1
|
Dougherty MW, Russart NM, Gaultney RA, Gisi EM, Cooper HM, Kallis LR, Brissette CA, Vaughan JA. The role of southern red-backed voles, Myodes gapperi, and Peromyscus mice in the enzootic maintenance of Lyme disease spirochetes in North Dakota, USA. Ticks Tick Borne Dis 2024; 15:102385. [PMID: 39096783 PMCID: PMC11670892 DOI: 10.1016/j.ttbdis.2024.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
Lyme disease has expanded into the Great Plains of the USA. To investigate local enzootic transmission, small mammals were trapped in two forested tracts in northeastern North Dakota during 2012 and 2013. Peromyscus mice and southern red-backed voles, Myodes gapperi, comprised over 90% of all mammals captured. One site was dominated by Peromyscus (79% of 100 mammals captured). At the other site, M. gapperi (59% of 107 mammals captured) was more abundant than Peromyscus (36%). Immature stages of two tick species parasitized small mammals: Dermacentor variabilis and Ixodes scapularis. Larval I. scapularis ectoparasitism was significantly higher on Peromyscus (81% infested; 3.7 larvae per infested mouse) than M. gapperi (47% infested; 2.6 larvae per infested vole) whereas larval and nymphal D. variabilis ectoparasitism were highest on M. gapperi. Over 45% of infested rodents were concurrently infested with both tick species. Testing engorged I. scapularis larvae from Peromyscus (n = 66) and M. gapperi (n = 20) yielded xenopositivity prevalence for Borrelia burgdorferi sensu lato (s.l.) in these rodents of 6% and 5%, respectively. Progeny of field collected M. gapperi were used to determine host infectivity for a local isolate of B. burgdorferi sensu stricto (s.s.). Five M. gapperi were injected with spirochetes, infested with pathogen-free I. scapularis larvae on days 10, 20, and 40 after infection, and engorged larvae molted to nymphs. Subsamples of nymphs were tested by PCR for B. burgdorferi s. s. DNA and yielded infection rates of 56% (n = 100 nymphs tested), 75% (n = 8) and 64% (n = 31), respectively. The remaining infected nymphs were fed on BALB/c Mus musculus mice and 7 d later, mice were euthanized, and tissues were cultured for B. burgdorferi s.s. Nymphs successfully transmitted spirochetes to 13 of 18 (72%) mice that were exposed to 1-5 infected ticks. Theoretical reservoir potentials - i.e., ability to generate B. burgdorferi infected nymphs - were compared between Peromyscus and M. gapperi. At one site, Peromyscus accounted for nearly all Borrelia-infected nymphs produced (reservoir potential value of 0.935). At the other site, the reservoir potentials for Peromyscus (0.566) and M. gapperi (0.434) were comparable. The difference was attributed to differences in the relative abundance of voles versus mice between sites and the higher level of ectoparasitism by larval I. scapularis on Peromyscus versus M. gapperi at both sites. The southern red-backed vole, M. gapperi, contributes to the enzootic maintenance of Lyme disease spirochetes in North Dakota and possibly other areas where this rodent species is abundant.
Collapse
Affiliation(s)
- Michael W Dougherty
- Department of Biology, University of North Dakota, Grand Forks, ND, United States; Department of Medicine, University of Florida College of Medicine, University of Florida, Gainesville, FL, United States
| | - Nathan M Russart
- Department of Biology, University of North Dakota, Grand Forks, ND, United States; Aldeveron, Fargo, ND, United States
| | - Robert A Gaultney
- Department of Biomedical Sciences, North Dakota School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Emily M Gisi
- Department of Biology, University of North Dakota, Grand Forks, ND, United States
| | - Haley M Cooper
- Department of Biology, University of North Dakota, Grand Forks, ND, United States
| | - Lindsey R Kallis
- Department of Biology, University of North Dakota, Grand Forks, ND, United States
| | - Catherine A Brissette
- Department of Biomedical Sciences, North Dakota School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Jefferson A Vaughan
- Department of Biology, University of North Dakota, Grand Forks, ND, United States.
