1
|
Segrestin J, Lisner A, Götzenberger L, Hájek T, Janíková E, Jílková V, Konečná M, Švancárová T, Lepš J. Biodiversity loss disrupts seasonal carbon dynamics in a species-rich temperate grassland. Ecology 2025; 106:e70091. [PMID: 40342156 PMCID: PMC12060612 DOI: 10.1002/ecy.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Biodiversity loss poses a significant threat to ecosystem functioning. However, much of the empirical evidence for these effects is based on artificial experiments that often fail to simulate the structure of natural communities. Hence, it is still unclear whether natural diversity losses would significantly affect the functioning of "real-world" ecosystems. As subordinate and rare species constitute most of the diversity in natural communities and are often more vulnerable to local extinction, we evaluated their contribution to ecosystem functioning in a naturally species-rich grassland. We focused on two mechanisms by which they can support ecosystem functions: redundancy and complementarity. We conducted two long-term field experiments (>6 years) simulating contrasting biodiversity loss scenarios through the manual removal of plant species and measured the consequences of species loss on various ecosystem functions related to carbon dynamics. The latter were examined seasonally to explore diversity effects outside the typical peak of vegetation. We found that dominant removal led to substantial reductions in aboveground phytomass and litter production and altered the annual carbon fixation capacity of the vegetation, highlighting the pivotal role of dominant species in driving ecosystem functioning. Despite high species diversity, other species could not fully compensate for the loss of a single dominant even after more than 25 years, challenging assumptions about redundancy. Complementarity effects were not detected at the peak of vegetation but were evident in early spring and autumn when subordinate and rare species enhanced ecosystem functions. Surprisingly, belowground phytomass, soil organic carbon content, and litter decomposition were unaffected by species removal, suggesting complex interactions in belowground processes. These findings underscore the importance of dominant species in maintaining ecosystem functioning and emphasize the need for nuanced approaches to studying biodiversity loss in real-world communities. Comprehensive seasonal measurements are essential for accurately discerning the effects of biodiversity on ecosystem dynamics and informing effective conservation strategies that maintain ecosystem functioning.
Collapse
Affiliation(s)
- Jules Segrestin
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Aleš Lisner
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Lars Götzenberger
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
- Institute of Botany of the Czech Academy of SciencesTřeboňCzech Republic
| | - Tomáš Hájek
- Department of Experimental Plant BiologyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Eva Janíková
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Veronika Jílková
- Biology Centre of the Czech Academy of SciencesInstitute of Soil Biology and BiogeochemistryČeské BudějoviceCzech Republic
| | - Marie Konečná
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Tereza Švancárová
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Jan Lepš
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| |
Collapse
|
2
|
Sasaki T, Berdugo M, Kinugasa T, Batdelger G, Baasandai E, Eisenhauer N. Aridity-dependent shifts in biodiversity-stability relationships but not in underlying mechanisms. GLOBAL CHANGE BIOLOGY 2024; 30:e17365. [PMID: 38864217 DOI: 10.1111/gcb.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Climate change will affect the way biodiversity influences the stability of plant communities. Although biodiversity, associated species asynchrony, and species stability could enhance community stability, the understanding of potential nonlinear shifts in the biodiversity-stability relationship across a wide range of aridity (measured as the aridity index, the precipitation/potential evapotranspiration ratio) gradients and the underlying mechanisms remain limited. Using an 8-year dataset from 687 sites in Mongolia, which included 5496 records of vegetation and productivity, we found that the temporal stability of plant communities decreased more rapidly in more arid areas than in less arid areas. The result suggests that future aridification across terrestrial ecosystems may adversely affect community stability. Additionally, we identified nonlinear shifts in the effects of species richness and species synchrony on temporal community stability along the aridity gradient. Species synchrony was a primary driver of community stability, which was consistently negatively affected by species richness while being positively affected by the synchrony between C3 and C4 species across the aridity gradient. These results highlight the crucial role of C4 species in stabilizing communities through differential responses to interannual climate variations between C3 and C4 species. Notably, species richness and the synchrony between C3 and C4 species independently regulated species synchrony, ultimately affecting community stability. We propose that maintaining plant communities with a high diversity of C3 and C4 species will be key to enhancing community stability across Mongolian grasslands. Moreover, species synchrony, species stability, species richness and the synchrony between C3 and C4 species across the aridity gradient consistently mediated the impacts of aridity on community stability. Hence, strategies aimed at promoting the maintenance of biological diversity and composition will help ecosystems adapt to climate change or mitigate its adverse effects on ecosystem stability.
Collapse
Affiliation(s)
- Takehiro Sasaki
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Institute for Multidisciplinary Sciences, Yokohama National University, Yokohama, Japan
| | - Miguel Berdugo
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Gantsetseg Batdelger
- Information and Research Institute of Meteorology, Hydrology and Environment (IRIMHE) of Mongolia, Ulaanbaatar, Mongolia
| | - Erdenetsetseg Baasandai
- Information and Research Institute of Meteorology, Hydrology and Environment (IRIMHE) of Mongolia, Ulaanbaatar, Mongolia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Institute for Multidisciplinary Sciences, Yokohama National University, Yokohama, Japan
| |
Collapse
|
3
|
Fukano Y, Guo W, Aoki N, Ootsuka S, Noshita K, Uchida K, Kato Y, Sasaki K, Kamikawa S, Kubota H. GIS-Based Analysis for UAV-Supported Field Experiments Reveals Soybean Traits Associated With Rotational Benefit. FRONTIERS IN PLANT SCIENCE 2021; 12:637694. [PMID: 34135918 PMCID: PMC8201397 DOI: 10.3389/fpls.2021.637694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Recent advances in unmanned aerial vehicle (UAV) remote sensing and image analysis provide large amounts of plant canopy data, but there is no method to integrate the large imagery datasets with the much smaller manually collected datasets. A simple geographic information system (GIS)-based analysis for a UAV-supported field study (GAUSS) analytical framework was developed to integrate these datasets. It has three steps: developing a model for predicting sample values from UAV imagery, field gridding and trait value prediction, and statistical testing of predicted values. A field cultivation experiment was conducted to examine the effectiveness of the GAUSS framework, using a soybean-wheat crop rotation as the model system Fourteen soybean cultivars and subsequently a single wheat cultivar were grown in the same field. The crop rotation benefits of the soybeans for wheat yield were examined using GAUSS. Combining manually sampled data (n = 143) and pixel-based UAV imagery indices produced a large amount of high-spatial-resolution predicted wheat yields (n = 8,756). Significant differences were detected among soybean cultivars in their effects on wheat yield, and soybean plant traits were associated with the increases. This is the first reported study that links traits of legume plants with rotational benefits to the subsequent crop. Although some limitations and challenges remain, the GAUSS approach can be applied to many types of field-based plant experimentation, and has potential for extensive use in future studies.
