1
|
Quinteros AS, Portelli SN. The micro-niche explains allotopy and syntopy in South American Liolaemus (Iguania: Liolaemidae) lizards. PeerJ 2025; 13:e18979. [PMID: 39981051 PMCID: PMC11841597 DOI: 10.7717/peerj.18979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Species distribution models have been established as essential tools for projecting the effects of changing environmental conditions on species distribution across space and time. The microclimatic niche denotes the environmental conditions within a habitat at a small scale or localized area. These conditions have a direct influence on several ecological traits and on species distribution as these conditions determine which organisms can survive and/or reproduce. This study examines the microclimate data from four sites located in Northwestern Salta Province, Argentina. Four South American Liolaemus lizard species were found to inhabit these four sites in allotopy or syntopy, with Liolaemus irregularis inhabiting all four sites. Liolaemus irregularis is the sole Liolaemus species inhabiting Site 1; L. irregularis inhabits Site 2 in syntopy with L. multicolor; L. irregularis inhabits Site 3 in syntopy with L. yanalcu; and L. irregularis inhabits Site 4 in syntopy with L. albiceps. To characterize the four sites, a microclimate model was generated for an interval from 10 AM to 6 PM every day, for 10 years. The sites exhibited some differences in the combination of climatic and soil characteristics. Site 1 was characterized by low relative humidity, high temperature, high wind speed, and Cambisol soil type. Site 2 had high relative humidity, low temperature, moderate wind speed, and Andosol soil type. Site 3 had high relative humidity, high temperature, low wind speed, and Cambisol soil type. Site 4 had high relative humidity, low temperature, moderate wind speed, and Regosol soil type. Temperature, humidity, wind speed, soil type, and species diet influenced the presence of lizard species at each site. It is evident that microenvironmental conditions profoundly influence lizard distribution and biological interactions.
Collapse
Affiliation(s)
- Andrés S. Quinteros
- Instituto de Bio y Geociencias del NOA—IBIGEO—UNSa—CONICET, Salta, Argentina
- Facultad de Ciencias Naturales—Universidad Nacional de Salta, Cátedra de Sistemática Filogenética, Salta, Argentina
| | - Sabrina N. Portelli
- Instituto de Bio y Geociencias del NOA—IBIGEO—UNSa—CONICET, Salta, Argentina
- Facultad de Ciencias Naturales—Universidad Nacional de Salta, Catedra de Zoología, Salta, Argentina
| |
Collapse
|
2
|
Tian L, Xu R, Chen D, Ananjeva NB, Brown RM, Min MS, Cai B, Mijidsuren B, Zhang B, Guo X. Range-Wide Phylogeography and Ecological Niche Modeling Provide Insights into the Evolutionary History of the Mongolian Racerunner ( Eremias argus) in Northeast Asia. Animals (Basel) 2024; 14:1124. [PMID: 38612363 PMCID: PMC11011046 DOI: 10.3390/ani14071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The Mongolian racerunner, Eremias argus, is a small lizard endemic to Northeast Asia that can serve as an excellent model for investigating how geography and past climate change have jointly influenced the evolution of biodiversity in this region. To elucidate the processes underlying its diversification and demography, we reconstructed the range-wide phylogeographic pattern and evolutionary trajectory, using phylogenetic, population genetic, landscape genetic, Bayesian phylogeographic reconstruction and ecological niche modeling approaches. Phylogenetic analyses of the mtDNA cyt b gene revealed eight lineages that were unbounded by geographic region. The genetic structure of E. argus was mainly determined by geographic distance. Divergence dating indicated that E. argus and E. brenchleyi diverged during the Mid-Pliocene Warm Period. E. argus was estimated to have coalesced at~0.4351 Ma (Marine Isotope Stage 19). Bayesian phylogeographic diffusion analysis revealed out-of-Inner Mongolia and rapid colonization events from the end of the Last Interglacial to the Last Glacial Maximum, which is consistent with the expanded suitable range of the Last Glacial Maximum. Pre-Last Glacial Maximum growth of population is presented for most lineages of E. argus. The Glacial Maximum contraction model and the previous multiple glacial refugia hypotheses are rejected. This may be due to an increase in the amount of climatically favorable habitats in Northeast Asia. Furthermore, E. argus barbouri most likely represents an invalid taxon. The present study is the first to report a range-wide phylogeography of reptiles over such a large region in Northeast Asia. Our results make a significant contribution towards understanding the biogeography of the entire Northeast Asia.
