1
|
Satofuka H, Suzuki H, Tanaka T, Li G, Kaneko MK, Kato Y. Development of an anti-human EphA2 monoclonal antibody Ea 2Mab-7 for multiple applications. Biochem Biophys Rep 2025; 42:101998. [PMID: 40236294 PMCID: PMC11999297 DOI: 10.1016/j.bbrep.2025.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/12/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Ephrin type A receptor 2 (EphA2) binds to membrane-bound ligands, ephrin A1, A2, and A5, eliciting bidirectional signaling. This signaling regulates many physiological processes, such as tissue development, homeostasis, and regeneration. The dysregulation of the EphA2-ephrins axis contributes to various diseases, including cancers. The high expression of EphA2 is observed in various cancers, which promotes cancer malignancy, whereas its levels are relatively low in most normal adult tissues. Therefore, EphA2 is a promising target for cancer therapy. We developed anti-human EphA2 monoclonal antibodies in this study using the Cell-Based Immunization and Screening method. Among them, a clone Ea2Mab-7 (IgG1, κ) exhibited a high affinity and sensitivity in flow cytometry. The dissociation constant values of Ea2Mab-7 for CHO/EphA2 and MDA-MB-231 cells were determined as 6.2 ± 1.3 × 10-9 M and 1.6 ± 0.4 × 10-9 M, respectively. Furthermore, Ea2Mab-7 can detect endogenous EphA2 in Western blot and immunohistochemistry. Therefore, the Ea2Mab-7 is highly versatile for basic research and is expected to contribute to clinical applications, such as antibody therapy and tumor diagnosis.
Collapse
Affiliation(s)
- Hiroyuki Satofuka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
2
|
Rubinfeld H, Cohen ZR, Bendavid U, Fichman-Horn S, Levy-Barda A, David C, Melamed P, Shimon I. Erythropoietin-producing hepatocellular receptor B6 is highly expressed in non-functioning pituitary neuroendocrine tumors and its expression correlates with tumor size. Mol Biol Rep 2024; 51:297. [PMID: 38341842 PMCID: PMC10859332 DOI: 10.1007/s11033-023-09186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Erythropoietin-producing hepatocellular (EPH) receptors are the largest known family of receptor tyrosine kinases characterized in humans. These proteins are involved in tissue organization, synaptic plasticity, vascular development and the progression of various diseases including cancer. The Erythropoietin-producing hepatocellular receptor tyrosine kinase member EphB6 is a pseudokinase which has not attracted an equivalent amount of interest as its enzymatically-active counterparts. The aim of this study was to assess the expression of EphB6 in pituitary tumors. METHODS AND RESULTS Human normal pituitaries and pituitary tumors were examined for EphB6 mRNA expression using real-time PCR and for EphB6 protein by immunohistochemistry and Western blotting. EphB6 was highly expressed in non-functioning pituitary neuroendocrine tumors (NF-PitNETs) versus the normal pituitary and GH-secreting PitNETs. EphB6 mRNA expression was correlated with tumor size. CONCLUSIONS Our results suggest EphB6 aberrant expression in NF-PitNETs. Future studies are warranted to determine the role and significance of EphB6 in NF-PitNETs tumorigenesis.
Collapse
Affiliation(s)
- Hadara Rubinfeld
- Institute of Endocrinology, Diabetes & Metabolism and Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zvi R Cohen
- Department of Neurosurgery, Sheba Medical Center, Tel-Hashomer, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uzi Bendavid
- Department of Neurosurgery, Rabin Medical Center, Petah Tikva, Israel
| | | | - Adva Levy-Barda
- Biobank, Department of Pathology, Rabin Medical Center, Petah Tikva, Israel
| | - Cfir David
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ilan Shimon
- Institute of Endocrinology, Diabetes & Metabolism and Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel.
