1
|
Zhao X, Zhao P. Influence of immediate rainfall on sap flux in cypress trees in the Southwest hilly area of China. Sci Rep 2025; 15:13019. [PMID: 40234504 PMCID: PMC12000599 DOI: 10.1038/s41598-025-97073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Rainfall intensity and duration pose significant challenges to the stability of plantations in mountainous areas prone to soil erosion. Accurately understanding how tree transpiration responds to atmospheric evaporation demands under real-time rainfall conditions is essential for enhancing our understanding of tree water use. Since 2015, the alder-cypress forest has been completely replaced by a pure cypress forest, which led us to employ the heat dissipation probe method to measure sap flux of cypress wood. To analyze the responses of cypress trees to real-time and delay-time rainfall, we utilized no- and seasonal autoregressive integrated moving average with exogenous variables models to analyze the responses of sap flux to external environmental factors. Our analysis revealed that past values of sap flux and vapor pressure deficit jointly accounted for 79.6% (wet season) and 34.6% (dry season) of current sap flux values in the delay-time condition. However, under a real-time condition, past sap flux values and rainfall did not explain the variance in current sap flux values (R2 = 7.01 × 10- 4). This indicates a decoupling between present and past sap flux and the other three environmental factors in real-time conditions. The findings demonstrate significantly different hydraulic drive patterns of trees under real-time rainfall conditions, providing a new basis for forest managers to optimize irrigation plans and allocate water resources effectively.
Collapse
Affiliation(s)
- Xiaowei Zhao
- School of Urban-Rural Planning and Construction, Shangluo University, Shangluo, 726000, China.
| | - Pei Zhao
- School of Tourism, Xi'an International Studies University, Xi'an, China, 710128.
| |
Collapse
|
2
|
Russell M, Řezáčová V, Miller KS, Nardi WH, Brown M, Weremijewicz J. Common mycorrhizal networks improve survival and mediate facilitative plant interactions among Andropogon gerardii seedlings under drought stress. MYCORRHIZA 2025; 35:8. [PMID: 39900749 PMCID: PMC11790713 DOI: 10.1007/s00572-025-01181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/14/2025] [Indexed: 02/05/2025]
Abstract
Under drought conditions, arbuscular mycorrhizal (AM) fungi may improve plant performance by facilitating the movement of water through extensive hyphal networks. When these networks interconnect neighboring plants in common mycorrhizal networks (CMNs), CMNs are likely to partition water among many individuals. The consequences of CMN-mediated water movement for plant interactions, however, are largely unknown. We set out to examine CMN-mediated interactions among Andropogon gerardii seedlings in a target-plant pot experiment, with watering (watered or long-term drought) and CMN status (intact or severed) as treatments. Intact CMNs improved the survival of seedlings under drought stress and mediated positive, facilitative plant interactions in both watering treatments. Watering increased mycorrhizal colonization rates and improved P uptake, particularly for large individuals. Under drought conditions, improved access to water most likely benefited neighboring plants interacting across CMNs. CMNs appear to have provided the most limiting resource within each treatment, whether P, water, or both, thereby improving survival and growth. Neighbors near large, photosynthate-fixing target plants likely benefited from their establishment of extensive hyphal networks that could access water and dissolved P within soil micropores. In plant communities, CMNs may be vital during drought, which is expected to increase in frequency, intensity, and length with climate change.
Collapse
Affiliation(s)
- Margaret Russell
- Department of Biology, North Central College, 30 N Brainard St., Naperville, IL, 60540-5461, U.S.A
| | - Veronika Řezáčová
- Czech Agrifood Research Center, Drnovská 507, Prague 6, Czech Republic
| | - Kirby Shane Miller
- Department of Biology, North Central College, 30 N Brainard St., Naperville, IL, 60540-5461, U.S.A
| | - Wynter Helene Nardi
- Department of Biology, North Central College, 30 N Brainard St., Naperville, IL, 60540-5461, U.S.A
| | - Morgan Brown
- Department of Biology, North Central College, 30 N Brainard St., Naperville, IL, 60540-5461, U.S.A
| | - Joanna Weremijewicz
- Department of Biology, North Central College, 30 N Brainard St., Naperville, IL, 60540-5461, U.S.A..
| |
Collapse
|
3
|
Korell L, Andrzejak M, Berger S, Durka W, Haider S, Hensen I, Herion Y, Höfner J, Kindermann L, Klotz S, Knight TM, Linstädter A, Madaj AM, Merbach I, Michalski S, Plos C, Roscher C, Schädler M, Welk E, Auge H. Land use modulates resistance of grasslands against future climate and inter-annual climate variability in a large field experiment. GLOBAL CHANGE BIOLOGY 2024; 30:e17418. [PMID: 39036882 DOI: 10.1111/gcb.17418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/23/2024]
Abstract
Climate and land-use change are key drivers of global change. Full-factorial field experiments in which both drivers are manipulated are essential to understand and predict their potentially interactive effects on the structure and functioning of grassland ecosystems. Here, we present 8 years of data on grassland dynamics from the Global Change Experimental Facility in Central Germany. On large experimental plots, temperature and seasonal patterns of precipitation are manipulated by superimposing regional climate model projections onto background climate variability. Climate manipulation is factorially crossed with agricultural land-use scenarios, including intensively used meadows and extensively used (i.e., low-intensity) meadows and pastures. Inter-annual variation of background climate during our study years was high, including three of the driest years on record for our region. The effects of this temporal variability far exceeded the effects of the experimentally imposed climate change on plant species diversity and productivity, especially in the intensively used grasslands sown with only a few grass cultivars. These changes in productivity and diversity in response to alterations in climate were due to immigrant species replacing the target forage cultivars. This shift from forage cultivars to immigrant species may impose additional economic costs in terms of a decreasing forage value and the need for more frequent management measures. In contrast, the extensively used grasslands showed weaker responses to both experimentally manipulated future climate and inter-annual climate variability, suggesting that these diverse grasslands are more resistant to climate change than intensively used, species-poor grasslands. We therefore conclude that a lower management intensity of agricultural grasslands, associated with a higher plant diversity, can stabilize primary productivity under climate change.
Collapse
Affiliation(s)
- Lotte Korell
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
- Department of Species Interaction Ecology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Martin Andrzejak
- Department of Species Interaction Ecology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sigrid Berger
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Walter Durka
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sylvia Haider
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Isabell Hensen
- Institute of Biology, Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Yva Herion
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Johannes Höfner
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Liana Kindermann
- Department of Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Stefan Klotz
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tiffany M Knight
- Department of Species Interaction Ecology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Anja Linstädter
- Department of Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Anna-Maria Madaj
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Ines Merbach
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Stefan Michalski
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Carolin Plos
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Martin Schädler
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Erik Welk
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Harald Auge
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Du L, Luo Y, Zhang J, Shen Y, Zhang J, Tian R, Shao W, Xu Z. Reduction in precipitation amount, precipitation events, and nitrogen addition change ecosystem carbon fluxes differently in a semi-arid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172276. [PMID: 38583634 DOI: 10.1016/j.scitotenv.2024.172276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The increases in extent and frequency of extreme drought events and increased nitrogen (N) deposition due to global change are expected to have profound impacts on carbon cycling in semi-arid grasslands. However, how ecosystem CO2 exchange processes respond to different drought scenarios individually and interactively with N addition remains uncertain. In this study, we experimentally explored the effects of different drought scenarios (early season extreme drought, 50 % reduction in precipitation amount, and 50 % reduction in precipitation events) and N addition on net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) over three growing seasons (2019-2021) in a semi-arid grassland in northern China. The growing-season ecosystem carbon fluxes in response to drought and N addition were influenced by inter-annual precipitation changes, with 2019 as a normal precipitation year, and 2020 and 2021 as wet years. Early season extreme drought stimulated NEE by reducing ER. 50 % reduction in precipitation amount decreased ER and GEP consistently in three years, but only significantly suppressed NEE in 2019. 50 % reduction in precipitation events stimulated NEE. Nitrogen addition stimulated NEE, ER, and GEP, but only significantly in wet years. The structural equation models showed that changes in carbon fluxes were regulated by soil moisture, soil temperature, microbial biomass nitrogen (MBN), and the key plant functional traits. Decreased community-weighted means of specific leaf area (CWMSLA) was closely related to the reduced ER and GEP under early season extreme drought and 50 % reduction in precipitation amount. While increased community-weighted means of plant height (CWMPH) largely accounted for the stimulated ER and GEP under 50 % reduction in precipitation events. Our study stresses the distinct effects of different drought scenarios and N enrichment on carbon fluxes, and highlights the importance of soil traits and the key plant traits in determining carbon exchange in this water-limited ecosystem.
Collapse
Affiliation(s)
- Lan Du
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yonghong Luo
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jiatao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yan Shen
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jinbao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ru Tian
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenqian Shao
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhuwen Xu
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
5
|
West AG, Atkins K, van Blerk JJ, Skelton RP. Assessing vulnerability to embolism and hydraulic safety margins in reed-like Restionaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:633-646. [PMID: 38588329 DOI: 10.1111/plb.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
The African Restionaceae (Poales), the dominant graminoid layer in the megadiverse Cape Floristic Region of South Africa, are distributed across a wide range of moisture availability, yet currently there is very little known about the underlying hydraulics of this group. We tested two methods for measuring culm vulnerability to embolism, the optical and pneumatic methods, in three species of Cannomois ranging in habitat from semi-riparian (Cannomois virgata) to dryland (Cannomois parviflora and C. congesta). Estimates of culm xylem vulnerability were coupled with measures of turgor loss point (ΨTLP) and minimum field water potential (ΨMD) to assess hydraulic safety margins. The optical and pneumatic methods produced similar estimates of P50, but differed for P12 and P88. All three species were quite vulnerable to embolism, with P50 of -1.9 MPa (C. virgata), -2.3 MPa (C. congesta), and -2.4 MPa (C. parviflora). Estimates of P50, ΨTLP and ΨMD aligned with habitat moisture stress, with highest values found in the semi-riparian C. virgata. Consistent differences in P50, ΨMD and ΨTLP between species resulted in consistent hydraulic safety margins across species of 0.96 ± 0.1 MPa between ΨMD and P50, with onset of embolism occurring 0.43 ± 0.04 MPa after ΨTLP for all three species. Our study demonstrates that restio occupancy of dry environments involves more than the evolution of highly resistant xylem, suggesting that other aspects of water relations are key to understanding trait-environment relationships in this group.
