1
|
Tillman L, Margalef Rieres J, Ahjem E, Bishop-Guest F, McGrath M, Hatrick H, Pranjol MZI. Thinking Outside the Therapeutic Box: The Potential of Polyphenols in Preventing Chemotherapy-Induced Endothelial Dysfunction. Cells 2025; 14:566. [PMID: 40277892 PMCID: PMC12026109 DOI: 10.3390/cells14080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The numerous side effects and adverse health implications associated with chemotherapies have long plagued the field of cancer care. Whilst in some cases a curative measure, this highly toxic intervention consistently scores poorly on quantitative measures of tolerability and safety. Of these side effects, cardiac and microvascular defects pose the greatest health risk and are the leading cause of death amongst cancer survivors who do not succumb to relapse. In fact, in many low-grade cancers, the risk of recurrence is far outweighed by the cardiovascular risk of morbidity. As such, there is a pressing need to improve outcomes within these populations. Polyphenols are a group of naturally occurring metabolites that have shown potential vasoprotective effects. Studies suggest they possess antioxidant and anti-inflammatory activities, in addition to directly modulating vascular signalling pathways and gene expression. Leveraging these properties may help counteract the vascular toxicity induced by chemotherapy. In this review, we outline the main mechanisms by which the endothelium is damaged by chemotherapeutic agents and discuss the ability of polyphenols to counteract such side effects. We suggest future considerations that may help overcome some of the published limitations of these compounds that have stalled their clinical success. Finally, we briefly explore their pharmacological properties and how novel approaches could enhance their efficacy while minimising treatment-related side effects.
Collapse
Affiliation(s)
- Luke Tillman
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Jaume Margalef Rieres
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Elena Ahjem
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Fynn Bishop-Guest
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Meghan McGrath
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Helena Hatrick
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | | |
Collapse
|
2
|
Luo J, Wang Y. Precision Dietary Intervention: Gut Microbiome and Meta-metabolome as Functional Readouts. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:23-50. [PMID: 40313608 PMCID: PMC12040796 DOI: 10.1007/s43657-024-00193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 05/03/2025]
Abstract
Gut microbiome, the group of commensals residing within the intestinal tract, is closely associated with dietary patterns by interacting with food components. The gut microbiome is modifiable by the diet, and in turn, it utilizes the undigested food components as substrates and generates a group of small molecule-metabolites that addressed as "meta-metabolome" in this review. Profiling and mapping of meta-metabolome could yield insightful information at higher resolution and serve as functional readouts for precision nutrition and formation of personalized dietary strategies. For assessing the meta-metabolome, sample preparation is important, and it should aim for retrieval of gut microbial metabolites as intact as possible. The meta-metabolome can be investigated via untargeted and targeted meta-metabolomics with analytical platforms such as nuclear magnetic resonance spectroscopy and mass spectrometry. Employing flux analysis with meta-metabolomics using available database could further elucidate metabolic pathways that lead to biomarker discovery. In conclusion, integration of gut microbiome and meta-metabolomics is a promising supplementary approach to tailor precision dietary intervention. In this review, relationships among diet, gut microbiome, and meta-metabolome are elucidated, with an emphasis on recent advances in alternative analysis techniques proposed for nutritional research. We hope that this review will provide information for establishing pipelines complementary to traditional approaches for achieving precision dietary intervention.
