1
|
Dinesh NEH, Rousseau J, Mosher DF, Strauss M, Mui J, Campeau PM, Reinhardt DP. Mutations in fibronectin dysregulate chondrogenesis in skeletal dysplasia. Cell Mol Life Sci 2024; 81:419. [PMID: 39367925 PMCID: PMC11456097 DOI: 10.1007/s00018-024-05444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
Fibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive. Here, we have generated patient-derived induced pluripotent stem cells as a cell culture model for SMDCF to investigate the consequences of FN mutations on mesenchymal stem cells (MSCs) and their differentiation into cartilage-producing chondrocytes. In line with our previous data, FN mutations disrupted protein secretion from MSCs, causing a notable increase in intracellular FN and a significant decrease in extracellular FN levels. Analyses of plasma samples from SMDCF patients also showed reduced FN in circulation. FN and endoplasmic reticulum (ER) protein folding chaperones (BIP, HSP47) accumulated in MSCs within ribosome-covered cytosolic vesicles that emerged from the ER. Massive amounts of these vesicles were not cleared from the cytosol, and a smaller subset showed the presence of lysosomal markers. The accumulation of intracellular FN and ER proteins elevated cellular stress markers and altered mitochondrial structure. Bulk RNA sequencing revealed a specific transcriptomic dysregulation of the patient-derived cells relative to controls. Analysis of MSC differentiation into chondrocytes showed impaired mesenchymal condensation, reduced chondrogenic markers, and compromised cell proliferation in mutant cells. Moreover, FN mutant cells exhibited significantly lower transforming growth factor beta-1 (TGFβ1) expression, crucial for mesenchymal condensation. Exogenous FN or TGFβ1 supplementation effectively improved the MSC condensation and promoted chondrogenesis in FN mutant cells. These findings demonstrate the cellular consequences of FN mutations in SMDCF and explain the molecular pathways involved in the associated altered chondrogenesis.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada
| | - Justine Rousseau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA
| | - Mike Strauss
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada
| | - Jeannie Mui
- Facility for Electron Microscopy Research of McGill University, Montreal, QC, Canada
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Makhija E, Zheng Y, Wang J, Leong HR, Othman RB, Ng EX, Lee EH, Kellogg LT, Lee YH, Yu H, Poon Z, Van Vliet KJ. Topological defects in self-assembled patterns of mesenchymal stromal cells in vitro are predictive attributes of condensation and chondrogenesis. PLoS One 2024; 19:e0297769. [PMID: 38547243 PMCID: PMC10977694 DOI: 10.1371/journal.pone.0297769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/11/2024] [Indexed: 04/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising therapeutic agents for cartilage regeneration, including the potential of cells to promote chondrogenesis in vivo. However, process development and regulatory approval of MSCs as cell therapy products benefit from facile in vitro approaches that can predict potency for a given production run. Current standard in vitro approaches include a 21 day 3D differentiation assay followed by quantification of cartilage matrix proteins. We propose a novel biophysical marker that is cell population-based and can be measured from in vitro monolayer culture of MSCs. We hypothesized that the self-assembly pattern that emerges from collective-cell behavior would predict chondrogenesis motivated by our observation that certain features in this pattern, namely, topological defects, corresponded to mesenchymal condensations. Indeed, we observed a strong predictive correlation between the degree-of-order of the pattern at day 9 of the monolayer culture and chondrogenic potential later estimated from in vitro 3D chondrogenic differentiation at day 21. These findings provide the rationale and the proof-of-concept for using self-assembly patterns to monitor chondrogenic commitment of cell populations. Such correlations across multiple MSC donors and production batches suggest that self-assembly patterns can be used as a candidate biophysical attribute to predict quality and efficacy for MSCs employed therapeutically for cartilage regeneration.