Collapse
Affiliation(s)
- A G West
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - K Atkins
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - J J van Blerk
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - R P Skelton
- Fynbos Node, South African Environmental Observation Network, Newlands, South Africa
- Department of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Keen RM, Bachle S, Bartmess M, Nippert JB. Combined effects of fire and drought are not sufficient to slow shrub encroachment in tallgrass prairie. Oecologia 2024; 204:727-742. [PMID: 38492034 DOI: 10.1007/s00442-024-05526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/03/2024] [Indexed: 03/18/2024]
Abstract
Woody encroachment-the spread of woody vegetation in open ecosystems-is a common threat to grasslands worldwide. Reversing encroachment can be exceedingly difficult once shrubs become established, particularly clonal species that resprout following disturbance. Single stressors are unlikely to reverse woody encroachment, but using multiple stressors in tandem could be successful in slowing or reversing encroachment. We explored whether increasing fire frequency in conjunction with multi-year drought could reduce growth and survival of encroaching shrubs in a tallgrass prairie in northeastern Kansas, USA. Passive rainout shelters (~ 50% rainfall reduction) were constructed over mature clonal shrubs (Cornus drummondii) and co-existing C4 grasses in two fire treatments (1-year and 4-year burn frequency). Leaf- and whole-plant level physiological responses to drought and fire frequency were monitored in shrubs and grasses from 2019 to 2022. Shrub biomass and stem density following fire were unaffected by five years of consecutive drought treatment, regardless of fire frequency. The drought treatment had more negative effects on grass leaf water potential and photosynthetic rates compared to shrubs. Shrub photosynthetic rates were remarkably stable across each growing season. Overall, we found that five consecutive years of moderate drought in combination with fire was not sufficient to reduce biomass production or stem density in an encroaching clonal shrub (C. drummondii). These results suggest that moderate but chronic press-drought events do not sufficiently stress encroaching clonal shrubs to negatively impact their resilience following fire events, even when fire frequency is high.
Collapse
Affiliation(s)
- R M Keen
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - S Bachle
- Division of Biology, Kansas State University, Manhattan, KS, USA
- LI-COR Biosciences, Lincoln, NE, 68504, USA
| | - M Bartmess
- United States Department of Agriculture, Natural Resource Conservation Service, Pottawatomie County, KS, USA
| | - J B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
7
|
Zheng S, Cha X, Dong Q, Guo H, Sun L, Zhao Q, Gong Y. Effects of rainfall patterns in dry and rainy seasons on the biomass, ecostoichiometric characteristics, and NSC content of Fraxinus malacophylla seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1344717. [PMID: 38533402 PMCID: PMC10963558 DOI: 10.3389/fpls.2024.1344717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
With global climate change and rising temperatures, rainfall will change. The impact of global rainfall changes on ecosystems has prompted people to delve deeper into how changes in rainfall affect plant growth; Plant biomass, nutrient element content, and non-structural carbohydrate content are very sensitive to changes in precipitation. Therefore, understanding the impact of rainfall changes on seedlings is crucial. However, it is currently unclear how the seedlings of Fraxinus malacophylla Hemsl in rocky desertification areas respond to changes in rainfall. In this study, the response of biomass, nutrient accumulation, and NSC content of Fraxinus malacophylla Hemsl seedlings to different rainfall intervals and rainfall during the dry and rainy seasons was studied. Use natural rainfall duration of 5 days (T) and extended rainfall duration of 10 days(T+) as rainfall intervals; average monthly rainfall was used as the control (W), with a corresponding 40% increase in rainfall (W+) and a 40% decrease in rainfall (W-) as rainfall treatments. The research results indicate that the biomass of roots, stems, and leaves, as well as the accumulation of C, N, and P in Fraxinus malacophylla Hemsl seedlings increase with the increase of rainfall, while the soluble sugar and starch content show a pattern of first increasing and then decreasing. The biomass and nutrient accumulation of each organ showed root>leaf>stem. Except for the beginning of the dry season, prolonging the duration of rainfall in other periods inhibits the biomass accumulation of Fraxinus malacophylla Hemsl seedlings, and promotes the accumulation of C, N, and P nutrients and an increase in soluble sugar and starch content. There was a significant positive correlation (P<0.05) between the nutrient contents of C, N, and P in various organs, as well as between soluble sugar and starch content; And N: P>16, plant growth is limited by P element. These results indicate that changes in rainfall can affect the growth and development of Fraxinus malacophylla Hemsl seedlings, increasing rainfall can promote biomass and nutrient accumulation of Fraxinus malacophylla Hemsl seedlings, and prolonging rainfall intervals and reducing rainfall have inhibitory effects on them. The exploration of the adaptation of Fraxinus malacophylla Hemsl seedlings to rainfall patterns has promoted a basic understanding of the impact of rainfall changes on the growth of Fraxinus malacophylla Hemsl. This provides a theoretical basis for understanding how Fraxinus malacophylla Hemsl can grow better under rainfall changes and for future management of Fraxinus malacophylla Hemsl artificial forests in rocky desertification areas.
Collapse
Affiliation(s)
- Shaojie Zheng
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Xiaofei Cha
- Nujiang Prefecture Forestry and Grassland Bureau, Nujiang Yunnan, China
| | - Qiong Dong
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Huanxian Guo
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Lijuan Sun
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Qize Zhao
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Yunqi Gong
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| |
Collapse
|
8
|
Dekirmenjian A, Montano D, Budny ML, Lemoine NP. Schizachyrium scoparium (C 4) better tolerates drought than Andropogon gerardii (C 4) via constant CO 2 supply for photosynthesis during water stress. AOB PLANTS 2024; 16:plae012. [PMID: 38497050 PMCID: PMC10944017 DOI: 10.1093/aobpla/plae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Climate change is dramatically altering global precipitation patterns across terrestrial ecosystems, making it critically important that we understand both how and why plant species vary in their drought sensitivities. Andropogon gerardii and Schizachyrium scoparium, both C4 grasses, provide a model system for understanding the physiological mechanisms that determine how species of a single functional type can differ in drought responses, an issue remains a critical gap in our ability to model and predict the impacts of drought on grassland ecosystems. Despite its greater lability of foliar water content, previous experiments have demonstrated that S. scoparium maintains higher photosynthetic capacity during droughts. It is therefore likely that the ability of S. scoparium to withstand drought instead derives from a greater metabolic resistance to drought. Here, we tested the following hypotheses: (H1) A. gerardii is more vulnerable to drought than S. scoparium at both the population and organismal levels, (H2) A. gerardii is less stomatally flexible than S. scoparium, and (H3) A. gerardii is more metabolically limited than S. scoparium. Our results indicate that it is actually stomatal limitations of CO2 supply that limit A. gerardii photosynthesis during drought. Schizachyrium scoparium was more drought-resistant than A. gerardii based on long-term field data, organismal biomass production and physiological gas exchange measurements. While both S. scoparium and A. gerardii avoided metabolic limitation of photosynthesis, CO2 supply of A. gerardii was greatly reduced during late-stage drought stress. That two common, co-occurring C4 species possess such different responses to drought highlights the physiological variability inherent within plant functional groups and underscores the need for more studies of C4 drought tolerance.
Collapse
Affiliation(s)
- Alina Dekirmenjian
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St, Milwaukee, WI 53233USA
| | - Diego Montano
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St, Milwaukee, WI 53233USA
| | - Michelle L Budny
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St, Milwaukee, WI 53233USA
| | - Nathan P Lemoine
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St, Milwaukee, WI 53233USA
- Department of Zoology, Milwaukee Public Museum, 800 W Wells St, Milwaukee, WI 53201USA
| |
Collapse
|
9
|
Stein ED, Midway SR, Linkhart BD. Year-round weather alters nest-provisioning rates in a migratory owl. Ecol Evol 2023; 13:e10333. [PMID: 37492455 PMCID: PMC10363827 DOI: 10.1002/ece3.10333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
As global temperatures and precipitation become more extreme, habitat specialists are at particular risk of being pushed past their environmental tolerance limits. Flammulated Owls (Psiloscops flammeolus) are small migratory owls that breed in temperate conifer forests of western North America. Their highly specialized nesting and foraging requirements make them indicators of ecosystem health. Using 17 years of nest observations, we investigated how annual weather patterns affected Flammulated Owl nesting and foraging behaviors during the breeding season. We used generalized linear models with a changepoint parameter to evaluate nest provisioning and nestling growth rates in years of extreme temperature and precipitation. We also evaluated how adult mass, division of labor, and productivity varied based on precipitation and temperature. Compared to wet and warm years, adults made more frequent prey deliveries to nestlings in dry and cold years, particularly early in the night and early in the season, and they experienced earlier changepoints in these years. We found a significant effect of temperature on the number of fledglings in broods, but weather did not affect other variables including productivity, nestling growth rates, adult masses, and division of labor. Our findings suggest that extreme annual weather patterns influence insect prey availability during the Flammulated Owl breeding season, forcing adults to work harder to provision for nests during dry and cold years. While productivity and nestling growth did not vary between years, these may incur a long-term tradeoff in adult survival.
Collapse
Affiliation(s)
- Eliza D. Stein
- School of Renewable Natural ResourcesLouisiana State University and Agricultural CenterBaton RougeLouisianaUSA
| | - Stephen R. Midway
- Department of Oceanography and Coastal SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Brian D. Linkhart
- Department of Organismal Biology and EcologyColorado CollegeColorado SpringsColoradoUSA
| |
Collapse
|
10
|
Kiene C, Jung EY, Engelbrecht BMJ. Nutrient effects on drought responses vary across common temperate grassland species. Oecologia 2023; 202:1-14. [PMID: 37145315 DOI: 10.1007/s00442-023-05370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Drought and nutrient input are two main global change drivers that threaten ecosystem function and services. Resolving the interactive effects of human-induced stressors on individual species is necessary to improve our understanding of community and ecosystem responses. This study comparatively assessed how different nutrient conditions affect whole-plant drought responses across 13 common temperate grassland species. We conducted a fully factorial drought-fertilization experiment to examine the effect of nutrient addition [nitrogen (N), phosphorus (P), and combined NP] on species' drought survival, and on drought resistance of growth as well as drought legacy effects. Drought had an overall negative effect on survival and growth, and the adverse drought effects extended into the next growing season. Neither drought resistance nor legacy effects exhibited an overall effect of nutrients. Instead, both the size and the direction of the effects differed strongly among species and between nutrient conditions. Consistently, species performance ranking under drought changed with nitrogen availability. The idiosyncratic responses of species to drought under different nutrient conditions may underlie the seemingly contradicting effects of drought in studies on grassland composition and productivity along nutrient and land-use gradients-ranging from amplifying to dampening. Differential species' responses to combinations of nutrients and drought, as observed in our study, complicate predictions of community and ecosystem responses to climate and land-use changes. Moreover, they highlight the urgent need for an improved understanding of the mechanisms that render species more or less vulnerable to drought under different nutrients.
