1
|
Yu J, Hou G, Shi P, Zong N, Peng J. Nitrogen rather than phosphorous addition alters the asymmetric responses of primary productivity to precipitation variability across a precipitation gradient on the northern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167856. [PMID: 37866615 DOI: 10.1016/j.scitotenv.2023.167856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Understanding the response of alpine grassland productivity to precipitation fluctuations is essential for assessing the future changes of ecosystem services. However, the underlying mechanism by which grassland productivity responds to wet and dry years after nitrogen (N) or/and phosphorus (P) nutrient addition remains unclear. In this study, we investigated the dynamics of plant communities based on eight-year N or/and P addition gradient experiments in four grassland types across a precipitation gradient on the north Tibetan Plateau. The asymmetry index (AI) was used to evaluate the responses of aboveground net primary productivity (ANPP) to precipitation fluctuations where AI > 0 indicates a greater increase of ANPP in wet years compared to the decline in dry years, and AI < 0 indicates a greater decline of ANPP in dry years compared to the increase in wet years. Our results showed that the AI values at community level in four natural grasslands were non-significant trend across the precipitation gradient, and showed slightly negative asymmetry, suggesting that the increase of ANPP in wet years was less than the decrease in dry years. N addition resulted in a significant decrease in community-level AI values with increasing mean annual precipitation (MAP), indicating that improved nutrient availability may favor the recovery of productivity in drier grasslands in wet years. At the functional group level, nutrient addition resulted in a significant decrease in the AI values of grasses and legumes and an increase in the AI values of forbs as MAP increased. Furthermore, the coupling of nutrients with precipitation can influence the productivity responses to precipitation changes by affecting soil nutrient availability and species richness. This research provides new insights into better predicting vegetation activity on N deposition rates and precipitation changes exacerbated in the context of climate change.
Collapse
Affiliation(s)
- Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ge Hou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Guasconi D, Manzoni S, Hugelius G. Climate-dependent responses of root and shoot biomass to drought duration and intensity in grasslands-a meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166209. [PMID: 37572920 DOI: 10.1016/j.scitotenv.2023.166209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Understanding the effects of altered precipitation regimes on root biomass in grasslands is crucial for predicting grassland responses to climate change. Nonetheless, studies investigating the effects of drought on belowground vegetation have produced mixed results. In particular, root biomass under reduced precipitation may increase, decrease or show a delayed response compared to shoot biomass, highlighting a knowledge gap in the relationship between belowground net primary production and drought. To address this gap, we conducted a meta-analysis of nearly 100 field observations of grassland root and shoot biomass changes under experimental rainfall reduction to disentangle the main drivers behind grassland responses to drought. Using a response-ratio approach we tested the hypothesis that water scarcity would induce a decrease in total biomass, but an increase in belowground biomass allocation with increased drought length and intensity, and that climate (as defined by the aridity index of the study location) would be an additional predictor. As expected, meteorological drought decreased root and shoot biomass, but aboveground and belowground biomass exhibited contrasting responses to drought duration and intensity, and their interaction with climate. In particular, drought duration had negative effects on root biomass only in wet climates while more intense drought had negative effects on root biomass only in dry climates. Shoot biomass responded negatively to drought duration regardless of climate. These results show that long-term climate is an important modulator of belowground vegetation responses to drought, which might be a consequence of different drought tolerance and adaptation strategies. This variability in vegetation responses to drought suggests that physiological plasticity and community composition shifts may mediate how climate affects carbon allocation in grasslands, and thus ultimately carbon storage in soil.
Collapse
Affiliation(s)
- Daniela Guasconi
- Department of Physical Geography, Stockholm University, Stockholm, Sweden; Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, Sweden; Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Gustaf Hugelius
- Department of Physical Geography, Stockholm University, Stockholm, Sweden; Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Jiang Y, Yuan T. The effects of precipitation change on urban meadows in different design models and substrates. Sci Rep 2023; 13:20592. [PMID: 37996501 PMCID: PMC10667351 DOI: 10.1038/s41598-023-44974-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/13/2023] [Indexed: 11/25/2023] Open
Abstract
Climate change, such as temperature and precipitation changes, is becoming increasingly obvious, and in this context, planting designs need to urgently consider future climate change in advance. A field experiment was conducted in Beijing, China, where the future precipitation is predicted to increase, and extra irrigation was used to simulate the future precipitation increase. The species richness of sown meadows, including spontaneous plants and sown plants, and the adaptive strategies of the communities were recorded under different types of design models and substrates. The results showed that precipitation increased the diversity of sown plants and resource-demanding spontaneous plants but had no significant effect on the dry matter content of the entire community of species. Moreover, the interactions among precipitation and substrate, especially the design models, were significant. Of the models, the three-layer model had the highest species richness and least invasive plants. In addition, increased precipitation significantly changed the functional strategy of the plant community away from ruderals and towards competitor-stress tolerant species. This study provides guidance for the design and management of naturalistic plant communities under climate change.