| |
Collapse
|
2
|
Lindsø LK, Viljugrein H, Mysterud A. Vector competence of Ixodes ricinus instars for the transmission of Borrelia burgdorferi sensu lato in different small mammalian hosts. Parasit Vectors 2024; 17:23. [PMID: 38238796 PMCID: PMC10797980 DOI: 10.1186/s13071-023-06110-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Many pathogens and parasites can infect multiple host species, and the competence of different hosts as pathogen reservoirs is key to understanding their epidemiology. Small mammals are important hosts for the instar stages of Ixodes ricinus ticks, the principal vector of Lyme disease in Europe. Small mammals also act as reservoirs of Borrelia afzelii, the most common genospecies of the Borrelia burgdorferi sensu lato (s.l.) spirochetes causing Lyme disease in Europe. However, we lack quantitative estimates on whether different small mammal species are equally suitable hosts for feeding I. ricinus and whether they show differences in pathogen transmission from host to tick. METHODS Here, we analysed the feeding success and prevalence of B. burgdorferi s.l. infections in 12,987 instar I. ricinus found on captured small mammals with known infection status in Norway (2018-2022). RESULTS We found that larvae were more likely to acquire a blood meal from common shrews (Sorex araneus, 46%) compared to bank voles (Myodes glareolus, 36%) and wood mice (Apodemus sylvaticus, 31%). Nymphs tended to be more likely to acquire a blood meal from wood mice (66%) compared to bank voles (54%). Common shrews harboured few nymphs (n=19). Furthermore, we found that larvae feeding on infected bank voles (11%) were more likely to be infected with B. burgdorferi s.l. than larvae on infected common shrews (7%) or wood mice (4%). CONCLUSIONS Our study provides quantitative evidence of differences in suitability for the instar stages of I. ricinus across taxa of small mammals and highlights how even known small mammal host species can differ in their ability to feed ticks and infect larval ticks with the pathogen causing Lyme disease.
Collapse
Affiliation(s)
- Lars K Lindsø
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway.
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, NO-7485, Trondheim, Norway
| |
Collapse
|
3
|
Lindsø LK, Anders JL, Viljugrein H, Herland A, Stigum VM, Easterday WR, Mysterud A. Individual heterogeneity in ixodid tick infestation and prevalence of Borrelia burgdorferi sensu lato in a northern community of small mammalian hosts. Oecologia 2023; 203:421-433. [PMID: 37955713 PMCID: PMC10684702 DOI: 10.1007/s00442-023-05476-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Heterogeneous aggregation of parasites between individual hosts is common and regarded as an important factor in understanding transmission dynamics of vector-borne diseases. Lyme disease is vectored by generalist tick species, yet we have a limited understanding of how individual heterogeneities within small mammal host populations affect the aggregation of ticks and likelihood of infection. Male hosts often have higher parasite and infection levels than females, but whether this is linked to sexual body size dimorphism remains uncertain. Here, we analysed how host species, sex, and body mass influenced Ixodes ricinus tick infestations and the infection prevalence of Borrelia burgdorferi sensu lato (s.l.) in three species of small mammals involved in the enzootic transmission cycle of Lyme disease in Norway from 2018 to 2022. Larval and nymphal ticks were found on 98% and 34% of all individual hosts, respectively. In bank voles and wood mice, both larval and nymphal tick infestation and infection probability increased with body mass, and it increased more with mass for males than for females. Tick infestation in the common shrew increased with body mass and was higher in males, while pathogen infection was higher in females. Sex-biases in infestation did not correspond with level of sexual body mass dimorphism across species. This study contributes to our understanding of how individual heterogeneity among small mammalian hosts influences I. ricinus tick aggregation and prevalence of B. burgdorferi s.l. at northern latitudes.