Collapse
Affiliation(s)
- Carola Kiene
- Functional and Tropical Plant Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.
| | - Eun-Young Jung
- Functional and Tropical Plant Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Bettina M J Engelbrecht
- Functional and Tropical Plant Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
11
|
Liu M, Bai X, Tan Q, Luo G, Zhao C, Wu L, Chen F, Li C, Yang Y, Ran C, Luo X, Zhang S. Climate change enhanced the positive contribution of human activities to net ecosystem productivity from 1983 to 2018. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
IntroductionAccurate assessment of the net ecosystem productivity (NEP) is very important for understanding the global carbon balance. However, it remains unknown whether climate change (CC) promoted or weakened the impact of human activities (HA) on the NEP from 1983 to 2018.MethodsHere, we quantified the contribution of CC and HA to the global NEP under six different scenarios based on a boosted regression tree model and sensitivity analysis over the last 40 years.Results and discussionThe results show that (1) a total of 69% of the areas showed an upward trend in the NEP, with HA and CC controlled 36.33 and 32.79% of the NEP growth, respectively. The contribution of HA (HA_con) far exceeded that of CC by 6.4 times. (2) The CO2 concentration had the largest positive contribution (37%) to NEP and the largest influence area (32.5%). It made the most significant contribution to the NEP trend in the range of 435–440 ppm. In more than 50% of the areas, the main loss factor was solar radiation (SR) in any control area of the climate factors. (3) Interestingly, CC enhanced the positive HA_con to the NEP in 44% of the world, and in 25% of the area, the effect was greater than 50%. Our results shed light on the optimal range of each climatic factor for enhancing the NEP and emphasize the important role of CC in enhancing the positive HA_con to the NEP found in previous studies.
Collapse
|
12
|
Xie M, Li L, Liu B, Liu Y, Wan Q. Responses of terrestrial ecosystem productivity and community structure to intra-annual precipitation patterns: A meta-analysis. FRONTIERS IN PLANT SCIENCE 2023; 13:1088202. [PMID: 36699850 PMCID: PMC9868929 DOI: 10.3389/fpls.2022.1088202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The productivity and community structures of terrestrial ecosystems are regulated by total precipitation amount and intra-annual precipitation patterns, which have been altered by climate change. The timing and sizes of precipitation events are the two key factors of intra-annual precipitation patterns and potentially drive ecosystem function by influencing soil moisture. However, the generalizable patterns of how intra-annual precipitation patterns affect the productivity and community structures of ecosystems remain unclear. METHODS We synthesized 633 observations from 17 studies and conducted a global meta-analysis to investigate the influences of intra-annual precipitation patterns on the productivity and community structures of terrestrial ecosystems. By classifying intra-annual precipitation patterns, we also assess the importance of the magnitude and timing of precipitation events on plant productivity. RESULTS Our results showed that the intra-annual precipitation patterns decreased diversity by 6.3% but increased belowground net primary productivity, richness, and relative abundance by 16.8%, 10.5%, and 45.0%, respectively. Notably, we found that the timing uniformity of precipitation events was more important for plant productivity, while the plant community structure benefited from the increased precipitation variability. In addition, the relationship between plant productivity and community structure and soil moisture dynamic response was more consistent with the nonlinear model. COMCLUSIONS The patterns of the responses of plant productivity and community structure to altered intra-annual precipitation patterns were revealed, and the importance of the timing uniformity of precipitation events to the functioning of production systems was highlighted, which is essential to enhancing understanding of the structures and functions of ecosystems subjected to altered precipitation patterns and predicting their changes.
Collapse
Affiliation(s)
- Mingyu Xie
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Liu
- Shandong Provincial Key Laboratory of Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Yalan Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Koerner SE, Avolio ML, Blair JM, Knapp AK, Smith MD. Multiple global change drivers show independent, not interactive effects: a long-term case study in tallgrass prairie. Oecologia 2023; 201:143-154. [PMID: 36507971 DOI: 10.1007/s00442-022-05295-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022]
Abstract
Ecosystems are faced with an onslaught of co-occurring global change drivers. While frequently studied independently, the effects of multiple global change drivers have the potential to be additive, antagonistic, or synergistic. Global warming, for example, may intensify the effects of more variable precipitation regimes with warmer temperatures increasing evapotranspiration and thereby amplifying the effect of already dry soils. Here, we present the long-term effects (11 years) of altered precipitation patterns (increased intra-annual variability in the growing season) and warming (1 °C year-round) on plant community composition and aboveground net primary productivity (ANPP), a key measure of ecosystem functioning in mesic tallgrass prairie. Based on past results, we expected that increased precipitation variability and warming would have additive effects on both community composition and ANPP. Increased precipitation variability altered plant community composition and increased richness, with no effect on ANPP. In contrast, warming decreased ANPP via reduction in grass stems and biomass but had no effect on the plant community. Contrary to expectations, across all measured variables, precipitation and warming treatments had no interactive effects. While treatment interactions did not occur, each treatment did individually impact a different component of the ecosystem (i.e., community vs. function). Thus, different aspects of the ecosystem may be sensitive to different global change drivers in mesic grassland ecosystems.
Collapse
Affiliation(s)
- Sally E Koerner
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
| | - Meghan L Avolio
- Department of Earth and Planetary Sciences, John Hopkins University, Baltimore, MD, 21218, USA
| | - John M Blair
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80253, USA
| | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80253, USA
| |
Collapse
|
14
|
Barros VDD, Waltner I, Minoarimanana RA, Halupka G, Sándor R, Kaldybayeva D, Gelybó G. SpatialAquaCrop, an R Package for Raster-Based Implementation of the AquaCrop Model. PLANTS (BASEL, SWITZERLAND) 2022; 11:2907. [PMID: 36365360 PMCID: PMC9654151 DOI: 10.3390/plants11212907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Modeling crop water use and soil moisture availability is becoming increasingly critical, particularly in light of recent drought events. Our study focuses on the spatial application of the AquaCrop model, using a raster-based approach in an R-based environment. The formulated methodology was initially applied and tested on two point-based examples in the Central region of Hungary, followed by the spatial application of the model at the Rákos Stream catchment in the same region. For evaluation purposes, we also utilized satellite-based NDVI data. The results showed that there is a strong correlation between NDVI values and the model-based biomass estimation. We also found that the model simulated the soil moisture content fairly well, with a correlation coefficient of 0.82. While our results support the validity of the applied methodology, it is also clear that input data availability and quality are still critical issues in spatial application of the AquaCrop model.
Collapse
Affiliation(s)
- Vinicius Deganutti De Barros
- Doctoral School of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - István Waltner
- Department of Water Management and Climate Adaption, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | | | - Gábor Halupka
- Department of Water Management and Climate Adaption, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Renáta Sándor
- Agricultural Institute, Centre for Agriculural Research, Eötvös Loránd Research Network, Martonvásár, Brunszvik u. 2., 2462 Martonvásár, Hungary
| | - Dana Kaldybayeva
- Department of Water Management and Climate Adaption, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Györgyi Gelybó
- Department of Water Management and Climate Adaption, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
15
|
Ke M, Wang W, Zhou Q, Wang Y, Liu Y, Yu Y, Chen Y, Peng Z, Mo Q. Response of leaf functional traits to precipitation change: A case study from tropical woody tree. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Hidalgo-Galvez MD, Barkaoui K, Volaire F, Matías L, Cambrollé J, Fernández-Rebollo P, Carbonero MD, Pérez-Ramos IM. Can trees buffer the impact of climate change on pasture production and digestibility of Mediterranean dehesas? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155535. [PMID: 35489515 DOI: 10.1016/j.scitotenv.2022.155535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Sustainability and functioning of silvopastoral ecosystems are being threatened by the forecasted warmer and drier environments in the Mediterranean region. Scattered trees of these ecosystems could potentially mitigate the impact of climate change on herbaceous plant community but this issue has not yet tested experimentally. We carried out a field manipulative experiment of increased temperature (+2-3 °C) using Open Top Chambers and rainfall reduction (30%) through rain-exclusion shelters to evaluate how net primary productivity and digestibility respond to climate change over three consecutive years, and to test whether scattered trees could buffer the effects of higher aridity in Mediterranean dehesas. First, we observed that herbaceous communities located beneath tree canopy were less productive (351 g/m2) than in open grassland (493 g/m2) but had a higher digestibility (44% and 41%, respectively), likely promoted by tree shade and the higher soil fertility of this habitat. Second, both habitats responded similarly to climate change in terms of net primary productivity, with a 33% increase under warming and a 13% decrease under reduced rainfall. In contrast, biomass digestibility decreased under increased temperatures (-7.5%), since warming enhanced the fiber and lignin content and decreased the crude protein content of aerial biomass. This warming-induced effect on biomass digestibility only occurred in open grasslands, suggesting a buffering role of trees in mitigating the impact of climate change. Third, warming did not only affect these ecosystem processes in a direct way but also indirectly via changes in plant functional composition. Our findings suggest that climate change will alter both the quantity and quality of pasture production, with expected warmer conditions increasing net primary productivity but at the expense of reducing digestibility. This negative effect of warming on digestibility might be mitigated by scattered trees, highlighting the importance of implementing strategies and suitable management to control tree density in these ecosystems.