Collapse
Affiliation(s)
- Yarong Jiang
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Tao Yuan
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center for Floriculture, Beijing, 100083, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
4
|
Deng Z, Zhao J, Ma P, Zhang H, Li R, Wang Z, Tang Y, Luo T. Precipitation and local adaptation drive spatiotemporal variations of aboveground biomass and species richness in Tibetan alpine grasslands. Oecologia 2023:10.1007/s00442-023-05401-1. [PMID: 37314486 DOI: 10.1007/s00442-023-05401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The Tibetan Plateau contains the highest and largest alpine pasture in the world, which is adapted to the cold and arid climate. It is challenging to understand how the vast alpine grasslands respond to climate change. We aim to test the hypothesis that there is local adaptation in elevational populations of major plant species in Tibetan alpine grasslands, and that the spatiotemporal variations of aboveground biomass (AGB) and species richness (S) can be mainly explained by climate change only when the effect of local adaptation is removed. A 7-year reciprocal transplant experiment was conducted among the distribution center (4950 m), upper (5200 m) and lower (4650 m) limits of alpine Kobresia meadow in central Tibetan Plateau. We observed interannual variations in S and AGB of 5 functional groups and 4 major species, and meteorological factors in each of the three elevations during 2012-2018. Relationships between interannual changes of AGB and climatic factors varied greatly with elevational populations within a species. Elevation of population origin generally had a greater or an equal contribution to interannual variation in AGB of the 4 major species, compared to temperature and precipitation effects. While the effect of local adaptation was removed by calculating differences in AGB and S between elevations of migration and origin, relative changes in AGB and S were mainly explained by precipitation change rather than by temperature change. Our data support the hypothesis, and further provide evidence that the monsoon-adapted alpine grasslands are more sensitive to precipitation change than to warming.
Collapse
Affiliation(s)
- Zhaoheng Deng
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxue Zhao
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Ma
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoze Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruicheng Li
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Zhong Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanhong Tang
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianxiang Luo
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
5
|
Assessment of the Current Condition of Populations of the Red List Species Salvia submutica Botsch. & VVED. (Lamiaceae Lindl.) In Nuratau Mountain Ridge, Uzbekistan. EKOLÓGIA (BRATISLAVA) 2022. [DOI: 10.2478/eko-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
The high-mountain ecosystems of Central Asia consist of very rich biodiversity with unique plant communities and many endemic species. High human pressure and long drought periods due to global warming have caused habitat destruction in these areas and a parallel increase in the number of endangered species. In Uzbekistan, the number of red listed plant species has risen in the last 30 years, from 163 in 1984 to 324 in 2009. Among those red-listed species are 23 species in the Lamiaceae family. The aim of this study was to estimate the current populations of red-listed species Salvia submutica. This species is endemic to the Nuratau ridge, and it is growing under climatic changes and human pressure. We found two populations of this species in the Nuratau ridge. For each population, we measured the plant density and determined the population spectrum. We also describe the plant community where each population grew. At all sites, the population density was low, with most populations being classified as mature with centered ontogenetic structure. These results indicated this species might, in the near future, become extinct in the wild.