Collapse
Affiliation(s)
- Lars K Lindsø
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway.
| | - Jason L Anders
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway
| | - Anders Herland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway
| | - Vetle M Stigum
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, NO-7485, Trondheim, Norway
| |
Collapse
|
4
|
Goren A, Viljugrein H, Rivrud IM, Jore S, Bakka H, Vindenes Y, Mysterud A. The emergence and shift in seasonality of Lyme borreliosis in Northern Europe. Proc Biol Sci 2023; 290:20222420. [PMID: 36809802 PMCID: PMC9943644 DOI: 10.1098/rspb.2022.2420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Climate change has had a major impact on seasonal weather patterns, resulting in marked phenological changes in a wide range of taxa. However, empirical studies of how changes in seasonality impact the emergence and seasonal dynamics of vector-borne diseases have been limited. Lyme borreliosis, a bacterial infection spread by hard-bodied ticks, is the most common vector-borne disease in the northern hemisphere and has been rapidly increasing in both incidence and geographical distribution in many regions of Europe and North America. By analysis of long-term surveillance data (1995-2019) from across Norway (latitude 57°58'-71°08' N), we demonstrate a marked change in the within-year timing of Lyme borreliosis cases accompanying an increase in the annual number of cases. The seasonal peak in cases is now six weeks earlier than 25 years ago, exceeding seasonal shifts in plant phenology and previous model predictions. The seasonal shift occurred predominantly in the first 10 years of the study period. The concurrent upsurgence in case number and shift in case timing indicate a major change in the Lyme borreliosis disease system over recent decades. This study highlights the potential for climate change to shape the seasonal dynamics of vector-borne disease systems.
Collapse
Affiliation(s)
- Asena Goren
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway.,Norwegian Veterinary Institute, PO Box 64, NO-1431 Ås, Norway
| | - Inger Maren Rivrud
- Norwegian Institute for Nature Research (NINA), Sognsveien 68, NO-0855 Oslo, Norway
| | - Solveig Jore
- Zoonotic, Food and Waterborne Infections, The Norwegian Public Health Institute, PO Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Haakon Bakka
- Norwegian Veterinary Institute, PO Box 64, NO-1431 Ås, Norway
| | - Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway.,Norwegian Institute for Nature Research (NINA), PO Box 5685 Sluppen, NO-7485 Trondheim, Norway
| |
Collapse
|
5
|
Estrada-Peña A, Fernández-Ruiz N. An Agenda for Research of Uncovered Epidemiological Patterns of Tick-Borne Pathogens Affecting Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2206. [PMID: 36767573 PMCID: PMC9915995 DOI: 10.3390/ijerph20032206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The panorama of ticks and tick-borne pathogens (TBP) is complex due to the many interactions among vertebrates, vectors, and habitats, occurring at different scales. At a broad spatial range, climate and host availability regulate most tick processes, including questing activity, development, and survival. At a local scale, interactions are obscured by a high indeterminacy, making it arduous to record in field surveys. A solid modelling framework could translate the local/regional empirical findings into larger scales, shedding light on the processes governing the circulation of TBP. In this opinion paper, we advocate for a re-formulation of some paradigms in the research of these outstanding cycles of transmission. We propose revisiting concepts that faced criticisms or lacked solid support, together with the development of a conceptual scheme exploring the circulation of TBP under a range of conditions. We encourage (i) an adequate interpretation of the niche concept of both ticks and vertebrate/reservoir hosts interpreting the (a)biotic components that shape the tick's niche, (ii) an assessment of the role played by the communities of wild vertebrates on the circulation of pathogens, and (iii) the development of new approaches, based on state-of-the-art epidemiological concepts, to integrate findings and modelling efforts on TBP over large regions.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
| | - Natalia Fernández-Ruiz
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
| |
Collapse
|
6
|
Fulk A, Huang W, Agusto F. Exploring the Effects of Prescribed Fire on Tick Spread and Propagation in a Spatial Setting. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5031806. [PMID: 35422874 PMCID: PMC9005326 DOI: 10.1155/2022/5031806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/07/2022] [Indexed: 12/01/2022]
Abstract
Lyme disease is one of the most prominent tick-borne diseases in the United States, and prevalence of the disease has been steadily increasing over the past several decades due to a number of factors, including climate change. Methods for control of the disease have been considered, one of which is prescribed burning. In this paper, the effects of prescribed burns on the abundance of ticks present in a spatial domain are assessed. A spatial stage-structured tick-host model with an impulsive differential equation system is developed to simulate the effect that controlled burning has on tick populations. Subsequently, a global sensitivity analysis is performed to evaluate the effect of various model parameters on the prevalence of infectious nymphs. Results indicate that while ticks can recover relatively quickly following a burn, yearly, high-intensity prescribed burns can reduce the prevalence of ticks in and around the area that is burned. The use of prescribed burns in preventing the establishment of ticks into new areas is also explored, and it is observed that frequent burning can slow establishment considerably.