Collapse
Affiliation(s)
- Maria Dolores Hidalgo-Galvez
- Institute of Natural Resources and Agrobiology of Sevilla (IRNAS-CSIC), 10 Reina Mercedes Avenue, 41012 Seville, Spain; Integrated Biology Doctoral Program, University of Seville, 6 Reina Mercedes Avenue, 41012 Seville, Spain.
| | - Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France; ABSys, University of Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - Florence Volaire
- Centre d'Écologie Fontionnelle et Évolutive de Montpellier (CEFE-CNRS), 1919 Route de Mende, 34293 Montpellier cedex 5, France.
| | - Luis Matías
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, 6 Reina Mercedes Avenue, 41012 Seville, Spain.
| | - Jesús Cambrollé
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, 6 Reina Mercedes Avenue, 41012 Seville, Spain.
| | - Pilar Fernández-Rebollo
- Department of Forestry Engineering ETSIAM, School of Agricultural and Forestry Engineering ETSIAM, University of Córdoba, 14071 Córdoba, Spain.
| | - Maria Dolores Carbonero
- Department of Agricultural Production, Institute of Agricultural and Fishing Research and Education (IFAPA), km. 15, El Viso Road, 14270 Hinojosa del Duque, Córdoba, Spain.
| | - Ignacio Manuel Pérez-Ramos
- Institute of Natural Resources and Agrobiology of Sevilla (IRNAS-CSIC), 10 Reina Mercedes Avenue, 41012 Seville, Spain.
| |
Collapse
|
17
|
The Sensitivity of Vegetation Dynamics to Climate Change across the Tibetan Plateau. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vegetation dynamics are key processes which present the ecology system’s response to climate change. However, vegetation sensitivity to climate change remains controversial. This study redefined vegetation sensitivity to precipitation (VSP) and vegetation sensitivity to temperature (VST) by the coefficient of determination (R2) obtained by a linear regression analysis between climate and the normalized difference vegetation index (NDVI), as well as by using an analysis of variance to explore the significant differences between them in different seasons from 1982 to 2013, and exploring the general changed rules of VSP/VST on a timescale. Moreover, the variations in VSP and VST across the Tibetan Plateau were plotted by regression analysis. Finally, we used structural equation modeling (SEM) to verify the hypothesis that the respondence of VSP and VST to the NDVI was regulated by the hydrothermal conditions. Our results showed that: (1) the annual VSP increased in both spring and winter (R2 = 0.32, p < 0.001; R2 = 0.25, p < 0.001, respectively), while the annual VST decreased in summer (R2 = 0.21, p < 0.001); (2) the threshold conditions of seasonal VSP and seasonal VST were captured in the 4–12 mm range (monthly precipitation) and at 0 °C (monthly average temperature), respectively; (3) the SEM demonstrated that climate change has significant direct effects on VSP only in spring and winter and on VST only in summer (path coefficient of −0.554, 0.478, and −0.428, respectively). In summary, our findings highlighted that climate change under these threshold conditions would lead to a variation in the sensitivity of the NDVI to seasonal precipitation and temperature.
Collapse
|
18
|
Fust P, Schlecht E. Importance of timing: Vulnerability of semi-arid rangeland systems to increased variability in temporal distribution of rainfall events as predicted by future climate change. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Water Use Characteristics of Two Dominant Species in the Mega-Dunes of the Badain Jaran Desert. WATER 2021. [DOI: 10.3390/w14010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sparse natural vegetation develops special water use characteristics to adapt to inhospitable desert areas. The water use characteristics of such plants in desert areas are not yet completely understood. In this study, we compare the differences in water use characteristics between two dominant species of the Badain Jaran Desert mega-dunes—Zygophyllum xanthoxylum and Artemisia ordosica—by investigating δ2H and δ18O in plant xylem (the organization that transports water and inorganic salts in plant stems) and soil water, and δ13C in plant leaves. The results indicate that Z. xanthoxylum absorbed 86.5% of its water from soil layers below 90 cm during growing seasons, while A. ordosica derived 79.90% of its water from the 0–120 cm soil layers during growing seasons. Furthermore, the long-term leaf-level water use efficiency of A. ordosica (123.17 ± 2.13 μmol/mol) was higher than that of Z. xanthoxylum (97.36 ± 1.16 μmol/mol). The differences in water use between the two studied species were mainly found to relate to their root distribution characteristics. A better understanding of the water use characteristics of plants in desert habitats can provide a theoretical basis to assist in the selection of species for artificial vegetation restoration in arid areas.
Collapse
|
20
|
Slette IJ, Blair JM, Fay PA, Smith MD, Knapp AK. Effects of Compounded Precipitation Pattern Intensification and Drought Occur Belowground in a Mesic Grassland. Ecosystems 2021. [DOI: 10.1007/s10021-021-00714-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Grasslands Maintain Stability in Productivity Through Compensatory Effects and Dominant Species Stability Under Extreme Precipitation Patterns. Ecosystems 2021. [DOI: 10.1007/s10021-021-00706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Cheng H, Gong Y, Zuo X. Precipitation Variability Affects Aboveground Biomass Directly and Indirectly via Plant Functional Traits in the Desert Steppe of Inner Mongolia, Northern China. FRONTIERS IN PLANT SCIENCE 2021; 12:674527. [PMID: 34456934 PMCID: PMC8385370 DOI: 10.3389/fpls.2021.674527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 05/27/2023]
Abstract
Clarifying the response of community and dominance species to climate change is crucial for disentangling the mechanism of the ecosystem evolution and predicting the prospective dynamics of communities under the global climate scenario. We examined how precipitation changes affect community structure and aboveground biomass (AGB) according to manipulated precipitation experiments in the desert steppe of Inner Mongolia, China. Bayesian model and structural equation models (SEM) were used to test variation and causal relationship among precipitation, plant diversity, functional attributes, and AGB. The results showed that the responses of species richness, evenness, and plant community weighted means traits to precipitation changes in amount and year were significant. The SEM demonstrated that precipitation change in amount and year has a direct effect on richness, evenness, and community-weighted mean (CWM) for height, leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), and leaf carbon content (LCC) and AGB; there into CWM for height and LDMC had a direct positive effect on AGB; LA had a direct negative effect on AGB. Three dominant species showed diverse adaptation and resource utilization strategies in response to precipitation changes. A. polyrhizum showed an increase in height under the precipitation treatments that promoted AGB, whereas the AGB of P. harmala and S. glareosa was boosted through alterations in height and LA. Our results highlight the asynchronism of variation in community composition and structure, leaf functional traits in precipitation-AGB relationship. We proposed that altered AGB resulted from the direct and indirect effects of plant functional traits (plant height, LA, LDMC) rather than species diversity, plant functional traits are likely candidate traits, given that they are mechanistically linked to precipitation changes and affected aboveground biomass in a desert steppe.
Collapse
Affiliation(s)
- Huan Cheng
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Yuanbo Gong
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
| |
Collapse
|
23
|
Is Plant Life-History of Biseasonal Germination Consistent in Response to Extreme Precipitation? PLANTS 2021; 10:plants10081642. [PMID: 34451688 PMCID: PMC8402233 DOI: 10.3390/plants10081642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
Future climate is projected to increase in the intensity and frequency of extreme precipitation events, and the resulting ecological consequences are often more serious than those of normal precipitation events. In particular, in desert ecosystems, due to the low frequency and strong fluctuation of extreme precipitation, the destructive consequences for desert plants caused by extreme precipitation have not received enough attention for some time. Based on statistics of extreme precipitation events (1965–2018) in the Gurbantunggut Desert, we investigated the effects of extreme precipitation (+0%, CK; +50%, W1; +100%, W2; +200%, W3; maintenance of field capacity, W4) on the plant life-history of the spring-germinated (SG) and autumn-germinated (AG) ephemeral plant Erodium oxyrhynchum by monitoring seedling emergence, survival, phenology, organ size, biomass accumulation, and allocation. The results showed that extreme precipitation caused about 2.5% seedling emergence of E. oxyrhynchum in autumn 2018 and 3.0% seedling emergence in early spring 2019, which means that most seeds may be stored in the soil or have died. Meanwhile, extreme precipitation significantly improved the survival, organ size, and biomass accumulation of SG and AG plants, and W3 was close to the precipitation threshold of SG (326.70 mm) and AG (560.10 mm) plants corresponding to the maximum individual biomass; thus, AG plants with a longer life cycle need more water for growth. Conversely, W4 caused AG plants to enter the leaf stage in advance and led to death in winter, which indicates that extreme precipitation may not be good for AG plants. Root and reproduction biomass allocation of SG and AG plants showed a significantly opposite trend under extreme precipitation treatments, which might be related to their different life-history strategies. Therefore, when only taking into account the changing trend of extreme precipitation from the Coupled Model Intercomparison Project 6 (CMIP6) climate projections data, we speculate that extreme precipitation may promote the growth of SG and AG plants from the beginning to the middle of this century, but extreme precipitation in autumn exceeding a certain threshold may adversely affect the survival of AG plants at the end of the century.
Collapse
|
24
|
Hoeffner K, Beylich A, Chabbi A, Cluzeau D, Dascalu D, Graefe U, Guzmán G, Hallaire V, Hanisch J, Landa BB, Linsler D, Menasseri S, Öpik M, Potthoff M, Sandor M, Scheu S, Schmelz RM, Engell I, Schrader S, Vahter T, Banse M, Nicolaï A, Plaas E, Runge T, Roslin T, Decau ML, Sepp SK, Arias-Giraldo LF, Busnot S, Roucaute M, Pérès G. Legacy effects of temporary grassland in annual crop rotation on soil ecosystem services. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146140. [PMID: 34030316 DOI: 10.1016/j.scitotenv.2021.146140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The introduction of temporary grassland into an annual crop rotation is recognized to improve soil ecosystem services, and resulting legacies can be beneficial for the following crops. In this context, the aim of the present study was to evaluate legacy effects of introducing temporary grassland into an annual crop rotation on five ecosystem services (i) soil structure maintenance (aggregate stability), (ii) water regulation (saturated hydraulic conductivity), (iii) biodiversity conservation (microbial biomass and microbial metabolic activity, as well as microorganism, enchytraeid, springtail and earthworm communities), (iv) pathogen regulation (soil suppressiveness to Verticillium dahliae), and (v) forage production and quality. Three crop rotation schemes, maintained for twelve years, were compared in four random blocks, one being an annual crop rotation without grassland (0%), another with a medium percentage of grassland (50%, corresponding to 3 years of continuous grassland in the crop rotation), and a third one with a high percentage of grassland in the crop rotation (75%, corresponding to 6 years of continuous grassland in the crop rotation). The results showed that the grassland introduction into an annual crop rotation improved, whatever the duration of the grassland, soil structure maintenance and biodiversity conservation, while it decreased pathogen regulation and did not modify water regulation. Comparing the two crop rotations that included grassland, indicated a stronger beneficial grassland legacy effect for the higher proportion of grassland concerning soil structure maintenance and biodiversity conservation. By contrast, water regulation, pathogen regulation and forage production were not affected by the legacy of the 75% grassland during the rotation. Overall, our findings demonstrated the extent to which grassland legacies are affecting the current state of soil properties and possible ecosystem services provided. To improve ecosystem services, soil management should take legacy effects into account and consider longer timeframes to apply beneficial practices.