Collapse
Affiliation(s)
- Yuya Fukano
- Graduate School of Agricultural and Life Sciences, Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Tokyo, Japan
| | - Wei Guo
- Graduate School of Agricultural and Life Sciences, Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Tokyo, Japan
| | - Naohiro Aoki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinjiro Ootsuka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Noshita
- Department of Biology, Kyushu University, Fukuoka, Japan
- Plant Frontier Research Center, Kyushu University, Fukuoka, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Kei Uchida
- Graduate School of Agricultural and Life Sciences, Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Tokyo, Japan
| | - Yoichiro Kato
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Sasaki
- Graduate School of Agricultural and Life Sciences, Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Tokyo, Japan
| | - Shotaka Kamikawa
- Graduate School of Agricultural and Life Sciences, Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Kubota
- Graduate School of Agricultural and Life Sciences, Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
van der Plas F, Schröder-Georgi T, Weigelt A, Barry K, Meyer S, Alzate A, Barnard RL, Buchmann N, de Kroon H, Ebeling A, Eisenhauer N, Engels C, Fischer M, Gleixner G, Hildebrandt A, Koller-France E, Leimer S, Milcu A, Mommer L, Niklaus PA, Oelmann Y, Roscher C, Scherber C, Scherer-Lorenzen M, Scheu S, Schmid B, Schulze ED, Temperton V, Tscharntke T, Voigt W, Weisser W, Wilcke W, Wirth C. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat Ecol Evol 2020; 4:1602-1611. [PMID: 33020598 DOI: 10.1038/s41559-020-01316-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/27/2020] [Indexed: 01/06/2023]
Abstract
Earth is home to over 350,000 vascular plant species that differ in their traits in innumerable ways. A key challenge is to predict how natural or anthropogenically driven changes in the identity, abundance and diversity of co-occurring plant species drive important ecosystem-level properties such as biomass production or carbon storage. Here, we analyse the extent to which 42 different ecosystem properties can be predicted by 41 plant traits in 78 experimentally manipulated grassland plots over 10 years. Despite the unprecedented number of traits analysed, the average percentage of variation in ecosystem properties jointly explained was only moderate (32.6%) within individual years, and even much lower (12.7%) across years. Most other studies linking ecosystem properties to plant traits analysed no more than six traits and, when including only six traits in our analysis, the average percentage of variation explained in across-year levels of ecosystem properties dropped to 4.8%. Furthermore, we found on average only 12.2% overlap in significant predictors among ecosystem properties, indicating that a small set of key traits able to explain multiple ecosystem properties does not exist. Our results therefore suggest that there are specific limits to the extent to which traits per se can predict the long-term functional consequences of biodiversity change, so that data on additional drivers, such as interacting abiotic factors, may be required to improve predictions of ecosystem property levels.
Collapse
Affiliation(s)
- Fons van der Plas
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany.
| | - Thomas Schröder-Georgi
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany
| | - Kathryn Barry
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany
| | - Sebastian Meyer
- Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Adriana Alzate
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany
| | - Romain L Barnard
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Hans de Kroon
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Anne Ebeling
- Institute of Ecology and Evolution, University Jena, Jena, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | | | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Gerd Gleixner
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Anke Hildebrandt
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Sophia Leimer
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexandru Milcu
- Ecotron Européen de Montpellier, Centre National de la Recherche Scientifique, Montferrier-sur-Lez, France.,Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, Montpellier, France
| | - Liesje Mommer
- Plant Ecology and Nature Conservation group, Wageningen University, Wageningen, the Netherlands
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Christiane Roscher
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany.,Department of Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Christoph Scherber
- Institute of Landscape Ecology, University of Münster, Münster, Germany.,Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | | | - Stefan Scheu
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany.,J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Zurich, Switzerland.,Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | | | - Vicky Temperton
- Leuphana University Lüneburg, Institute of Ecology, Universitätsallee 1, Lüneburg, Germany
| | - Teja Tscharntke
- Agroecology, Dept. of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Winfried Voigt
- Institute of Ecology and Evolution, University Jena, Jena, Germany
| | - Wolfgang Weisser
- Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christian Wirth
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany.,Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
7
|
Carmona CP, de Bello F, Sasaki T, Uchida K, Pärtel M. Towards a Common Toolbox for Rarity: A Response to Violle et al. Trends Ecol Evol 2017; 32:889-891. [PMID: 29033201 DOI: 10.1016/j.tree.2017.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/21/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005, Tartu, Estonia.
| | - Francesco de Bello
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, Czech Republic; Institute of Botany, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Takehiro Sasaki
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Kei Uchida
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005, Tartu, Estonia
| |
Collapse
|