Collapse
Affiliation(s)
- Jing Luo
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- TUMCREATE, 1 Create Way, #10-02 CREATE Tower, Singapore, 138602 Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921 Singapore
| |
Collapse
|
3
|
Yao L, Yang Y, Yang X, Rezaei MJ. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson's Disease. Mol Neurobiol 2024; 61:9078-9109. [PMID: 38587699 DOI: 10.1007/s12035-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, leading to motor and non-motor symptoms. Emerging research has shed light on the role of gut microbiota in the pathogenesis and progression of PD. Nutraceuticals such as curcumin, berberine, phytoestrogens, polyphenols (e.g., resveratrol, EGCG, and fisetin), dietary fibers have been shown to influence gut microbiota composition and function, restoring microbial balance and enhancing the gut-brain axis. The mechanisms underlying these benefits involve microbial metabolite production, restoration of gut barrier integrity, and modulation of neuroinflammatory pathways. Additionally, probiotics and prebiotics have shown potential in promoting gut health, influencing the gut microbiome, and alleviating PD symptoms. They can enhance the gut's antioxidant capacity of the gut, reduce inflammation, and maintain immune homeostasis, contributing to a neuroprotective environment. This paper provides an overview of the current state of knowledge regarding the potential of nutraceuticals and gut microbiota modulation in the prevention and management of Parkinson's disease, emphasizing the need for further research and clinical trials to validate their effectiveness and safety. The findings suggest that a multifaceted approach involving nutraceuticals and gut microbiota may open new avenues for addressing the challenges of PD and improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Liyan Yao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaowei Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sun X, Huang Q, Wu M, He L, Zhao X, Yang X. Metabolomics and quantitative analysis to determine differences in the geographical origins and species of Chinese dragon's blood. FRONTIERS IN PLANT SCIENCE 2024; 15:1427731. [PMID: 39359632 PMCID: PMC11445005 DOI: 10.3389/fpls.2024.1427731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Objective The aim of this study was to comprehensively analyze the differences in Chinese dragon's blood (CDB), specifically Dracaena cochinchinensis and Dracaena cambodiana, from different geographical origins. Methods Metabolomic analysis of CDB was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A reliable ultrahigh-performance liquid chromatography method with a photodiode array detector (UHPLC-PDA) was developed and applied for the quantitative analysis of 12 phenolic compounds in 51 batches of samples. Results A total of 1394 metabolites were detected, of which 467 were identified as differentially accumulated metabolites. Multivariate analysis revealed that both origin and species had an effect on the composition of CDB, with greater variation between species. 19 phenolic compounds were selected as quality markers to distinguish D. cochinchinensis (Hdsp) from D. cambodiana (Hdca), and oppositin and spinoflavanone a were identified as quality markers to discriminate D. cochinchinensis samples from Hainan (Hdsp) and Guangxi Provinces (Gdc). Quantitative analysis indicated that four phenolic compounds, including loureirin D, 4H-1-benzopyran-4-one,2,3-dihydro-3,5,7-trihydroxy-3-[(4-methoxyphenyl)methyl]-,(R)-, loureirin B, and pterostilbene, showed significant differences between Gdc and Hdsp. Additionally, five phenolic compounds, namely resveratrol, loureirin D, pinostilbene, 4H-1-benzopyran-4-one,2,3-dihydro-3,5,7-trihydroxy-3-[(4-methoxyphenyl)methyl]-, (R)-, and loureirin B, exhibited significant differences between Hdsp and Hdca. Conclusion There are significant differences in the quality of CDB from different geographical origins and species, which lays the foundation for the in-depth development and utilization of different sources of CDB.