Collapse
Affiliation(s)
- Ekta Makhija
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Yang Zheng
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| | - Jiahao Wang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Han Ren Leong
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Engineering Science Programme, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Rashidah Binte Othman
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Ee Xien Ng
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Eng Hin Lee
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| | - Lisa Tucker Kellogg
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yie Hou Lee
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Obstetrics and Gynaecology Academic Clinical Programme, SingHealth Duke-NUS, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, Singapore, Singapore
| | - Hanry Yu
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zhiyong Poon
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Krystyn J. Van Vliet
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Materials Science and Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
3
|
Jeon J, Lee H, Jeon MS, Kim SJ, Choi C, Kim KW, Yang DJ, Lee S, Bae YS, Choi WI, Jung J, Eyun SI, Yang S. Blockade of Activin Receptor IIB Protects Arthritis Pathogenesis by Non-Amplification of Activin A-ACVR2B-NOX4 Axis Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205161. [PMID: 36950748 DOI: 10.1002/advs.202205161] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/10/2023] [Indexed: 05/18/2023]
Abstract
Although activin receptor IIB (ACVR2B) is emerging as a novel pathogenic receptor, its ligand and assembled components (or assembly) are totally unknown in the context of osteoarthritis (OA) pathogenesis. The present results suggest that upregulation of ACVR2B and its assembly could affect osteoarthritic cartilage destruction. It is shown that the ACVR2B ligand, activin A, regulates catabolic factor expression through ACVR2B in OA development. Activin A Tg mice (Col2a1-Inhba) exhibit enhanced cartilage destruction, whereas heterozygous activin A KO mice (Inhba+/- ) show protection from cartilage destruction. In silico analysis suggests that the Activin A-ACVR2B axis is involved in Nox4-dependent ROS production. Activin A Tg:Nox4 KO (Col2a1-Inhba:Nox4-/- ) mice show inhibition of experimental OA pathogenesis. NOX4 directly binds to the C-terminal binding site on ACVR2B-ACVR1B and amplifies the pathogenic signal for cartilage destruction through SMAD2/3 signaling. Together, the findings reveal that the ACVR2B assembly, which comprises Activin A, ACVR2B, ACVR1B, Nox4, and AP-1-induced HIF-2α, accelerates OA development. Furthermore, it is shown that shRNA-mediated ACVR2B knockdown or trapping ligands of ACVR2B abrogate OA development by competitively disrupting the ACVR2B-Activin A interaction. These results suggest that the ACVR2B assembly is required to amplify osteoarthritic cartilage destruction and could be a potential therapeutic target in efforts to treat OA.
Collapse
Affiliation(s)
- Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- CIRNO, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- CIRNO, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min-Seung Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seok-Jung Kim
- Department of Orthopaedic Surgery, Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, Uijeongbu, 11765, Republic of Korea
| | - Cham Choi
- MicroCT Applications, 3rd floor, 11, Sumyeong-ro 1-gil, Gangseo-gu, Seoul, 07644, Republic of Korea
| | - Ki Woo Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
- Department of Applied Biological Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dong Joo Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
- Department of Applied Biological Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- CIRNO, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- CIRNO, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- CIRNO, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
4
|
Duarte-Olivenza C, Hurle JM, Montero JA, Lorda-Diez CI. Modeling the Differentiation of Embryonic Limb Chondroprogenitors by Cell Death and Cell Senescence in High Density Micromass Cultures and Their Regulation by FGF Signaling. Cells 2022; 12:cells12010175. [PMID: 36611968 PMCID: PMC9818968 DOI: 10.3390/cells12010175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Considering the importance of programmed cell death in the formation of the skeleton during embryonic development, the aim of the present study was to analyze whether regulated cell degeneration also accompanies the differentiation of embryonic limb skeletal progenitors in high-density tridimensional cultures (micromass cultures). Our results show that the formation of primary cartilage nodules in the micromass culture assay involves a patterned process of cell death and cell senescence, complementary to the pattern of chondrogenesis. As occurs in vivo, the degenerative events were preceded by DNA damage detectable by γH2AX immunolabeling and proceeded via apoptosis and cell senescence. Combined treatments of the cultures with growth factors active during limb skeletogenesis, including FGF, BMP, and WNT revealed that FGF signaling modulates the response of progenitors to signaling pathways implicated in cell death. Transcriptional changes induced by FGF treatments suggested that this function is mediated by the positive regulation of the genetic machinery responsible for apoptosis and cell senescence together with hypomethylation of the Sox9 gene promoter. We propose that FGF signaling exerts a primordial function in the embryonic limb conferring chondroprogenitors with their biological properties.
Collapse
Affiliation(s)
| | | | - Juan A. Montero
- Correspondence: (J.A.M.); (C.I.L.-D.); Fax: +34-942201923 (J.A.M. and C.I.L.-D.)
| | - Carlos I. Lorda-Diez
- Correspondence: (J.A.M.); (C.I.L.-D.); Fax: +34-942201923 (J.A.M. and C.I.L.-D.)
| |
Collapse
|