Collapse
Affiliation(s)
- Lili Tian
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Natalia B. Ananjeva
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia;
| | - Rafe M. Brown
- Biodiversity Institute, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| | - Mi-Sook Min
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea;
| | - Bo Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Byambasuren Mijidsuren
- Plant Protection Research Institute, Mongolian University of Life Sciences, Ulaanbaatar 210153, Mongolia;
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| |
Collapse
|
3
|
Walsh MR, Christian A, Feder M, Korte M, Tran K. Are parental condition transfer effects more widespread than is currently appreciated? J Exp Biol 2024; 227:jeb246094. [PMID: 38449326 DOI: 10.1242/jeb.246094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
It has long been recognized that the environment experienced by parents can influence the traits of offspring (i.e. 'parental effects'). Much research has explored whether mothers respond to predictable shifts in environmental signals by modifying offspring phenotypes to best match future conditions. Many organisms experience conditions that theory predicts should favor the evolution of such 'anticipatory parental effects', but such predictions have received limited empirical support. 'Condition transfer effects' are an alternative to anticipatory effects that occur when the environment experienced by parents during development influences offspring fitness. Condition transfer effects occur when parents that experience high-quality conditions produce offspring that exhibit higher fitness irrespective of the environmental conditions in the offspring generation. Condition transfer effects are not driven by external signals but are instead a byproduct of past environmental quality. They are also likely adaptive but have received far less attention than anticipatory effects. Here, we review the generality of condition transfer effects and show that they are much more widespread than is currently appreciated. Condition transfer effects are observed across taxa and are commonly associated with experimental manipulations of resource conditions experienced by parents. Our Review calls for increased research into condition transfer effects when considering the role of parental effects in ecology and evolution.
Collapse
Affiliation(s)
- Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Anne Christian
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mikaela Feder
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Meghan Korte
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kevin Tran
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
4
|
Ding Z, Wang X, Zou T, Hao X, Zhang Q, Sun B, Du W. Climate warming has divergent physiological impacts on sympatric lizards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168992. [PMID: 38052387 DOI: 10.1016/j.scitotenv.2023.168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Climate warming is expected to affect the vulnerability of sympatric species differentially due to their divergent traits, but the underlying physiological mechanisms of those impacts are poorly understood. We conducted field warming experiments (present climate vs. warm climate) using open-top chambers to determine the effects of climate warming on active body temperature, oxidative damage, immune competence, growth and survival in two sympatric desert-dwelling lizards, Eremias multiocellata and Eremias argus from May 2019 to September 2020. Our climate warming treatment did not affect survival of the two species, but it did increase active body temperatures and growth rate in E. multiocellata compared to E. argus. Climate warming also induced greater oxidative damage (higher malondialdehyde content and catalase activity) in E. multiocellata, but not in E. argus. Further, climate warming increased immune competence in E. multiocellata, but decreased immune competence in E. argus, with regards to white blood cell counts, bacteria killing ability and relative expression of immunoglobulin M. Our results suggest that climate warming enhances body temperature, and thereby oxidative stress, immune competence and growth in E. multiocellata, but decreases immune competence of E. argus, perhaps as a cost of thermoregulation to maintain body temperatures under climate warming. The divergent physiological effects of climate warming on sympatric species may have profound ecological consequences if it eventually leads to changes in reproductive activities, population dynamics and community structure. Our study highlights the importance of considering interspecific differences in physiological traits when we evaluate the impact of climate warming on organisms, even for those closely-related species coexisting within the same geographical area.
Collapse
Affiliation(s)
- Zihan Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Zou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Deme GG, Liang X, Okoro JO, Bhattarai P, Sun B, Malann YD, Martin RA. Female lizards ( Eremias argus) reverse Bergmann's rule across altitude. Ecol Evol 2023; 13:e10393. [PMID: 37554397 PMCID: PMC10405246 DOI: 10.1002/ece3.10393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
The evolution of body size within and among species is predicted to be influenced by multifarious environmental factors. However, the specific drivers of body size variation have remained difficult to understand because of the wide range of proximate factors that covary with ectotherm body sizes across populations with varying local environmental conditions. Here, we used female Eremias argus lizards collected from different populations across their wide range in China, and constructed linear mixed models to assess how climatic conditions and/or available resources at different altitudes shape the geographical patterns of lizard body size across altitude. Lizard populations showed significant differences in body size across altitudes. Furthermore, we found that climatic and seasonal changes along the altitudinal gradient also explained variations in body size among populations. Specifically, body size decreased with colder and drier environmental conditions at high altitudes, reversing Bergmann's rule. Limited resources at high altitudes, measured by the low vegetative index, may also constrain body size. Therefore, our study demonstrates that multifarious environmental factors could strongly influence the intraspecific variation in organisms' body size.
Collapse
Affiliation(s)
- Gideon Gywa Deme
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Department of BiologyCase Western Reserve UniversityClevelandOhioUSA
| | - Xixi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | | | - Prakash Bhattarai
- Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yoila David Malann
- Department of Biological SciencesUniversity of Abuja, Federal Capital TerritoryAbujaNigeria
| | - Ryan A. Martin
- Department of BiologyCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|