Collapse
Affiliation(s)
- Kevin Hoeffner
- UMR SAS, INRAE, INSTITUT AGRO AGROCAMPUS OUEST, 35000 Rennes, France; University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], - UMR 6553, Rennes, France.
| | - Anneke Beylich
- IFAB Institut für Angewandte Bodenbiologie GmbH, 22337 Hamburg, Germany
| | - Abad Chabbi
- INRAE, UR P3F, Centre Poitou-Charentes, Lusignan, France; UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Daniel Cluzeau
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], - UMR 6553, Rennes, France
| | - Dumitrita Dascalu
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Ulfert Graefe
- IFAB Institut für Angewandte Bodenbiologie GmbH, 22337 Hamburg, Germany
| | - Gema Guzmán
- Institute for Sustainable Agriculture, CSIC, Cordoba, Spain
| | - Vincent Hallaire
- UMR SAS, INRAE, INSTITUT AGRO AGROCAMPUS OUEST, 35000 Rennes, France
| | - Jörg Hanisch
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany
| | - Blanca B Landa
- Institute for Sustainable Agriculture, CSIC, Cordoba, Spain
| | - Deborah Linsler
- University of Göttingen, Centre of Biodiversity and Sustainable Land Use, 37077 Göttingen, Germany
| | - Safya Menasseri
- UMR SAS, INRAE, INSTITUT AGRO AGROCAMPUS OUEST, 35000 Rennes, France
| | - Maarja Öpik
- Department of Botany, University of Tartu, Lai 40, EE-51005 Tartu, Estonia
| | - Martin Potthoff
- University of Göttingen, Centre of Biodiversity and Sustainable Land Use, 37077 Göttingen, Germany
| | - Mignon Sandor
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Stefan Scheu
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany
| | - Rüdiger M Schmelz
- IFAB Institut für Angewandte Bodenbiologie GmbH, 22337 Hamburg, Germany
| | - Ilka Engell
- University of Göttingen, Centre of Biodiversity and Sustainable Land Use, 37077 Göttingen, Germany
| | - Stefan Schrader
- Johann Heinrich von Thünen-Institute, Institute of Biodiversity, Braunschweig, Germany
| | - Tanel Vahter
- Department of Botany, University of Tartu, Lai 40, EE-51005 Tartu, Estonia
| | - Martin Banse
- Johann Heinrich von Thünen-Institute, Institute of Market Analysis, Braunschweig, Germany
| | - Annegret Nicolaï
- UMR SAS, INRAE, INSTITUT AGRO AGROCAMPUS OUEST, 35000 Rennes, France; University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], - UMR 6553, Rennes, France
| | - Elke Plaas
- University of Göttingen, Centre of Biodiversity and Sustainable Land Use, 37077 Göttingen, Germany; University of Göttingen, Department for Agricultural Economics and Rural Development, Göttingen, Germany
| | - Tania Runge
- Johann Heinrich von Thünen-Institute, Institute of Market Analysis, Braunschweig, Germany
| | - Tomas Roslin
- Swedish University of Agricultural Sciences, Department of Ecology, Uppsala, Sweden
| | | | - Siim-Kaarel Sepp
- Department of Botany, University of Tartu, Lai 40, EE-51005 Tartu, Estonia
| | | | - Sylvain Busnot
- UMR SAS, INRAE, INSTITUT AGRO AGROCAMPUS OUEST, 35000 Rennes, France
| | - Marc Roucaute
- UMR SAS, INRAE, INSTITUT AGRO AGROCAMPUS OUEST, 35000 Rennes, France
| | - Guénola Pérès
- UMR SAS, INRAE, INSTITUT AGRO AGROCAMPUS OUEST, 35000 Rennes, France
| |
Collapse
|
25
|
Meng B, Li J, Maurer GE, Zhong S, Yao Y, Yang X, Collins SL, Sun W. Nitrogen addition amplifies the nonlinear drought response of grassland productivity to extended growing-season droughts. Ecology 2021; 102:e03483. [PMID: 34287849 DOI: 10.1002/ecy.3483] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 11/09/2022]
Abstract
Understanding the response of grassland production and carbon exchange to intra-annual variation in precipitation and nitrogen addition is critical for sustainable grassland management and ecosystem restoration. We introduced growing-season drought treatments of different lengths (15, 30, 45 and 60 d drought) by delaying growing-season precipitation in a long-term nitrogen addition experiment in a low diversity meadow steppe in northeast China. Response variables included aboveground biomass (AGB), ecosystem net carbon exchange (NEE), and leaf net carbon assimilation rate (A). In unfertilized plots drought decreased AGB by 13.7% after a 45-d drought and 31.7% after a 60-d drought (47.6% in fertilized plots). Progressive increases in the drought response of NEE were also observed. The effects of N addition on the drought response of productivity increased as drought duration increased, and these responses were a function of changes in AGB and biomass allocation, particularly root to shoot ratio. However, no significant effects of drought occurred in fertilized or unfertilized plots in the growing season a year after the experiment, N addition did limit the recovery of AGB from severe drought during the remainder of the current growing season. Our results imply that chronic N enrichment could exacerbate the effects of growing-season drought on grassland productivity caused by altered precipitation seasonality under climate change, but that these effects do not carry over to the next growing season.
Collapse
Affiliation(s)
- Bo Meng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China.,Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Junqin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Gregory E Maurer
- Jornada Basin LTER Program, New Mexico State University, Las Cruces, New Mexico, 88003, USA
| | - Shangzhi Zhong
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 255109, China
| | - Yuan Yao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Xuechen Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China.,Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
26
|
Barnett KL, Johnson SN, Facey SL, Gibson-Forty EVJ, Ochoa-Hueso R, Power SA. Altered precipitation and root herbivory affect the productivity and composition of a mesic grassland. BMC Ecol Evol 2021; 21:145. [PMID: 34266378 PMCID: PMC8283849 DOI: 10.1186/s12862-021-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Climate change models predict changes in the amount, frequency and seasonality of precipitation events, all of which have the potential to affect the structure and function of grassland ecosystems. While previous studies have examined plant or herbivore responses to these perturbations, few have examined their interactions; even fewer have included belowground herbivores. Given the ecological, economic and biodiversity value of grasslands, and their importance globally for carbon storage and agriculture, this is an important knowledge gap. To address this, we conducted a precipitation manipulation experiment in a former mesic pasture grassland comprising a mixture of C4 grasses and C3 grasses and forbs, in southeast Australia. Rainfall treatments included a control [ambient], reduced amount [50% ambient] and reduced frequency [ambient rainfall withheld for three weeks, then applied as a single deluge event] manipulations, to simulate predicted changes in both the size and frequency of future rainfall events. In addition, half of all experimental plots were inoculated with adult root herbivores (Scarabaeidae beetles). RESULTS We found strong seasonal dependence in plant community responses to both rainfall and root herbivore treatments. The largest effects were seen in the cool season with lower productivity, cover and diversity in rainfall-manipulated plots, while root herbivore inoculation increased the relative abundance of C3, compared to C4, plants. CONCLUSIONS This study highlights the importance of considering not only the seasonality of plant responses to altered rainfall, but also the important role of interactions between abiotic and biotic drivers of vegetation change when evaluating ecosystem-level responses to future shifts in climatic conditions.
Collapse
Affiliation(s)
- Kirk L Barnett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Sarah L Facey
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Eleanor V J Gibson-Forty
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Raul Ochoa-Hueso
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Department of Biology, University of Cádiz, Avenida República Árabe Saharaui, 11510, Puerto Real, Cádiz, Spain
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
27
|
Bachle S, Nippert JB. Microanatomical traits track climate gradients for a dominant C4 grass species across the Great Plains, USA. ANNALS OF BOTANY 2021; 127:451-459. [PMID: 32780105 PMCID: PMC7988519 DOI: 10.1093/aob/mcaa146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Andropogon gerardii is a highly productive C4 grass species with a large geographic range throughout the North American Great Plains, a biome characterized by a variable temperate climate. Plant traits are often invoked to explain growth rates and competitive abilities within broad climate gradients. For example, plant competition models typically predict that species with large geographic ranges benefit from variation in traits underlying high growth potential. Here, we examined the relationship between climate variability and leaf-level traits in A. gerardii, emphasizing how leaf-level microanatomical traits serve as a mechanism that may underlie variation in commonly measured traits, such as specific leaf area (SLA). METHODS Andropogon gerardii leaves were collected in August 2017 from Cedar Creek Ecosystem Science Reserve (MN), Konza Prairie Biological Station (KS), Platte River Prairie (NE) and Rocky Mountain Research Station (SD). Leaves from ten individuals from each site were trimmed, stained and prepared for fluorescent confocal microscopy to analyse internal leaf anatomy. Leaf microanatomical data were compared with historical and growing season climate data extracted from PRISM spatial climate models. KEY RESULTS Microanatomical traits displayed large variation within and across sites. According to AICc (Akaike's information criterion adjusted for small sample sizes) selection scores, the interaction of mean precipitation and temperature for the 2017 growing season was the best predictor of variability for the anatomical and morphological traits measured here. Mesophyll area and bundle sheath thickness were directly correlated with mean temperature (annual and growing season). Tissues related to water-use strategies, such as bulliform cell and xylem area, were significantly correlated with one another. CONCLUSIONS The results indicate that (1) microanatomical trait variation exists within this broadly distributed grass species, (2) microanatomical trait variability appears likely to impact leaf-level carbon and water use strategies, and (3) microanatomical trait values vary across climate gradients, and may underlie variation in traits measured at larger ecological scales.