- School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Pérez Millán MI, Cheung LYM, Mercogliano F, Camilletti MA, Chirino Felker GT, Moro LN, Miriuka S, Brinkmeier ML, Camper SA. Pituitary stem cells: past, present and future perspectives. Nat Rev Endocrinol 2024; 20:77-92. [PMID: 38102391 PMCID: PMC10964491 DOI: 10.1038/s41574-023-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Pituitary cells that express the transcription factor SOX2 are stem cells because they can self-renew and differentiate into multiple pituitary hormone-producing cell types as organoids. Wounding and physiological challenges can activate pituitary stem cells, but cell numbers are not fully restored, and the ability to mobilize stem cells decreases with increasing age. The basis of these limitations is still unknown. The regulation of stem cell quiescence and activation involves many different signalling pathways, including those mediated by WNT, Hippo and several cytokines; more research is needed to understand the interactions between these pathways. Pituitary organoids can be formed from human or mouse embryonic stem cells, or from human induced pluripotent stem cells. Human pituitary organoid transplantation is sufficient to induce corticosterone release in hypophysectomized mice, raising the possibility of therapeutic applications. Today, pituitary organoids have the potential to assess the role of individual genes and genetic variants on hormone production ex vivo, providing an important tool for the advancement of exciting frontiers in pituitary stem cell biology and pituitary organogenesis. In this article, we provide an overview of notable discoveries in pituitary stem cell function and highlight important areas for future research.
Collapse
Affiliation(s)
- María Inés Pérez Millán
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Florencia Mercogliano
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Andrea Camilletti
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo T Chirino Felker
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Lucia N Moro
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Rizzoti K, Chakravarty P, Sheridan D, Lovell-Badge R. SOX9-positive pituitary stem cells differ according to their position in the gland and maintenance of their progeny depends on context. SCIENCE ADVANCES 2023; 9:eadf6911. [PMID: 37792947 PMCID: PMC10550238 DOI: 10.1126/sciadv.adf6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Stem cell (SC) differentiation and maintenance of resultant progeny underlie cell turnover in many organs, but it is difficult to pinpoint the contribution of either process. In the pituitary, a central regulator of endocrine axes, adult SCs undergo activation after target organ ablation, providing a well-characterized paradigm to study an adaptative response in a multi-organ system. Here, we used single-cell technologies to characterize SC heterogeneity and mobilization together with lineage tracing. We show that SC differentiation occurs more frequently than thought previously. In adaptative conditions, differentiation increases and is more diverse than demonstrated by the lineage tracing experiments. Detailed examination of SC progeny suggests that maintenance of selected nascent cells underlies SC output, highlighting a trophic role for the microenvironment. Analyses of cell trajectories further predict pathways and potential regulators. Our model provides a valuable system to study the influence of evolving states on the mechanisms of SC mobilization.
Collapse
Affiliation(s)
- Karine Rizzoti
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Daniel Sheridan
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
5
|
Yoshida S, Yurino H, Kobayashi M, Nishimura N, Yano K, Fujiwara K, Hashimoto SI, Kato T, Kato Y. Expression and localization of tight junction-related proteins in adult rat pituitary stem/progenitor cell niches. J Reprod Dev 2022; 68:225-231. [PMID: 35418523 PMCID: PMC9184826 DOI: 10.1262/jrd.2021-150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pituitary endocrine cells are supplied by Sox2-expressing stem/progenitor cells in the anterior lobe of the adult pituitary gland. These SOX2-positive cells are maintained in two types of microenvironments (niches): the marginal cell layer (MCL)-niche and the parenchymal-niche. Recently, we isolated dense SOX2-positive cell clusters from the parenchymal-niche by taking advantage of their resistance to protease treatment as parenchymal stem/progenitor cell (PS)-clusters. In the present study, by analyzing these isolated PS-clusters, we attempted to identify novel structural characteristics of pituitary stem/progenitor cell niches. Quantitative real-time PCR showed that tight junction-related genes were distinctly expressed in the isolated PS-clusters. Immunocytostaining showed that the tight junction molecules, ZO-1 and occludin, were localized in the apical membrane facing the pseudo-follicle-like structure of the isolated PS-clusters regardless of the expression of S100β, which distinguishes the sub-population of SOX2-positive cells. Furthermore, immunohistochemistry of the pituitary glands of adult rats clearly demonstrated that ZO-1 and occludin were densely present in the parenchymal-niche encircling the pseudo-follicle, while they were observed in the apical membrane in the MCL-niche facing the residual lumen. Collectively, these tight junction-related proteins might be involved in the architecture and maintenance of the plasticity of pituitary stem/progenitor cell niches.