Collapse
Affiliation(s)
- Xiuting Sun
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Huang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Mingsong Wu
- College of Life Science, Sichuan University, Chengdu, China
| | - Liu He
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Xinquan Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
5
|
Qadri H, Shah AH, Almilaibary A, Mir MA. Microbiota, natural products, and human health: exploring interactions for therapeutic insights. Front Cell Infect Microbiol 2024; 14:1371312. [PMID: 39035357 PMCID: PMC11257994 DOI: 10.3389/fcimb.2024.1371312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
The symbiotic relationship between the human digestive system and its intricate microbiota is a captivating field of study that continues to unfold. Comprising predominantly anaerobic bacteria, this complex microbial ecosystem, teeming with trillions of organisms, plays a crucial role in various physiological processes. Beyond its primary function in breaking down indigestible dietary components, this microbial community significantly influences immune system modulation, central nervous system function, and disease prevention. Despite the strides made in microbiome research, the precise mechanisms underlying how bacterial effector functions impact mammalian and microbiome physiology remain elusive. Unlike the traditional DNA-RNA-protein paradigm, bacteria often communicate through small molecules, underscoring the imperative to identify compounds produced by human-associated bacteria. The gut microbiome emerges as a linchpin in the transformation of natural products, generating metabolites with distinct physiological functions. Unraveling these microbial transformations holds the key to understanding the pharmacological activities and metabolic mechanisms of natural products. Notably, the potential to leverage gut microorganisms for large-scale synthesis of bioactive compounds remains an underexplored frontier with promising implications. This review serves as a synthesis of current knowledge, shedding light on the dynamic interplay between natural products, bacteria, and human health. In doing so, it contributes to our evolving comprehension of microbiome dynamics, opening avenues for innovative applications in medicine and therapeutics. As we delve deeper into this intricate web of interactions, the prospect of harnessing the power of the gut microbiome for transformative medical interventions becomes increasingly tantalizing.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdullah Almilaibary
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Bahah, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
6
|
Meyer C, Brockmueller A, Ruiz de Porras V, Shakibaei M. Microbiota and Resveratrol: How Are They Linked to Osteoporosis? Cells 2024; 13:1145. [PMID: 38994996 PMCID: PMC11240679 DOI: 10.3390/cells13131145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis (OP), which is characterized by a decrease in bone density and increased susceptibility to fractures, is closely linked to the gut microbiota (GM). It is increasingly realized that the GM plays a key role in the maintenance of the functioning of multiple organs, including bone, by producing bioactive metabolites such as short-chain fatty acids (SCFA). Consequently, imbalances in the GM, referred to as dysbiosis, have been identified with a significant reduction in beneficial metabolites, such as decreased SCFA associated with increased chronic inflammatory processes, including the activation of NF-κB at the epigenetic level, which is recognized as the main cause of many chronic diseases, including OP. Furthermore, regular or long-term medications such as antibiotics and many non-antibiotics such as proton pump inhibitors, chemotherapy, and NSAIDs, have been found to contribute to the development of dysbiosis, highlighting an urgent need for new treatment approaches. A promising preventive and adjuvant approach is to combat dysbiosis with natural polyphenols such as resveratrol, which have prebiotic functions and ensure an optimal microenvironment for beneficial GM. Resveratrol offers a range of benefits, including anti-inflammatory, anti-oxidant, analgesic, and prebiotic effects. In particular, the GM has been shown to convert resveratrol, into highly metabolically active molecules with even more potent beneficial properties, supporting a synergistic polyphenol-GM axis. This review addresses the question of how the GM can enhance the effects of resveratrol and how resveratrol, as an epigenetic modulator, can promote the growth and diversity of beneficial GM, thus providing important insights for the prevention and co-treatment of OP.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain;
- Badalona Applied Research Group in Oncology (B⋅ARGO), Catalan Institute of Oncology, Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| |
Collapse
|
7
|
Ai J, Tang X, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Gut microbiota: a superior operator for dietary phytochemicals to improve atherosclerosis. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38940319 DOI: 10.1080/10408398.2024.2369169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Mounting evidence implicates the gut microbiota as a possible key susceptibility factor for atherosclerosis (AS). The employment of dietary phytochemicals that strive to target the gut microbiota has gained scientific support for treating AS. This study conducted a general overview of the links between the gut microbiota and AS, and summarized available evidence that dietary phytochemicals improve AS via manipulating gut microbiota. Then, the microbial metabolism of several dietary phytochemicals was summarized, along with a discussion on the metabolites formed and the biotransformation pathways involving key gut bacteria and enzymes. This study additionally focused on the anti-atherosclerotic potential of representative metabolites from dietary phytochemicals, and investigated their underlying molecular mechanisms. In summary, microbiota-dependent dietary phytochemical therapy is a promising strategy for AS management, and knowledge of "phytochemical-microbiota-biotransformation" may be a breakthrough in the search for novel anti-atherogenic agents.
