1
|
Maschler J, Bialic‐Murphy L, Wan J, Andresen LC, Zohner CM, Reich PB, Lüscher A, Schneider MK, Müller C, Moser G, Dukes JS, Schmidt IK, Bilton MC, Zhu K, Crowther TW. Links across ecological scales: Plant biomass responses to elevated CO 2. GLOBAL CHANGE BIOLOGY 2022; 28:6115-6134. [PMID: 36069191 PMCID: PMC9825951 DOI: 10.1111/gcb.16351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/06/2022] [Indexed: 06/04/2023]
Abstract
The degree to which elevated CO2 concentrations (e[CO2 ]) increase the amount of carbon (C) assimilated by vegetation plays a key role in climate change. However, due to the short-term nature of CO2 enrichment experiments and the lack of reconciliation between different ecological scales, the effect of e[CO2 ] on plant biomass stocks remains a major uncertainty in future climate projections. Here, we review the effect of e[CO2 ] on plant biomass across multiple levels of ecological organization, scaling from physiological responses to changes in population-, community-, ecosystem-, and global-scale dynamics. We find that evidence for a sustained biomass response to e[CO2 ] varies across ecological scales, leading to diverging conclusions about the responses of individuals, populations, communities, and ecosystems. While the distinct focus of every scale reveals new mechanisms driving biomass accumulation under e[CO2 ], none of them provides a full picture of all relevant processes. For example, while physiological evidence suggests a possible long-term basis for increased biomass accumulation under e[CO2 ] through sustained photosynthetic stimulation, population-scale evidence indicates that a possible e[CO2 ]-induced increase in mortality rates might potentially outweigh the effect of increases in plant growth rates on biomass levels. Evidence at the global scale may indicate that e[CO2 ] has contributed to increased biomass cover over recent decades, but due to the difficulty to disentangle the effect of e[CO2 ] from a variety of climatic and land-use-related drivers of plant biomass stocks, it remains unclear whether nutrient limitations or other ecological mechanisms operating at finer scales will dampen the e[CO2 ] effect over time. By exploring these discrepancies, we identify key research gaps in our understanding of the effect of e[CO2 ] on plant biomass and highlight the need to integrate knowledge across scales of ecological organization so that large-scale modeling can represent the finer-scale mechanisms needed to constrain our understanding of future terrestrial C storage.
Collapse
Affiliation(s)
- Julia Maschler
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Lalasia Bialic‐Murphy
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Joe Wan
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | | | - Constantin M. Zohner
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Peter B. Reich
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Institute for Global Change Biology, and School for the Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Andreas Lüscher
- ETH ZurichInstitute of Agricultural ScienceZurichSwitzerland
- Agroscope, Forage Production and Grassland SystemsZurichSwitzerland
| | - Manuel K. Schneider
- ETH ZurichInstitute of Agricultural ScienceZurichSwitzerland
- Agroscope, Forage Production and Grassland SystemsZurichSwitzerland
| | - Christoph Müller
- Institute of Plant EcologyJustus Liebig UniversityGiessenGermany
- School of Biology and Environmental Science and Earth InstituteUniversity College DublinDublinIreland
| | - Gerald Moser
- Institute of Plant EcologyJustus Liebig UniversityGiessenGermany
| | - Jeffrey S. Dukes
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Global EcologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Inger Kappel Schmidt
- Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Mark C. Bilton
- Department of Agriculture and Natural Resources SciencesNamibia University of Science and Technology (NUST)WindhoekNamibia
| | - Kai Zhu
- Department of Environmental StudiesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Thomas W. Crowther
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| |
Collapse
|
2
|
Sun SS, Liu XP, Zhao XY, Medina-Roldánd E, He YH, Lv P, Hu HJ. Annual Herbaceous Plants Exhibit Altered Morphological Traits in Response to Altered Precipitation and Drought Patterns in Semiarid Sandy Grassland, Northern China. FRONTIERS IN PLANT SCIENCE 2022; 13:756950. [PMID: 35812936 PMCID: PMC9260268 DOI: 10.3389/fpls.2022.756950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The frequency and intensity of extreme precipitation events and severe drought are predicted to increase in semiarid areas due to global climate change. Plant morphological traits can reflect plant responses to a changing environment, such as altered precipitation or drought patterns. In this study, we examined the response of morphological traits of root, stem, leaf and reproduction meristems of annual herbaceous species to altered precipitation and drought patterns in a semiarid sandy grassland. The study involved a control treatment (100% of background precipitation) and the following six altered precipitation treatments: (1) P(+): precipitation increased by 30%, (2) P(++): precipitation increased by 60%, (3) P(-): precipitation decreased by 30%, (4) P(--): precipitation decreased by 60%, (5) drought 1 (D1): 46-day drought from May 1st to June 15th, and (6) drought 2 (D2): 46-day drought from July 1st to August 15th. P(++) significantly increased root length, flower length-to-width ratio, both P(+) and P(++) significantly increased stem length and flower number in the plant growing seasons, while all of them decreased under P(-) and P(--). The annual herbaceous plants marginally increased the number of second-level stem branches and stem diameter in order to better resist the severe drought stress under P(--). P(+) and P(++) increased the root, stem, leaf, and flower dry weight, with the flower dry weight accounting for a larger proportion than the other aboveground parts. Under D2, the plants used the limited water resources more efficiently by increasing the root-to-shoot ratio compared with P(-), P(--) and D1, which reflects biomass allocation to belowground increased. The linear mixed-effects models and redundancy analysis showed that the root-to-shoot ratio and the dry weight of various plant components were significantly affected by morphological traits and altered precipitation magnitude. Our results showed that the herbaceous species have evolved morphological trait responses that allow them to adapt to climate change. Such differences in morphological traits may ultimately affect the growing patterns of annual herbaceous species, enhancing their drought-tolerant capacity in semiarid sandy grassland during the ongoing climate change.
Collapse
Affiliation(s)
- Shan-Shan Sun
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou, China
| | - Xin-Ping Liu
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xue-Yong Zhao
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Eduardo Medina-Roldánd
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Yu-Hui He
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Peng Lv
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou, China
| | - Hong-Jiao Hu
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Li F, Guo D, Gao X, Zhao X. Water Deficit Modulates the CO 2 Fertilization Effect on Plant Gas Exchange and Leaf-Level Water Use Efficiency: A Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:775477. [PMID: 34912360 PMCID: PMC8667667 DOI: 10.3389/fpls.2021.775477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (P n ) and transpiration rates (T r) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased P n and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased P n by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced P n by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of P n and T r, whereas a water deficit induced increase in WUE was linked to the decrease in T r. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.
Collapse
Affiliation(s)
- Fei Li
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
| | - Dagang Guo
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
| | - Xiaodong Gao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- National Engineering Research Center of Water Saving and Irrigation Technology, Yangling, China
- Institute of Soil and Water Conservation, Northwest A&F University, Xianyang, China
| | - Xining Zhao
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- National Engineering Research Center of Water Saving and Irrigation Technology, Yangling, China
| |
Collapse
|
4
|
Intermittent living; the use of ancient challenges as a vaccine against the deleterious effects of modern life - A hypothesis. Med Hypotheses 2018; 120:28-42. [PMID: 30220336 DOI: 10.1016/j.mehy.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/25/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022]
Abstract
Chronic non-communicable diseases (CNCD) are the leading cause of mortality in developed countries. They ensue from the sum of modern anthropogenic risk factors, including high calorie nutrition, malnutrition, sedentary lifestyle, social stress, environmental toxins, politics and economic factors. Many of these factors are beyond the span of control of individuals, suggesting that CNCD are inevitable. However, various studies, ours included, show that the use of intermittent challenges with hormetic effects improve subjective and objective wellbeing of individuals with CNCD, while having favourable effects on immunological, metabolic and behavioural indices. Intermittent cold, heat, fasting and hypoxia, together with phytochemicals in multiple food products, have widespread influence on many pathways related with overall health. Until recently, most of the employed challenges with hormetic effects belonged to the usual transient live experiences of our ancestors. Our hypothesis; we conclude that, whereas the total inflammatory load of multi-metabolic and psychological risk factors causes low grade inflammation and aging, the use of intermittent challenges, united in a 7-10 days lasting hormetic intervention, might serve as a vaccine against the deleterious effects of chronic low grade inflammation and it's metabolic and (premature) aging consequences.