Collapse
Affiliation(s)
- Saishu Yoshida
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan.,Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hideaki Yurino
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-0934, Japan
| | - Masaaki Kobayashi
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| | - Naoto Nishimura
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| | - Kentaro Yano
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| | - Ken Fujiwara
- Department of Biological Science, Kanagawa University, Kanagawa 259-1293 Japan
| | - Shin-Ichi Hashimoto
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-0934, Japan
| | - Takako Kato
- Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| | - Yukio Kato
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| |
Collapse
|
6
|
Kato Y, Yoshida S, Kato T. New insights into the role and origin of pituitary S100β-positive cells. Cell Tissue Res 2021; 386:227-237. [PMID: 34550453 DOI: 10.1007/s00441-021-03523-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/07/2021] [Indexed: 01/16/2023]
Abstract
In the anterior pituitary, S100β protein (S100β) has been assumed to be a marker of folliculo-stellate cells, which are one of the non-hormone-producing cells existing in the parenchyma of the adult anterior lobe and are composed of subpopulations with various functions. However, recent accumulating studies on S100β-positive cells, including non-folliculo-stellate cells lining the marginal cell layer (MCL), have shown the novel aspect that most S100β-positive cells in the MCL and parenchyma of the adult anterior lobe are positive for sex determining region Y-box 2 (SOX2), a marker of pituitary stem/progenitor cells. From the viewpoint of SOX2-positive cells, the majority of these cells in the MCL and in the parenchyma are positive for S100β, suggesting that S100β plays a role in the large population of stem/progenitor cells in the anterior lobe of the adult pituitary. Reportedly, S100β/SOX2-double positive cells are able to differentiate into hormone-producing cells and various types of non-hormone-producing cells. Intriguingly, it has been demonstrated that extra-pituitary lineage cells invade the pituitary gland during prenatal pituitary organogenesis. Among them, two S100β-positive populations have been identified: one is SOX2-positive population which invades at the late embryonic period through the pituitary stalk and another is a SOX2-negative population that invades at the middle embryonic period through Atwell's recess. These two populations are likely the substantive origin of S100β-positive cells in the postnatal anterior pituitary, while S100β-positive cells emerging from oral ectoderm-derived cells remain unclear.
Collapse
Affiliation(s)
- Yukio Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takako Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
7
|
Zhou Z, Zhu Y, Zhang Z, Jiang T, Ling Z, Yang B, Li W. Comparative Analysis of Promoters and Enhancers in the Pituitary Glands of the Bama Xiang and Large White Pigs. Front Genet 2021; 12:697994. [PMID: 34367256 PMCID: PMC8343535 DOI: 10.3389/fgene.2021.697994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
The epigenetic regulation of gene expression is implicated in complex diseases in humans and various phenotypes in other species. There has been little exploration of regulatory elements in the pig. Here, we performed chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to profile histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 acetylation (H3K27ac) in the pituitary gland of adult Bama Xiang and Large White pigs, which have divergent evolutionary histories and large phenotypic differences. We identified a total of 65,044 non-redundant regulatory regions, including 23,680 H3K4me3 peaks and 61,791 H3K27ac peaks (12,318 proximal and 49,473 distal), augmenting the catalog of pituitary regulatory elements in pigs. We found 793 H3K4me3 and 3,602 H3K27ac peaks that show differential activity between the two breeds, overlapping with genes involved in the Notch signaling pathway, response to growth hormone (GH), thyroid hormone signaling pathway, and immune system, and enriched for binding motifs of transcription factors (TFs), including JunB, ATF3, FRA1, and BATF. We further identified 2,025 non-redundant super enhancers from H3K27ac ChIP-seq data, among which 302 were shared in all samples of cover genes enriched for biological processes related to pituitary function. This study generated a valuable dataset of H3K4me3 and H3K27ac regions in porcine pituitary glands and revealed H3K4me3 and H3K27ac peaks with differential activity between Bama Xiang and Large White pigs.