Collapse
Affiliation(s)
- Seton Bachle
- Division of Biology, Kansas State University, Manhattan, KS, USA
- For correspondence. E-mail
| | - Jesse B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
28
|
Hamann E, Denney D, Day S, Lombardi E, Jameel MI, MacTavish R, Anderson JT. Review: Plant eco-evolutionary responses to climate change: Emerging directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110737. [PMID: 33568289 DOI: 10.1016/j.plantsci.2020.110737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 05/14/2023]
Abstract
Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO2] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of climate change, most studies typically manipulate only one climatic factor. In this opinion piece, we explore how climate change factors interact with each other and with biotic pressures to alter evolutionary processes. We evaluate the ramifications of climate change across life history stages,and examine how mating system variation influences population persistence under rapid environmental change. Furthermore, we discuss how spatial and temporal mismatches between plants and their mutualists and antagonists could affect adaptive responses to climate change. For example, plant-virus interactions vary from highly pathogenic to mildly facilitative, and are partly mediated by temperature, moisture availability and [CO2]. Will host plants exposed to novel, stressful abiotic conditions be more susceptible to viral pathogens? Finally, we propose novel experimental approaches that could illuminate how plants will cope with unprecedented global change, such as resurrection studies combined with experimental evolution, genomics or epigenetics.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Derek Denney
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Samantha Day
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth Lombardi
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
29
|
Mu XH, Huang G, Li Y, Zheng XJ, Xu GQ, Wu X, Wang Y, Liu Y. Population Dynamics and Life History Response to Precipitation Changes for a Desert Ephemeral Plant With Biseasonal Germination. FRONTIERS IN PLANT SCIENCE 2021; 12:625475. [PMID: 33633767 PMCID: PMC7901992 DOI: 10.3389/fpls.2021.625475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The changing availability of water resources and frequent extreme drought events in the context of global change will have a profound impact on desert vegetation, especially on herbaceous populations such as ephemerals. Erodium oxyrrhynchum is the dominant species in the Gurbantunggut Desert. It can germinate both in spring and autumn, which is important for herbaceous layer coverage and productivity. Therefore, we tracked and recorded the survival and reproduction of the E. oxyrrhynchum population under different precipitation treatments and established a population matrix model, monitored the allometry and leaf traits of the plants, and compared the performance of spring-germinating and autumn-germinating plants. Our results showed that: (1) The population dynamics were significantly affected by precipitation changes; (2) drought reduced the survival rate of the plants and accelerated the completion of their life history; (3) precipitation had a significant effect on seed production and growth rate, but not on plant height and allometry; (4) biomass, leaf area, specific leaf area, and 100-grain weight of E. oxyrrhynchum also responded to changes in precipitation; and (5) autumn-germinated plants had higher productivity, whereas spring-germinated plants exhibited higher reproductive efficiency, indicating that they had difference life history strategies. In conclusion, our results suggested that, although frequent or prolonged drought can significantly inhibit population growth, species with biseasonal germination are likely to be less affected.
Collapse
Affiliation(s)
- Xiao-Han Mu
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gang Huang
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yan Li
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xin-Jun Zheng
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Gui-Qing Xu
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xue Wu
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yugang Wang
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yan Liu
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
30
|
Li Y, Hou L, Yang L, Yue M. Transgenerational effect alters the interspecific competition between two dominant species in a temperate steppe. Ecol Evol 2021; 11:1175-1186. [PMID: 33598122 PMCID: PMC7863671 DOI: 10.1002/ece3.7066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
One of the key aims of global change studies is to predict more accurately how plant community composition responds to future environmental changes. Although interspecific relationship is one of the most important forces structuring plant communities, it remains a challenge to integrate long-term consequences at the plant community level. As an increasing number of studies have shown that maternal environment affects offspring phenotypic plasticity as a response to global environment change through transgenerational effects, we speculated that the transgenerational effect would influence offspring competitive relationships. We conducted a 10-year field experiment and a greenhouse experiment in a temperate grassland in an Inner Mongolian grassland to examine the effects of maternal and immediate nitrogen addition (N) and increased precipitation (Pr) on offspring growth and the interspecific relationship between the two dominant species, Stipa krylovii and Artemisia frigida. According to our results, Stipa kryloii suppressed A. frigida growth and population development when they grew in mixture, although immediate N and Pr stimulated S. kryloii and A. frigida growth simultaneously. Maternal N and Pr declined S. krylovii dominance and decreased A. frigida competitive suppression to some extent. The transgenerational effect should further facilitate the coexistence of the two species under scenarios of increased nitrogen input and precipitation. If we predicted these species' interspecific relationships based only on immediate environmental effects, we would overestimate S. krylovii's competitive advantage and population development, and underestimate competitive outcome and population development of A. frigida. In conclusion, our results demonstrated that the transgenerational effect of maternal environment on offspring interspecific competition must be considered when evaluating population dynamics and community composition under the global change scenario.
Collapse
Affiliation(s)
- Yang Li
- Xi’an Botanical Garden of Shaanxi ProvinceInstitute of Botany of Shaanxi ProvinceXi’anChina
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical ResourcesXi’anChina
| | - Longyu Hou
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Liuyi Yang
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Ming Yue
- Xi’an Botanical Garden of Shaanxi ProvinceInstitute of Botany of Shaanxi ProvinceXi’anChina
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical ResourcesXi’anChina
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest UniversityXi’anChina
| |
Collapse
|
31
|
Ingty T. Pastoralism in the highest peaks: Role of the traditional grazing systems in maintaining biodiversity and ecosystem function in the alpine Himalaya. PLoS One 2021; 16:e0245221. [PMID: 33411837 PMCID: PMC7790420 DOI: 10.1371/journal.pone.0245221] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022] Open
Abstract
Rangelands cover around half of the planet’s land mass and provide vital ecosystem services to over a quarter of humanity. The Himalayan rangelands, part of a global biodiversity hotspot is among the most threatened regions in the world. In rangelands of many developing nations policies banning grazing in protected areas is common practice. In 1998, the Indian state of Sikkim, in the Eastern Himalaya, enacted a grazing ban in response to growing anthropogenic pressure in pastures and forests that was presumably leading to degradation of biodiversity. Studies from the region demonstrate the grazing ban has had some beneficial results in the form of increased carbon stocks and regeneration of some species of conservation value but the ban also resulted in negative outcomes such as reduced household incomes, increase in monocultures in lowlands, decreased manure production in a state that exclusively practices organic farming, spread of gregarious species, and a perceived increase in human wildlife conflict. This paper explores the impact of the traditional pastoral system on high elevation plant species in Lachen valley, one of the few regions of Sikkim where the grazing ban was not implemented. Experimental plots were laid in along an elevation gradient in grazed and ungrazed areas. Ungrazed areas are part of pastures that have been fenced off (preventing grazing) for over a decade and used by the locals for hay formation. I quantified plant species diversity (Species richness, Shannon index, Simpson diversity index, and Pielou evenness index) and ecosystem function (above ground net primary productivity ANPP). The difference method using movable exlosure cages was used in grazing areas to account for plant ANPP eaten and regrowth between grazing periods). The results demonstrate that grazing significantly contributes to greater plant species diversity (Species richness, Shannon index, Simpson diversity index, and Pielou evenness index) and ecosystem function (using above ground net primary productivity as an indicator). The multidimensional scaling and ANOSIM (Analysis of Similarities) pointed to significant differences in plant species assemblages in grazed and ungrazed areas. Further, ecosystem function is controlled by grazing, rainfall and elevation. Thus, the traditional transhumant pastoral system may enhance biodiversity and ecosystem function. I argue that a complete restriction of open grazing meet neither conservation nor socioeconomic goals. Evidence based policies are required to conserve the rich and vulnerable biodiversity of the region.
Collapse
Affiliation(s)
- Tenzing Ingty
- Department of Biology, University of Massachusetts, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Long-Term Changes and Variability of Ecologically-Based Climate Indices along an Altitudinal Gradient on the Qinghai-Tibetan Plateau. CLIMATE 2020. [DOI: 10.3390/cli9010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extreme climate events are typically defined based on the statistical distributions of climatic variables; their ecological significance is often ignored. In this study, precipitation and temperature data from 78 weather stations spanning from 1960 to 2015 on the Qinghai-Tibetan Plateau were examined. Specifically, long-term and altitudinal variability in ecologically relevant climate indices and their seasonal differences was assessed. The results show that indices of daily temperatures greater than 10 °C and 25 °C show positive annual change trends during the growing season (May to September). Indices of daily rainfall greater than 2 mm, 3 mm and 5 mm positively alternate with years both in and around the growing season (May–September, April and October). In contrast, the index of daily snowfall greater than 2 mm shows opposite annual variability. Additionally, a higher altitude significantly leads to fewer days with temperature deviations above 20 °C, except for in October. The three abovementioned rainfall indices present significantly positive variability with increasing altitude during the growing season. In contrast, the snow index shows similar altitudinal changes in the months surrounding the growing season. This study allows us to better cope with the threats of climate change to vulnerable ecosystems.
Collapse
|
33
|
Effects of long-term climatic variability and harvest frequency on grassland productivity across five ecoregions. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Reeb RA, Acevedo I, Heberling JM, Isaac B, Kuebbing SE. Nonnative old‐field species inhabit early season phenological niches and exhibit unique sensitivity to climate. Ecosphere 2020. [DOI: 10.1002/ecs2.3217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Rachel A. Reeb
- Department of Biological Sciences University of Pittsburgh 4249 Fifth Avenue Pittsburgh Pennsylvania15260USA
| | - Isabel Acevedo
- Institute for Environment and Society Brown University 85 Waterman Street Providence Rhode Island02912USA
| | - J. Mason Heberling
- Section of Botany Carnegie Museum of Natural History 4400 Forbes Avenue Pittsburgh Pennsylvania15213USA
| | - Bonnie Isaac
- Section of Botany Carnegie Museum of Natural History 4400 Forbes Avenue Pittsburgh Pennsylvania15213USA
| | - Sara E. Kuebbing
- Department of Biological Sciences University of Pittsburgh 4249 Fifth Avenue Pittsburgh Pennsylvania15260USA
- Section of Botany Carnegie Museum of Natural History 4400 Forbes Avenue Pittsburgh Pennsylvania15213USA
| |
Collapse
|
35
|
Zhang J, Zuo X, Zhao X, Ma J, Medina-Roldán E. Effects of rainfall manipulation and nitrogen addition on plant biomass allocation in a semiarid sandy grassland. Sci Rep 2020; 10:9026. [PMID: 32493956 PMCID: PMC7270118 DOI: 10.1038/s41598-020-65922-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/26/2020] [Indexed: 11/08/2022] Open
Abstract
Extreme climate events and nitrogen (N) deposition are increasingly affecting the structure and function of terrestrial ecosystems. However, the response of plant biomass to variations to these global change drivers is still unclear in semi-arid regions, especially in degraded sandy grasslands. In this study, a manipulative field experiment run over two years (from 2017 to 2018) was conducted to examine the effect of rainfall alteration and nitrogen addition on biomass allocation of annuals and perennial plants in Horqin sandy grassland, Northern China. Our experiment simulated extreme rainfall and extreme drought (a 60% reduction or increment in the growing season rainfall with respect to a control background) and N addition (20 g/m2) during the growing seasons. We found that the sufficient rainfall during late July and August compensates for biomass losses caused by insufficient water in May and June. When rainfall distribution is relatively uniform during the growing season, extreme rainfall increased aboveground biomass (AGB) and belowground biomass (BGB) of annuals, while extreme drought reduced AGB and BGB of perennials. Rainfall alteration had no significant impacts on the root-shoot ratio (R/S) of sandy grassland plants, while N addition reduced R/S of grassland species when there was sufficient rainfall in the early growing season. The biomass of annuals was more sensitive to rainfall alteration and nitrogen addition than the biomass of perennials. Our findings emphasize the importance of monthly rainfall distribution patterns during the growing season, which not only directly affect the growth and development of grassland plants, but also affect the nitrogen availability of grassland plants.