Collapse
Affiliation(s)
- Jian Ai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Zhang Z, Sun Z, Jia R, Jiang D, Xu Z, Zhang Y, Wu YQ, Wang X. Protective effects of polydatin against bone and joint disorders: the in vitro and in vivo evidence so far. Nutr Res Rev 2024; 37:96-107. [PMID: 37088535 DOI: 10.1017/s0954422423000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Polydatin is an active polyphenol displaying multifaceted benefits. Recently, growing studies have noticed its potential therapeutic effects on bone and joint disorders (BJDs). Therefore, this article reviews recent in vivo and in vitro progress on the protective role of polydatin against BJDs. An insight into the underlying mechanisms is also presented. It was found that polydatin could promote osteogenesis in vitro, and symptom improvements have been disclosed with animal models of osteoporosis, osteosarcoma, osteoarthritis and rheumatic arthritis. These beneficial effects obtained in laboratory could be mainly attributed to the bone metabolism-regulating, anti-inflammatory, antioxidative, apoptosis-regulating and autophagy-regulating functions of polydatin. However, studies on human subjects with BJDs that can lead to early identification of the clinical efficacy and adverse effects of polydatin have not been reported yet. Accordingly, this review serves as a starting point for pursuing clinical trials. Additionally, future emphasis should also be devoted to the low bioavailability and prompt metabolism nature of polydatin. In summary, well-designed clinical trials of polydatin in patients with BJD are in demand, and its pharmacokinetic nature must be taken into account.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Department of Spine Surgery, Youyang Tujia and Miao Autonomous County People's Hospital, Chongqing, 409899, People's Republic of China
| | - Zhicheng Sun
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Runze Jia
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dingyu Jiang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Zhenchao Xu
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yilu Zhang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yun-Qi Wu
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Xiyang Wang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| |
Collapse
|
9
|
Scuto M, Rampulla F, Reali GM, Spanò SM, Trovato Salinaro A, Calabrese V. Hormetic Nutrition and Redox Regulation in Gut-Brain Axis Disorders. Antioxidants (Basel) 2024; 13:484. [PMID: 38671931 PMCID: PMC11047582 DOI: 10.3390/antiox13040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The antioxidant and anti-inflammatory effects of hormetic nutrition for enhancing stress resilience and overall human health have received much attention. Recently, the gut-brain axis has attracted prominent interest for preventing and therapeutically impacting neuropathologies and gastrointestinal diseases. Polyphenols and polyphenol-combined nanoparticles in synergy with probiotics have shown to improve gut bioavailability and blood-brain barrier (BBB) permeability, thus inhibiting the oxidative stress, metabolic dysfunction and inflammation linked to gut dysbiosis and ultimately the onset and progression of central nervous system (CNS) disorders. In accordance with hormesis, polyphenols display biphasic dose-response effects by activating at a low dose the Nrf2 pathway resulting in the upregulation of antioxidant vitagenes, as in the case of heme oxygenase-1 upregulated by hidrox® or curcumin and sirtuin-1 activated by resveratrol to inhibit reactive oxygen species (ROS) overproduction, microbiota dysfunction and neurotoxic damage. Importantly, modulation of the composition and function of the gut microbiota through polyphenols and/or probiotics enhances the abundance of beneficial bacteria and can prevent and treat Alzheimer's disease and other neurological disorders. Interestingly, dysregulation of the Nrf2 pathway in the gut and the brain can exacerbate selective susceptibility under neuroinflammatory conditions to CNS disorders due to the high vulnerability of vagal sensory neurons to oxidative stress. Herein, we aimed to discuss hormetic nutrients, including polyphenols and/or probiotics, targeting the Nrf2 pathway and vitagenes for the development of promising neuroprotective and therapeutic strategies to suppress oxidative stress, inflammation and microbiota deregulation, and consequently improve cognitive performance and brain health. In this review, we also explore interactions of the gut-brain axis based on sophisticated and cutting-edge technologies for novel anti-neuroinflammatory approaches and personalized nutritional therapies.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | | | | | | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | |
Collapse
|
10
|