Collapse
Affiliation(s)
- Zhimin Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yaling Zhu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.,Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhen Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ziqi Ling
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wanbo Li
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| |
Collapse
|
8
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
9
|
Russell JP, Lim X, Santambrogio A, Yianni V, Kemkem Y, Wang B, Fish M, Haston S, Grabek A, Hallang S, Lodge EJ, Patist AL, Schedl A, Mollard P, Nusse R, Andoniadou CL. Pituitary stem cells produce paracrine WNT signals to control the expansion of their descendant progenitor cells. eLife 2021; 10:59142. [PMID: 33399538 PMCID: PMC7803373 DOI: 10.7554/elife.59142] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In response to physiological demand, the pituitary gland generates new hormone-secreting cells from committed progenitor cells throughout life. It remains unclear to what extent pituitary stem cells (PSCs), which uniquely express SOX2, contribute to pituitary growth and renewal. Moreover, neither the signals that drive proliferation nor their sources have been elucidated. We have used genetic approaches in the mouse, showing that the WNT pathway is essential for proliferation of all lineages in the gland. We reveal that SOX2+ stem cells are a key source of WNT ligands. By blocking secretion of WNTs from SOX2+ PSCs in vivo, we demonstrate that proliferation of neighbouring committed progenitor cells declines, demonstrating that progenitor multiplication depends on the paracrine WNT secretion from SOX2+ PSCs. Our results indicate that stem cells can hold additional roles in tissue expansion and homeostasis, acting as paracrine signalling centres to coordinate the proliferation of neighbouring cells.
Collapse
Affiliation(s)
- John P Russell
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Xinhong Lim
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Alice Santambrogio
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom.,Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Yasmine Kemkem
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Montpellier, France
| | - Bruce Wang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States.,Department of Medicine and Liver Center, University of California San Francisco, San Francisco, United States
| | - Matthew Fish
- Howard Hughes Medical Institute, Stanford University School of Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Scott Haston
- Developmental Biology and Cancer, Birth Defects Research Centre, UCL GOS Institute of Child Health, London, United Kingdom
| | | | - Shirleen Hallang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Amanda L Patist
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | | | - Patrice Mollard
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Montpellier, France
| | - Roel Nusse
- Howard Hughes Medical Institute, Stanford University School of Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom.,Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Tsukada T, Isowa Y, Kito K, Yoshida S, Toneri S, Horiguchi K, Fujiwara K, Yashiro T, Kato T, Kato Y. Identification of TGFβ-induced proteins in non-endocrine mouse pituitary cell line TtT/GF by SILAC-assisted quantitative mass spectrometry. Cell Tissue Res 2019; 376:281-293. [PMID: 30666536 DOI: 10.1007/s00441-018-02989-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/29/2018] [Indexed: 01/04/2023]
|
11
|
Li S, Zhai J, Liu J, Di F, Sun Y, Li W, Chen ZJ, Du Y. Erythropoietin-producing hepatocellular A7 triggering ovulation indicates a potential beneficial role for polycystic ovary syndrome. EBioMedicine 2018; 36:539-552. [PMID: 30292674 PMCID: PMC6197718 DOI: 10.1016/j.ebiom.2018.09.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background The ovulatory dysfunction mechanisms underlying polycystic ovary syndrome (PCOS) are not completely understood. And the roles of EPHA7 and EPHA7-regulated pathway factors in the pathogenesis of anovulation remain to be elucidated. Methods We used human granulosa cells (hGCs) of PCOS and non-PCOS patients to measure EPHA7 and other target gene expressions. We performed in vitro experiments in KGN cells to verify the molecular mechanisms. Additionally, we conducted in vivo loss- and gain-of-function studies using EPHA7 shRNA lentivirus and recombinant EPHA7-Fc protein injection to identify the ovulation effects of EPHA7. Findings EPHA7 functions as a critically positive upstream factor for the expression of ERK1/2-mediated C/EBPβ. This protein, in turn, induced the expression of KLF4 and then ADAMTS1. Moreover, decreased abundance of EPHA7 was positively correlated with that of its downstream factors in hGCs of PCOS patients. Additionally, a 1-week functional EPHA7 shRNA lentivirus in rat ovaries contributed to decreased numbers of retrieved oocytes, and a 3-week functional lentivirus led to menstrual disorders and morphological polycystic changes in rat ovaries. More importantly, we found that EPHA7 triggered ovulation in rats, and it improved polycystic ovarian changes induced by DHEA in PCOS rats. Interpretation Our findings demonstrate a new role of EPHA7 in PCOS, suggesting that EPHA7 is an effective target for the development of innovative medicines to induce ovulation. Fund National Key Research and Development Program of China, National Natural Science Foundation, Shanghai Municipal Education Commission--Gaofeng Clinical Medicine, and Shanghai Commission of Science and Technology.
Collapse
Affiliation(s)
- Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jiansheng Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Fangfang Di
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Weiping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|