito ART, Yu GY, Hua H, Wu LL. Interleukin-17 Impairs Salivary Tight Junction Integrity in Sjögren's Syndrome. J Dent Res 2016; 95:784-92. [PMID: 26933138 DOI: 10.1177/0022034516634647] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Sjögren's syndrome (SS) is an inflammatory autoimmune disease that causes secretory dysfunction of the salivary glands. It has been reported that proinflammatory cytokine interleukin-17 (IL-17) was elevated and tight junction (TJ) integrity disrupted in minor salivary glands from SS patients. However, whether the elevated IL-17 in SS affects TJ integrity and thereby alters the function of salivary gland is unknown. Here, by using nonobese diabetic (NOD) mice as SS model, we found that the stimulated salivary flow rate was significantly decreased in NOD mice. Lymphocyte infiltration was mainly observed in submandibular glands (SMGs), but not parotid glands (PGs), of NOD mice. IL-17 was significantly increased and mainly located in lymphocytic-infiltrating regions in SMGs but not detectable in PGs of NOD mice. Meanwhile, the epithelial barrier function was disrupted, as evidenced by an increased paracellular tracer clearance and an enlarged acinar TJ width in SMGs of NOD mice. Furthermore, claudin-1 and -3 were elevated especially at the basolateral membranes, whereas claudin-4, occludin, and zonula occludens-1 (ZO-1) were reduced in SMGs of NOD mice. Moreover, occludin and ZO-1 were dispersed into cytoplasm in SMGs of NOD mice. However, no change in the expression and distribution of TJ proteins was found in PGs. In vitro, IL-17 significantly decreased the levels and apical staining of claudin-4 and ZO-1 proteins in the cultured SMG tissues, as well as claudin-1, occludin, and ZO-1 in PG tissues. Moreover, IL-17 activated the phosphorylation of IκBα and p65 in SMG cells, whereas pretreatment with NF-κB inhibitor pyrrolidine dithiocarbamate suppressed the IL-17-induced downregulation of claudin-4 and ZO-1 in SMG tissues. Taken together, these findings indicate that IL-17 derived from infiltrating lymphocyte impairs the integrity of TJ barrier through NF-κB signaling pathway, and thus might contribute to salivary gland dysfunction in SS.
Collapse
Affiliation(s)
- L W Zhang
- Department of Oral Medicine and Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - X Cong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - Y Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - T Wei
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Y C Su
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - A C A Serrão
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China Department of Dentistry, Santa Cecília University, Santos, Brazil
| | - A R T Brito
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China Department of Dentistry, Santa Cecília University, Santos, Brazil
| | - G Y Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - H Hua
- Department of Oral Medicine and Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - L L Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| |
Collapse
|