Collapse
Affiliation(s)
- Jing Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiaoan Zuo
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xueyong Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jianxia Ma
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Eduardo Medina-Roldán
- Health and Environmental Science Department, Xi'an Jiaotong Liverpool University, Suzhou, 215123, China
| |
Collapse
|
36
|
Wang K, Zhong S, Sun W. Clipping defoliation and nitrogen addition shift competition between a C 3 grass (Leymus chinensis) and a C 4 grass (Hemarthria altissima). PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:221-232. [PMID: 31671249 DOI: 10.1111/plb.13064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Human-induced disturbances, including grazing and clipping, that cause defoliation are common in natural grasslands. Plant functional type differences in the ability to compensate for this tissue loss may influence interspecific competition. To explore the effects of different intensities of clipping and nitrogen (N) addition on compensatory growth and interspecific competition, we measured accumulated aboveground biomass (AGB), belowground biomass (BGB), tiller number, non-structural carbohydrates concentrations and leaf gas exchange parameters in two locally co-occurring species (the C3 grass Leymus chinensis and the C4 grass Hemarthria altissima) growing in monoculture and in mixture. For both grasses, the clipping treatment had significant impacts on the accumulated AGB, and the 40% clipping treatment had the largest effect. BGB gradually decreased with increasing defoliation intensity. Severe defoliation caused a significant increase in tiller number. Stored carbohydrates in the belowground biomass were mobilised and transported aboveground for the growth of new leaves to compensate for clipping-induced injury. The net CO2 assimilation rate (A) of the remaining leaves increased with clipping intensity and peaked under clipping intensities of 20% or 40%. Nitrogen addition, at a rate of 10 g·N·m-2 ·year-1 , enhanced A of the remaining leaves and non-structural carbohydrate concentrations, which benefited plant compensatory growth, especially for the C3 grass. Under the mixed planting conditions, the clipping and N addition treatments lowered the competitive advantage of the C4 grass. The results suggest that a combination of defoliation and N deposition have the potential to benefit the coexistence of C3 and C4 grasses.
Collapse
Affiliation(s)
- K Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - S Zhong
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - W Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| |
Collapse
|
37
|
Felton AJ, Slette IJ, Smith MD, Knapp AK. Precipitation amount and event size interact to reduce ecosystem functioning during dry years in a mesic grassland. GLOBAL CHANGE BIOLOGY 2020; 26:658-668. [PMID: 31386797 DOI: 10.1111/gcb.14789] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Ongoing intensification of the hydrological cycle is altering rainfall regimes by increasing the frequency of extreme wet and dry years and the size of individual rainfall events. Despite long-standing recognition of the importance of precipitation amount and variability for most terrestrial ecosystem processes, we lack understanding of their interactive effects on ecosystem functioning. We quantified this interaction in native grassland by experimentally eliminating temporal variability in growing season rainfall over a wide range of precipitation amounts, from extreme wet to dry conditions. We contrasted the rain use efficiency (RUE) of above-ground net primary productivity (ANPP) under conditions of experimentally reduced versus naturally high rainfall variability using a 32-year precipitation-ANPP dataset from the same site as our experiment. We found that increased growing season rainfall variability can reduce RUE and thus ecosystem functioning by as much as 42% during dry years, but that such impacts weaken as years become wetter. During low precipitation years, RUE is lowest when rainfall event sizes are relatively large, and when a larger proportion of total rainfall is derived from large events. Thus, a shift towards precipitation regimes dominated by fewer but larger rainfall events, already documented over much of the globe, can be expected to reduce the functioning of mesic ecosystems primarily during drought, when ecosystem processes are already compromised by low water availability.
Collapse
Affiliation(s)
- Andrew J Felton
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
- Department of Wildland Resources and The Ecology Center, Utah State University, Logan, UT, USA
| | - Ingrid J Slette
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
38
|
Bauer JT, Koziol L, Bever JD. Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia 2020; 192:735-744. [PMID: 31989319 DOI: 10.1007/s00442-020-04598-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/10/2020] [Indexed: 11/30/2022]
Abstract
Soil microbial communities can have an important role in the adaptation of plants to their local abiotic soil conditions and in mediating plant responses to environmental stress. This has been clearly demonstrated for individual plant species, but it is unknown how locally adapted microbes may affect plant communities. It is possible that the adaptation of microbial communities to local conditions can shape plant community composition. Additionally, it is possible that the effects of locally adapted microorganisms on individual plant species could be altered by co-occurring plant species. We tested these possibilities in plant community mesocosms with soils and mycorrhizal fungi (AMF) from three locations. We found that plant community biomass responded positively to local adaptation of AMF to soil conditions. Plant community composition also changed in response to local adaptation of AMF. Unexpectedly, the strongest benefits of locally adapted AMF went to early successional plant species that have the highest relative growth rates and the lowest responsiveness to the presence of AMF. Late successional plants that responded positively overall to the presence of AMF were often suppressed in communities with local AMF, perhaps because of strong competition from fast growing plant species. These results show that local adaptation of soil microbial communities can shape plant community composition, and the benefits that plants derive from locally adapted microorganisms can be reshaped by the competitive context in which these associations occur.
Collapse
Affiliation(s)
- Jonathan T Bauer
- Department of Biology, Miami University, 700 E High St, Oxford, OH, 45056, USA. .,Institute for the Environment and Sustainability, Miami University, 250 S. Patterson Ave, Oxford, OH, 45056, USA.
| | - Liz Koziol
- Kansas Biological Survey, 2101 Constant Avenue, Lawrence, KS, 66047, USA
| | - James D Bever
- Kansas Biological Survey, 2101 Constant Avenue, Lawrence, KS, 66047, USA.,Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| |
Collapse
|
39
|
Seasonal Patterns of Root Production with Water and Nitrogen Additions Across Three Dryland Ecosystems. Ecosystems 2019. [DOI: 10.1007/s10021-019-00364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Yang X, Huang Z, Dong M, Ye X, Liu G, Hu D, Tuvshintogtokh I, Tumenjargal T, Cornelissen JHC. Responses of community structure and diversity to nitrogen deposition and rainfall addition in contrasting steppes are ecosystem-dependent and dwarfed by year-to-year community dynamics. ANNALS OF BOTANY 2019; 124:461-469. [PMID: 31161191 PMCID: PMC6798833 DOI: 10.1093/aob/mcz098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS Long-term studies to disentangle the multiple, simultaneous effects of global change on community dynamics are a high research priority to forecast future distribution of diversity. Seldom are such multiple effects of global change studied across different ecosystems. METHODS Here we manipulated nitrogen deposition and rainfall at levels realistic for future environmental scenarios in three contrasting steppe types in Mongolia and followed community dynamics for 7 years. KEY RESULTS Redundancy analyses showed that community composition varied significantly among years. Rainfall and nitrogen manipulations did have some significant effects, but these effects were dependent on the type of response and varied between ecosystems. Community compositions of desert and meadow steppes, but not that of typical steppe, responded significantly to rainfall addition. Only community composition of meadow steppe responded significantly to nitrogen deposition. Species richness in desert steppe responded significantly to rainfall addition, but the other two steppes did not. Typical steppe showed significant negative response of species richness to nitrogen deposition, but the other two steppes did not. There were significant interactions between year and nitrogen deposition in desert steppe and between year and rainfall addition in typical steppe, suggesting that the effect of the treatments depends on the particular year considered. CONCLUSIONS Our multi-year experiment thus suggests that responses of community structure and diversity to global change drivers are ecosystem-dependent and that their responses to experimental treatments are dwarfed by the year-to-year community dynamics. Therefore, our results point to the importance of taking annual environmental variability into account for understanding and predicting the specific responses of different ecosystems to multiple global change drivers.
Collapse
Affiliation(s)
- Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ming Dong
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xuehua Ye
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guofang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dandan Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Indree Tuvshintogtokh
- Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Tsogtsaikhan Tumenjargal
- Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - J Hans C Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Rewilding in the Garden: are garden hybrid plants (cultivars) less resilient to the effects of hydrological extremes than their parent species? A case study with Primula. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-00865-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Zhong M, Song J, Zhou Z, Ru J, Zheng M, Li Y, Hui D, Wan S. Asymmetric responses of plant community structure and composition to precipitation variabilities in a semi-arid steppe. Oecologia 2019; 191:697-708. [PMID: 31578614 DOI: 10.1007/s00442-019-04520-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Changing precipitation regimes can profoundly affect plant growth in terrestrial ecosystems, especially in arid and semi-arid regions. However, how changing precipitation, especially extreme precipitation events, alters plant diversity and community composition is still poorly understood. A 3-year field manipulative experiment with seven precipitation treatments, including - 60%, - 40%, - 20%, 0% (as a control), + 20%, + 40%, and + 60% of ambient growing-season precipitation, was conducted in a semi-arid steppe in the Mongolian Plateau. Results showed total plant community cover and forb cover were enhanced with increased precipitation and reduced under decreased precipitation, whereas grass cover was suppressed under the - 60% treatment only. Plant community and grass species richness were reduced by the - 60% treatment only. Moreover, our results demonstrated that total plant community cover was more sensitive to decreased than increased precipitation under normal and extreme precipitation change, and species richness was more sensitive to decreased than increased precipitation under extreme precipitation change. The community composition and low field water holding capacity may drive this asymmetric response. Accumulated changes in community cover may eventually lead to changes in species richness. However, compared to control, Shannon-Weiner index (H) did not respond to any precipitation treatment, and Pielou's evenness index (E) was reduced under the + 60% treatment across the 3 year, but not in each year. Thus, the findings suggest that plant biodiversity in the semi-arid steppe may have a strong resistance to precipitation pattern changes through adjusting its composition in a short term.