Collapse
Affiliation(s)
- Alexander Fulk
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, USA
| | - Weizhang Huang
- Department of Mathematics, University of Kansas, Lawrence KS, USA
| | - Folashade Agusto
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, USA
| |
Collapse
|
7
|
Occhibove F, Kenobi K, Swain M, Risley C. An eco-epidemiological modeling approach to investigate dilution effect in two different tick-borne pathosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2550. [PMID: 35092122 PMCID: PMC9286340 DOI: 10.1002/eap.2550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Disease (re)emergence appears to be driven by biodiversity decline and environmental change. As a result, it is increasingly important to study host-pathogen interactions within the context of their ecology and evolution. The dilution effect is the concept that higher biodiversity decreases pathogen transmission. It has been observed especially in zoonotic vector-borne pathosystems, yet evidence against it has been found. In particular, it is still debated how the community (dis)assembly assumptions and the degree of generalism of vectors and pathogens affect the direction of the biodiversity-pathogen transmission relationship. The aim of this study was to use empirical data and mechanistic models to investigate dilution mechanisms in two rodent-tick-pathogen systems differing in their vector degree of generalism. A community was assembled to include ecological interactions that expand from purely additive to purely substitutive. Such systems are excellent candidates to analyze the link between vector ecology, community (dis)assembly dynamics, and pathogen transmission. To base our mechanistic models on empirical data, rodent live-trapping, including tick sampling, was conducted in Wales across two seasons for three consecutive years. We have developed a deterministic single-vector, multi-host compartmental model that includes ecological relationships with non-host species, uniquely integrating theoretical and observational approaches. To describe pathogen transmission across a gradient of community diversity, the model was populated with parameters describing five different scenarios differing in ecological complexity; each based around one of the pathosystems: Ixodes ricinus (generalist tick)-Borrelia burgdorferi and I. trianguliceps (small mammals specialist tick)-Babesia microti. The results suggested that community composition and interspecific dynamics affected pathogen transmission with different dilution outcomes depending on the vector degree of generalism. The model provides evidence that dilution and amplification effects are not mutually exclusive in the same community but depend on vector ecology and the epidemiological output considered (i.e., the "risk" of interest). In our scenarios, more functionally diverse communities resulted in fewer infectious rodents, supporting the dilution effect. In the pathosystem with generalist vector we identified a hump shaped relationship between diversity and infections in hosts, while for that characterized by specialist tick, this relationship was more complex and more dependent upon specific parameter values.
Collapse
Affiliation(s)
- Flavia Occhibove
- IBERS, Aberystwyth UniversityAberystwythUK
- UK Centre for Ecology & HydrologyWallingfordUK
| | - Kim Kenobi
- Department of MathematicsAberystwyth UniversityAberystwythUK
| | | | | |
Collapse
|
8
|
Estrada-Peña A, Fernández-Ruiz N. Is composition of vertebrates an indicator of the prevalence of tick-borne pathogens? Infect Ecol Epidemiol 2022; 12:2025647. [PMID: 35035783 PMCID: PMC8757609 DOI: 10.1080/20008686.2022.2025647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Communities of vertebrates tend to appear together under similar ranges of environmental features. This study explores whether an explicit combination of vertebrates and their contact rates with a tick vector might constitute an indicator of the prevalence of a pathogen in the quest for ticks at the western Palearctic scale. We asked how ‘indicator’ communities could be ‘markers’ of the actual infection rates of the tick in the field of two species of Borrelia (a bacterium transmitted by the tick Ixodes ricinus). We approached an unsupervised classification of the territory to obtain clusters on the grounds of abundance of each vertebrate and contact rates with the tick. Statistical models based on Neural Networks, Random Forest, Gradient Boosting, and AdaBoost were detect the best correlation between communities’ composition and the prevalence of Borrelia afzelii and Borrelia gariniii in questing ticks. Both Gradient Boosting and AdaBoost produced the best results, predicting tick infection rates from the indicator communities. A ranking algorithm demonstrated that the prevalence of these bacteria in the tick is correlated with indicator communities of vertebrates on sites selected as a proof-of-concept. We acknowledge that our findings are supported by statistical outcomes, but they provide consistency for a framework that should be deeper explored at the large scale.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Animal Health. Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (Ia2), Zaragoza, Spain