Collapse
|
6
|
Resistance and Resilience of Nine Plant Species to Drought in Inner Mongolia Temperate Grasslands of Northern China. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drought has been approved to affect the process of terrestrial ecosystems from different organizational levels, including individual, community, and ecosystem levels; however, which traits play the dominant role in the resistance of plant to drought is still unclear. The experiment was conducted in semi-arid temperate grassland and included six paired control and drought experimental plots. The drought treatment was completely removed from precipitation treatments from 20 June to 30 August 2013. At the end of the growing season in 2013, we removed the rain cover for ecosystem recovery in 2014. The results demonstrated that drought treatment increased the coverage of and abundance Heteropappus altaicus, Potentilla bifurca, and Artemisia scoparia by 126.2–170.0% and 63.4–98.9%, but decreased that of Artemisia frigida, Dontostemon dentatus, and Melissilus ruthenicu by 46.2–60.2% and 49.6–60.1%. No differences in coverage and abundance of Agropyron cristatum, Stipa kiylovii, and Cleistogenes squarrosa were found between control and drought treatment. The coverage and abundance of Stipa kiylovii have exceeded the original level before the drought stress, but Heteropappus altaicus still had not recovered in the first year after the disturbance. Our findings indicate that plant functional traits are important for the understanding of the resistance and resilience of plants to drought stress, which can provide data support for grassland management.
Collapse
|
7
|
Assessing the roles of nitrogen, biomass, and niche dimensionality as drivers of species loss in grassland communities. Proc Natl Acad Sci U S A 2022; 119:e2112010119. [PMID: 35235460 PMCID: PMC8915794 DOI: 10.1073/pnas.2112010119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nutrient enrichment of natural ecosystems is a primary characteristic of the Anthropocene and a known cause of biodiversity loss, particularly in grasslands. In a global meta-analysis of 630 resource addition experiments, we conduct a simultaneous test of the three most prominent explanations of this phenomenon. Our results conclusively indicate that nitrogen is the leading cause of species loss. This result is important because of the increase in nitrogen deposition and the frequent use of nitrogen-based fertilizers worldwide. Our findings provide global-scale, experimental evidence that minimizing nitrogen inputs to ecological systems may help to conserve the diversity of grassland ecosystems. Eutrophication is a major driver of species loss in plant communities worldwide. However, the underlying mechanisms of this phenomenon are controversial. Previous studies have raised three main explanations: 1) High levels of soil resources increase standing biomass, thereby intensifying competitive interactions (the “biomass-driven competition hypothesis”). 2) High levels of soil resources reduce the potential for resource-based niche partitioning (the “niche dimension hypothesis”). 3) Increasing soil nitrogen causes stress by changing the abiotic or biotic conditions (the “nitrogen detriment hypothesis”). Despite several syntheses of resource addition experiments, so far, no study has tested all of the hypotheses together. This is a major shortcoming, since the mechanisms underlying the three hypotheses are not independent. Here, we conduct a simultaneous test of the three hypotheses by integrating data from 630 resource addition experiments located in 99 sites worldwide. Our results provide strong support for the nitrogen detriment hypothesis, weaker support for the biomass-driven competition hypothesis, and negligible support for the niche dimension hypothesis. The results further show that the indirect effect of nitrogen through its effect on biomass is minor compared to its direct effect and is much larger than that of all other resources (phosphorus, potassium, and water). Thus, we conclude that nitrogen-specific mechanisms are more important than biomass or niche dimensionality as drivers of species loss under high levels of soil resources. This conclusion is highly relevant for future attempts to reduce biodiversity loss caused by global eutrophication.