Collapse
Affiliation(s)
- Mingxing Zhong
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jian Song
- College of Life Science, Hebei University, Baoding, 071002, Hebei, China
| | - Zhenxing Zhou
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingyi Ru
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Mengmei Zheng
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ying Li
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Shiqiang Wan
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China. .,College of Life Science, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
43
|
Donaldson JE, Parr CL, Mangena EH, Archibald S. Droughts Decouple African Savanna Grazers from Their Preferred Forage with Consequences for Grassland Productivity. Ecosystems 2019. [DOI: 10.1007/s10021-019-00438-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Gardner AS, Maclean IM, Gaston KJ. Climatic predictors of species distributions neglect biophysiologically meaningful variables. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12939] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Alexandra S. Gardner
- Environment and Sustainability Institute University of Exeter Penryn Cornwall UK
| | - Ilya M.D. Maclean
- Environment and Sustainability Institute University of Exeter Penryn Cornwall UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute University of Exeter Penryn Cornwall UK
- Wissenschaftskolleg zu Berlin Institute for Advanced Study Berlin Germany
| |
Collapse
|
45
|
Li J, Meng B, Chai H, Yang X, Song W, Li S, Lu A, Zhang T, Sun W. Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in C 3 ( Leymus chinensis) and C 4 ( Hemarthria altissima) Grasses via Altering Antioxidant Enzyme Activities and Photosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:499. [PMID: 31114594 PMCID: PMC6503820 DOI: 10.3389/fpls.2019.00499] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/01/2019] [Indexed: 05/10/2023]
Abstract
As one of the most important limiting factors of grassland productivity, drought is predicted to increase in intensity and frequency. Greenhouse studies suggest that arbuscular mycorrhizal fungi (AMF) can improve plant drought resistance. However, whether AMF can improve plant drought resistance in field conditions and whether the effects of AMF on drought resistance differ among plants with different photosynthetic pathways remain unclear. To evaluate the effect of indigenous AMF on plant drought resistance, an in situ rainfall exclusion experiment was conducted in a temperate meadow in northeast China. The results showed that AMF significantly reduced the negative effects of drought on plant growth. On average, AMF enhanced plant biomass, photosynthetic rate (A), stomatal conductance (g s), intrinsic water use efficiency (iWUE), and superoxide dismutase (SOD) activity of the C3 species Leymus chinensis by 58, 63, 38, 15, and 45%, respectively, and reduced levels of malondialdehyde (MDA) by 32% under light and moderate drought (rainfall exclusion of 30 and 50%, respectively). However, under extreme drought (rainfall exclusion of 70%), AMF elevated only aboveground biomass and catalase (CAT) activities. Averagely, AMF increased the aboveground biomass, A, and CAT activity of Hemarthria altissima (C4) by 37, 28, and 30%, respectively, under light and moderate droughts. The contribution of AMF to plant drought resistance was higher for the C3 species than that for the C4 species under both light and moderate drought conditions. The results highlight potential photosynthetic type differences in the magnitude of AMF-associated enhancement in plant drought resistance. Therefore, AMF may determine plant community structure under future climate change scenarios by affecting the drought resistance of different plant functional groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
46
|
D'Onofrio D, Sweeney L, von Hardenberg J, Baudena M. Grass and tree cover responses to intra-seasonal rainfall variability vary along a rainfall gradient in African tropical grassy biomes. Sci Rep 2019; 9:2334. [PMID: 30787370 PMCID: PMC6382848 DOI: 10.1038/s41598-019-38933-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
Although it is well known that mean annual rainfall (MAR) and rainfall seasonality have a key role in influencing the distribution of tree and grass cover in African tropical grassy biomes (TGBs), the impact of intra-seasonal rainfall variability on these distributions is less agreed upon. Since the prevalent mechanisms determining biome occurrence and distribution change with MAR, this research investigates the role of intra-seasonal rainfall variability for three different MAR ranges, assessing satellite data on grass and tree cover, rainfall and fire intervals at a sub-continental scale in sub-Saharan Africa. For MAR below 630 mm y−1, rainfall frequency had a positive relationship with grass cover; this relationship however became mostly negative at intermediate MAR (630–1200 mm y−1), where tree cover correspondingly mostly increased with rainfall frequency. In humid TGBs, tree cover decreased with rainfall intensity. Overall, intra-seasonal rainfall variability plays a role in determining vegetation cover, especially in mesic TGBs, where the relative dominance of trees and grasses has previously been largely unexplained. Importantly, the direction of the effect of intra-seasonal variability changes with MAR. Given the predicted increases in rainfall intensity in Africa as a consequence of climate change, the effects on TGBs are thus likely to vary depending on the MAR levels.
Collapse
Affiliation(s)
- Donatella D'Onofrio
- Institute of Atmospheric Sciences and Climate, National Research Council (ISAC-CNR), Corso Fiume 4, 10133, Torino, Italy.,Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands
| | - Luke Sweeney
- Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands
| | - Jost von Hardenberg
- Institute of Atmospheric Sciences and Climate, National Research Council (ISAC-CNR), Corso Fiume 4, 10133, Torino, Italy
| | - Mara Baudena
- Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands.
| |
Collapse
|
47
|
Yu H, Shen N, Yu D, Liu C. Effects of Temporal Heterogeneity of Water Supply and Spatial Heterogeneity of Soil Nutrients on the Growth and Intraspecific Competition of Bolboschoenus yagara Depend on Plant Density. FRONTIERS IN PLANT SCIENCE 2019; 9:1987. [PMID: 30713544 PMCID: PMC6346594 DOI: 10.3389/fpls.2018.01987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Clonal plants may face various types of resource heterogeneity in their natural habitats; as such, spatial or temporal resource heterogeneity can affect the growth of clonal plants. Clonal plants can concentrate their organs in a smaller area where resources are high would cause heterogeneity to increase competition between plants. Most studies on resource heterogeneity have investigated the response of plants under a single density or by manipulating a single resource. Few studies have tested the effects of the heterogeneous distribution of two covariable resources on plant growth and intraspecific competition. A greenhouse experiment was therefore conducted to study plant responses to the spatial and temporal heterogeneity of the soil and water supply under a variety of plant densities (one, two, four, or six plants per container). The perennial clonal herb Bolboschoenus yagara was grown under different combinations of water supply patterns, soil nutrient distribution types and plant densities while maintaining the total water and soil nutrient availability per container constant. Compared with that at a relatively high plant density, soil nutrient heterogeneity resulted in significantly less total plant biomass and less-modified morphological traits when the plant density is relative low. At the highest plant density, compared with the homogeneous soil treatments, the heterogeneous soil treatments significantly increased the total biomass and R/S ratio. Water supply patterns also clearly affected plant morphological traits at the highest plant density. Furthermore, soil heterogeneity significantly increased intraspecific competition intensity at low plant densities, but did not significantly affect intraspecific competition intensity at higher plant densities. Water heterogeneity had little impact on intraspecific competition. These results suggest that the growth performance and intraspecific competition of B. yagara are more strongly affected by soil nutrient distribution rather than by water supply patterns and that competition for soil nutrients may increase plant sensitivity to soil heterogeneity.
Collapse
|
48
|
Bachle S, Griffith DM, Nippert JB. Intraspecific Trait Variability in Andropogon gerardii, a Dominant Grass Species in the US Great Plains. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Felton AJ, Knapp AK, Smith MD. Carbon exchange responses of a mesic grassland to an extreme gradient of precipitation. Oecologia 2018; 189:565-576. [PMID: 30411149 DOI: 10.1007/s00442-018-4284-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/21/2018] [Indexed: 11/24/2022]
Abstract
Growing evidence indicates that ecosystem processes may be differentially sensitive to dry versus wet years, and that current understanding of how precipitation affects ecosystem processes may not be predictive of responses to extremes. In an experiment within a mesic grassland, we addressed this uncertainty by assessing responses of two key carbon exchange processes-aboveground net primary production (ANPP) and soil respiration (Rs)-to an extensive gradient of growing season precipitation. This gradient comprised 11 levels that specifically included extreme values in precipitation; defined as the 1st, 5th, 95th, and 99th percentiles of the 112-year climate record. Across treatments, our experimental precipitation gradient linearly increased soil moisture availability in the rooting zone (upper 20 cm). Relative to ANPP under nominal precipitation amounts (defined as between the 15th and 85th percentiles), the magnitude of ANPP responses were greatest to extreme increases in precipitation, with an underlying linear response to both precipitation and soil moisture gradients. By contrast, Rs exhibited marginally greater responses to dry versus wet extremes, with a saturating relationship best explaining responses of Rs to both precipitation and soil moisture. Our findings indicate a linear relationship between ANPP and precipitation after incorporating responses to precipitation extremes in the ANPP-precipitation relationship, yet in contrast saturating responses of Rs. As a result, current linear ANPP-precipitation relationships (up to ~ 1000 mm) within mesic grasslands appear to hold as appropriate benchmarks for ecosystems models, yet such models should incorporate nonlinearities in responses of Rs amid increased frequencies and magnitudes of precipitation extremes.
Collapse
Affiliation(s)
- Andrew J Felton
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, 251 Pitkin Street, Fort Collins, CO, 80523, USA.
| | - Alan K Knapp
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, 251 Pitkin Street, Fort Collins, CO, 80523, USA
| | - Melinda D Smith
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, 251 Pitkin Street, Fort Collins, CO, 80523, USA
| |
Collapse
|
50
|
Knapp AK, Carroll CJW, Griffin-Nolan RJ, Slette IJ, Chaves FA, Baur LE, Felton AJ, Gray JE, Hoffman AM, Lemoine NP, Mao W, Post AK, Smith MD. A reality check for climate change experiments: Do they reflect the real world? Ecology 2018; 99:2145-2151. [PMID: 30054917 DOI: 10.1002/ecy.2474] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/05/2018] [Indexed: 11/08/2022]
Abstract
Experiments are widely used in ecology, particularly for assessing global change impacts on ecosystem function. However, results from experiments often are inconsistent with observations made under natural conditions, suggesting the need for rigorous comparisons of experimental and observational studies. We conducted such a "reality check" for a grassland ecosystem by compiling results from nine independently conducted climate change experiments. Each experiment manipulated growing season precipitation (GSP) and measured responses in aboveground net primary production (ANPP). We compared results from experiments with long-term (33-yr) annual precipitation and ANPP records to ask if collectively (n = 44 experiment-years) experiments yielded estimates of ANPP, rain-use efficiency (RUE, grams per square meter ANPP per mm precipitation), and the relationship between GSP and ANPP comparable to observations. We found that mean ANPP and RUE from experiments did not deviate from observations. Experiments and observational data also yielded similar functional relationships between ANPP and GSP, but only within the range of historically observed GSP. Fewer experiments imposed extreme levels of GSP (outside the observed 33-yr record), but when these were included, they altered the GSP-ANPP relationship. This result underscores the need for more experiments imposing extreme precipitation levels to resolve how forecast changes in climate regimes will affect ecosystem function in the future.
Collapse
Affiliation(s)
- Alan K Knapp
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Charles J W Carroll
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Robert J Griffin-Nolan
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Ingrid J Slette
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Francis A Chaves
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Lauren E Baur
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Andrew J Felton
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Jesse E Gray
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Ava M Hoffman
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Nathan P Lemoine
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Wei Mao
- Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Alison K Post
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Melinda D Smith
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|