Collapse
|
5
|
Goodnoe TT, Hill JP. Plasticity of female reproductive resource allocation depends on the presence or absence of prior environmental sex determination in Ceratopteris richardii. Ecol Evol 2018; 8:6133-6143. [PMID: 29988448 PMCID: PMC6024121 DOI: 10.1002/ece3.4159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 11/17/2022] Open
Abstract
Resource allocation plasticity enables individuals to alter patterns of nutrient use between reproductive and vegetative output to better fit their current environment. In sexually labile plant species, abiotic environmental factors can influence expression of dimorphic gender, resulting in environmental sex determination (ESD), which potentially reduces the need for plasticity of resource allocation by preemptively matching an individual's future nutrient demands to resource availability in its location. Ceratopteris richardii gametophytes exhibit gender-dependent differences in relative carbon and nitrogen content, and ESD in certain nutrient environments. This study examined whether prior ESD in C. richardii gametophyte populations reduced subsequent plasticity of reproductive allocation compared to instances where no ESD occurred, by quantifying phenotypic responses to reduced P, N, or CO 2 availabilities. All three nutrient-limited environments resulted in decreased size of egg-bearing (meristic) gametophytes compared to nonlimited environments, but gametophytes failed to respond to N and CO 2 limitation at the time of sex determination, resulting in no ESD. N limitation resulted in a predictable allometric re-allocation of resources based on small gametophyte size, whereas CO 2 limitation caused a change in reproductive output consistent with true plasticity. Withholding exogenous P caused ESD and had no effect on relative reproductive output of resultant meristic gametophytes because the size decrease was minor. Under P limitation, ESD matched the resource demands of gender phenotypes to their environment before the onset of developmental dimorphism, reducing the need for large allocation adjustments after sex determination.
Collapse
Affiliation(s)
- Taylor T. Goodnoe
- Department of Biological SciencesIdaho State UniversityPocatelloIdaho
| | - Jeffrey P. Hill
- Department of Biological SciencesIdaho State UniversityPocatelloIdaho
| |
Collapse
|
6
|
Fay PA, Aspinwall MJ, Collins HP, Gibson AE, Gill RH, Jackson RB, Jin VL, Khasanova AR, Reichmann LG, Polley HW. Flowering in grassland predicted by CO 2 and resource effects on species aboveground biomass. GLOBAL CHANGE BIOLOGY 2018; 24:1771-1781. [PMID: 29282824 DOI: 10.1111/gcb.14032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Continuing enrichment of atmospheric CO2 may change plant community composition, in part by altering the availability of other limiting resources including soil water, nutrients, or light. The combined effects of CO2 enrichment and altered resource availability on species flowering remain poorly understood. We quantified flowering culm and ramet production and biomass allocation to flowering culms/ramets for 10 years in C4 -dominated grassland communities on contrasting soils along a CO2 concentration gradient spanning pre-industrial to expected mid-21st century levels (250-500 μl/L). CO2 enrichment explained up to 77% of the variation in flowering culm count across soils for three of the five species, and was correlated with flowering culm count on at least one soil for four of five species. In contrast, allocation to flowering culms was only weakly correlated with CO2 enrichment for two species. Flowering culm counts were strongly correlated with species aboveground biomass (AGB; R2 = .34-.74), a measure of species abundance. CO2 enrichment also increased soil moisture and decreased light levels within the canopy but did not affect soil inorganic nitrogen availability. Structural equation models fit across the soils suggested species-specific controls on flowering in two general forms: (1) CO2 effects on flowering culm count mediated by canopy light level and relative species AGB (species AGB/total AGB) or by soil moisture effects on flowering culm count; (2) effects of canopy light level or soil inorganic nitrogen on flowering and/or relative species AGB, but with no significant CO2 effect. Understanding the heterogeneity in species responses to CO2 enrichment in plant communities across soils in edaphically variable landscapes is critical to predict CO2 effects on flowering and other plant fitness components, and species potential to adapt to future environmental changes.