| | - Natalia Fernández-Ruiz
- Department of Animal Health. Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (Ia2), Zaragoza, Spain
| |
Collapse
|
9
|
Rataud A, Henry PY, Moutailler S, Marsot M. Research effort on birds' reservoir host potential for Lyme borreliosis: A systematic review and perspectives. Transbound Emerg Dis 2021; 69:2512-2522. [PMID: 34453490 DOI: 10.1111/tbed.14305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023]
Abstract
Zoonotic tick-borne diseases threat human and animal health. Understanding the role of hosts in the production of infected ticks in an epidemiological system is essential to be able to design effective measures to reduce the exposure of humans and animals to infectious tick bites. The reservoir host potential, that is, number of infected ticks produced by a host species, depends on three components: tick production, realized reservoir competence and host density. The parameters and factors that determine the reservoir host potential need to be characterized to achieve a robust understanding of the dynamics of pathogen-tick-host systems, and thus to mitigate the acarological risk of emerging infections. Few studies have investigated the role of birds in the local spread of Lyme borreliosis Borrelia. Knowledge of the research effort on the reservoir host potential of birds in Lyme borreliosis Borrelia circulation is necessary to prioritize future research on this topic. We provide a systematic review of the research effort on components of the reservoir host potential of wild birds for Lyme borreliosis Borrelia circulation, and factors that modulate these components in the European epidemiological system. Our review of 242 selected publications showed that tick production has been 1.4 and 21 times more studied than realized reservoir competence and bird density respectively. Only one study achieved to characterize the global host reservoir potential of birds in a given epidemiological system. Investigated factors were mostly related to bird species identity, individual characteristics of birds and tick characteristics, whereas the influence of bird life-history traits have been largely under-investigated. Because simultaneous characterization of all parameters is notoriously complex, interdisciplinary research is needed to combine and accumulate independent field and laboratory investigations targeting each parameter on specific epidemiological system or host species. This can help gain an integrated appraisal of the functioning of the studied system at a local scale.
Collapse
Affiliation(s)
- Amalia Rataud
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Pierre-Yves Henry
- Mécanismes Adaptatifs et Evolution (MECADEV UMR 7179), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Brunoy, France.,Centre de Recherches sur la Biologie des Populations d'Oiseaux (CRBPO), Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR 7204), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Maud Marsot
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| |
Collapse
|
10
|
Tarnowska E, Niedziałkowska M, Stojak J, Jędrzejewska B. Polymorphism of TLR2 in bank vole populations in North Eastern Poland is not associated with Borrelia afzelii infection prevalence. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractPolymorphism in innate immune genes in host populations can structure spatial variation in the prevalence of infectious diseases. In Europe, Borrelia afzelii is an important tick-borne pathogen of small mammals including the bank voles (Myodes glareolus). The Toll-like receptor 2 (TLR2) is an innate immune receptor that is important for detecting Borrelia burgdorferi sensu lato pathogens. The TLR2 gene is polymorphic in bank vole populations and is classified into four distinct clusters: C1, C2, C3, and C4. The C2 and C4 clusters versus the C1 and C3 clusters are associated with lower versus higher infection prevalence, respectively. We detected three TLR2 clusters in 487 bank voles from 30 populations in NE Poland: 84.2% of the obtained sequences belonged to the C1 variant, 7.2% to C2, and 8.6% to C3. However, no clear spatial structure of TLR2 clusters among the populations was detected. B. afzelii infection prevalence across all studied individuals was 12.1% and varied from 0 to 37.5% among populations. There were no significant differences in B. afzelii prevalence among voles carrying alleles of different TLR2 clusters, or between individuals belonging to two mtDNA lineages. Most infected individuals were adults, and males were infected more often than females. There was no significant relationship between the prevalence of TLR2 clusters in the vole populations and climatic and environmental factors within the study area. We therefore could not confirm an adaptive role of the TLR2 C2 alleles in reducing B. afzelii infection prevalence in bank voles.
Collapse
|