Collapse
|
8
|
Wang B, Chen Y, Li Y, Zhang H, Yue K, Wang X, Ma Y, Chen J, Sun M, Chen Z, Wu Q. Differential effects of altered precipitation regimes on soil carbon cycles in arid versus humid terrestrial ecosystems. GLOBAL CHANGE BIOLOGY 2021; 27:6348-6362. [PMID: 34478579 DOI: 10.1111/gcb.15875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Changes in precipitation regimes have significant effects on soil carbon (C) cycles; however, these effects may vary in arid versus humid areas. Additionally, the corresponding details of soil C cycles in response to altered precipitation regimes have not been well documented. Here, a meta-analysis was performed using 845 pairwise observations (control vs. increased or decreased precipitation) from 214 published articles to quantify the responses of the input process of exogenous C, the contents of various forms of C in soil, and the soil-atmosphere C fluxes relative to increased or decreased precipitation. The results showed that the effects of altered precipitation regimes did not differ between rainfall and snowfall. Increased precipitation significantly enhanced the soil C inputs, pools and outputs by 18.17%, 18.50%, and 21.04%, respectively, while decreased precipitation led to a significant decline in these soil C parameters by 10.18%, 9.96%, and 17.98%, respectively. The effects of increased precipitation on soil C cycles were more significant in arid areas (where mean annual precipitation, MAP <500 mm), but the effects of decreased precipitation were more significant in humid areas (where MAP ≥500 mm), indicating that the original MAP partially determined the responses of the soil C cycles to altered precipitation regimes. This study implies that for the same of precipitation variation, soil C cycles respond at different magnitudes: not only should the direction (decrease vs. increase) be counted but also the region (arid vs. humid) should be considered. These results deepened our understanding on regional differentiation in soil C cycles under climate change scenarios.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yali Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Hui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Xingchang Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Yuandan Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jian Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Meng Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhuo Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
9
|
Yang X, Mariotte P, Guo J, Hautier Y, Zhang T. Suppression of arbuscular mycorrhizal fungi decreases the temporal stability of community productivity under elevated temperature and nitrogen addition in a temperate meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143137. [PMID: 33121784 DOI: 10.1016/j.scitotenv.2020.143137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Global change alters how terrestrial ecosystems function and makes them less stable over time. Global change can also suppress the development and effectiveness of arbuscular mycorrhizal fungi (AMF). This is concerning, as AMF have been shown to alleviate the negative influence of global changes on plant growth and maintain species coexistence. However, how AMF and global change interact and influence community temporal stability remains poorly understood. Here, we conducted a 4-year field experiment and used structural equation modeling (SEM) to explore the influence of elevated temperature, nitrogen (N) addition and AMF suppression on community temporal stability (quantified as the ratio of the mean community productivity to its standard deviation) in a temperate meadow in northern China. We found that elevated temperature and AMF suppression independently decreased the community temporal stability but that N addition had no impact. Community temporal stability was mainly driven by elevated temperature, N addition and AMF suppression that modulated the dominant species stability; to a lesser extent by the elevated temperature and AMF suppression that modulated AMF richness associated with community asynchrony; and finally by the N addition and AMF suppression that modulated mycorrhizal colonization. In addition, although N addition, AMF suppression and elevated temperature plus AMF suppression reduced plant species richness, there was no evidence that changes in community temporal stability were linked to changes in plant richness. SEM further showed that elevated temperature, N addition and AMF suppression regulated community temporal stability by influencing both the temporal mean and variation in community productivity. Our results suggest that global environmental changes may have appreciable consequences for the stability of temperate meadows while also highlighting the role of belowground AMF status in the responses of plant community temporal stability to global change.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| | - Pierre Mariotte
- Grazing Systems, Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland
| | - Jixun Guo
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| | - Tao Zhang
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| |
Collapse
|
10
|
Zang YX, Min XJ, de Dios VR, Ma JY, Sun W. Extreme drought affects the productivity, but not the composition, of a desert plant community in Central Asia differentially across microtopographies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137251. [PMID: 32092808 DOI: 10.1016/j.scitotenv.2020.137251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Extreme climatic conditions are major drivers of ecosystem function and dynamics and their frequency is increasing under climate change. Climatic conditions interact with local microtopography, which might either buffer or exacerbate the degree of climatic stress. Here we sought to understand how extremely dry growing seasons affected the composition and productivity of desert ephemeral communities growing in sand dunes from the Gurbantunggut desert in Central Asia, and to which extent did microtopography modulate the response. We set up a rainfall manipulation study on four sand dune microtopographies and, during two consecutive years, we measured soil moisture, nutrients and texture, ephemeral layer composition, plant phenology, biomass accumulation and biomass allocation patterns for the dominant species. We observed significant biomass reductions during the extreme drought but plant community richness and composition were not affected, indicating that the composition of the ephemeral layer in this desert ecosystem may resist under extreme conditions. Additionally, extreme drought increased biomass allocation to reproductive organs of the dominant species. There were also significant microtopographic effects as the sensitivity of biomass to drought in western aspects was larger than in eastern aspects. Our results indicate that previously overlooked microtopographical differences may mediate the impact of climate change on plant communities.
Collapse
Affiliation(s)
- Yong-Xin Zang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jun Min
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China; Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Lleida, Spain
| | - Jian-Ying Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China.
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China.
| |
Collapse
|