Collapse
Affiliation(s)
- Philip A Fay
- USDA-ARS, Grassland, Soil, and Water Research Laboratory, Temple, TX, USA
| | | | - Harold P Collins
- USDA-ARS, Grassland, Soil, and Water Research Laboratory, Temple, TX, USA
| | - Anne E Gibson
- USDA-ARS, Grassland, Soil, and Water Research Laboratory, Temple, TX, USA
| | - Richard H Gill
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Robert B Jackson
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Virginia L Jin
- USDA-ARS Agroecosystem Management Research Unit, University of Nebraska, Lincoln, NE, USA
| | - Albina R Khasanova
- Section of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Lara G Reichmann
- Section of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - H Wayne Polley
- USDA-ARS, Grassland, Soil, and Water Research Laboratory, Temple, TX, USA
| |
Collapse
|
7
|
Eziz A, Yan Z, Tian D, Han W, Tang Z, Fang J. Drought effect on plant biomass allocation: A meta-analysis. Ecol Evol 2017; 7:11002-11010. [PMID: 29299276 PMCID: PMC5743700 DOI: 10.1002/ece3.3630] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/05/2017] [Accepted: 10/15/2017] [Indexed: 11/10/2022] Open
Abstract
Drought is one of the abiotic stresses controlling plant function and ecological stability. In the context of climate change, drought is predicted to occur more frequently in the future. Despite numerous attempts to clarify the overall effects of drought stress on the growth and physiological processes of plants, a comprehensive evaluation on the impacts of drought stress on biomass allocation, especially on reproductive tissues, remains elusive. We conducted a meta-analysis by synthesizing 164 published studies to elucidate patterns of plant biomass allocation in relation to drought stress. Results showed that drought significantly increased the fraction of root mass but decreased that of stem, leaf, and reproductive mass. Roots of herbaceous plants were more sensitive to drought than woody plants that reduced reproductive allocation more sharply than the former. Relative to herbaceous plants, drought had a more negative impact on leaf mass fraction of woody plants. Among the herbaceous plants, roots of annuals responded to drought stress more strongly than perennial herbs, but their reproductive allocation was less sensitive to drought than the perennial herbs. In addition, cultivated and wild plants seemed to respond to drought stress in a similar way. Drought stress did not change the scaling exponents of the allometric relationship between different plant tissues. These findings suggest that the allometric partitioning theory, rather than the optimal partitioning theory, better explains the drought-induced changes in biomass allocation strategies.
Collapse
Affiliation(s)
- Anwar Eziz
- Department of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Zhengbing Yan
- Department of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Di Tian
- Department of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Wenxuan Han
- Key Laboratory of Plant-Soil Interactions Ministry of Education College of Resources and Environmental Sciences China Agricultural University Beijing China
| | - Zhiyao Tang
- Department of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Jingyun Fang
- Department of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| |
Collapse
|
8
|
Xu Z, Jiang Y, Zhou G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:701. [PMID: 26442017 PMCID: PMC4564695 DOI: 10.3389/fpls.2015.00701] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/21/2015] [Indexed: 05/19/2023]
Abstract
It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|