Godos J, Romano GL, Gozzo L, Laudani S, Paladino N, Dominguez Azpíroz I, Martínez López NM, Giampieri F, Quiles JL, Battino M, Galvano F, Drago F, Grosso G. Resveratrol and vascular health: evidence from clinical studies and mechanisms of actions related to its metabolites produced by gut microbiota. Front Pharmacol 2024; 15:1368949. [PMID: 38562461 PMCID: PMC10982351 DOI: 10.3389/fphar.2024.1368949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiovascular diseases are among the leading causes of mortality worldwide, with dietary factors being the main risk contributors. Diets rich in bioactive compounds, such as (poly)phenols, have been shown to potentially exert positive effects on vascular health. Among them, resveratrol has gained particular attention due to its potential antioxidant and anti-inflammatory action. Nevertheless, the results in humans are conflicting possibly due to interindividual different responses. The gut microbiota, a complex microbial community that inhabits the gastrointestinal tract, has been called out as potentially responsible for modulating the biological activities of phenolic metabolites in humans. The present review aims to summarize the main findings from clinical trials on the effects of resveratrol interventions on endothelial and vascular outcomes and review potential mechanisms interesting the role of gut microbiota on the metabolism of this molecule and its cardioprotective metabolites. The findings from randomized controlled trials show contrasting results on the effects of resveratrol supplementation and vascular biomarkers without dose-dependent effect. In particular, studies in which resveratrol was integrated using food sources, i.e., red wine, reported significant effects although the resveratrol content was, on average, much lower compared to tablet supplementation, while other studies with often extreme resveratrol supplementation resulted in null findings. The results from experimental studies suggest that resveratrol exerts cardioprotective effects through the modulation of various antioxidant, anti-inflammatory, and anti-hypertensive pathways, and microbiota composition. Recent studies on resveratrol-derived metabolites, such as piceatannol, have demonstrated its effects on biomarkers of vascular health. Moreover, resveratrol itself has been shown to improve the gut microbiota composition toward an anti-inflammatory profile. Considering the contrasting findings from clinical studies, future research exploring the bidirectional link between resveratrol metabolism and gut microbiota as well as the mediating effect of gut microbiota in resveratrol effect on cardiovascular health is warranted.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Lucia Gozzo
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-S. Marco”, Catania, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nadia Paladino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Irma Dominguez Azpíroz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidade Internacional do Cuanza, Cuito, Angola
- Universidad de La Romana, La Romana, Dominican Republic
| | - Nohora Milena Martínez López
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
- Fundación Universitaria Internacional de Colombia, Bogotá, Colombia
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - José L. Quiles
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Parque Tecnologico de la Salud, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Catania, Italy
| |
Collapse
|
11
|
Tseilikman VE, Shatilov VA, Zhukov MS, Buksha IA, Epitashvily AE, Lipatov IA, Aristov MR, Koshelev AG, Karpenko MN, Traktirov DS, Maistrenko VA, Kamel M, Buhler AV, Kovaleva EG, Kalinina TS, Pashkov AA, Kon’kov VV, Novak J, Tseilikman OB. Limited Cheese Intake Paradigm Replaces Patterns of Behavioral Disorders in Experimental PTSD: Focus on Resveratrol Supplementation. Int J Mol Sci 2023; 24:14343. [PMID: 37762647 PMCID: PMC10532287 DOI: 10.3390/ijms241814343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/27/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, the efficacy of drug therapy for post-traumatic stress disorder or PTSD leaves much to be desired, making nutraceutical support a promising avenue for treatment. Recent research has identified the protective effects of resveratrol in PTSD. Here, we tested the behavioral and neurobiological effects of combining cheese consumption with resveratrol supplements in an experimental PTSD model. Using the elevated plus maze test, we observed that cheese intake resulted in a shift from anxiety-like behavior to depressive behavior, evident in increased freezing acts. However, no significant changes in the anxiety index value were observed. Interestingly, supplementation with cheese and resveratrol only led to the elimination of freezing behavior in half of the PTSD rats. We further segregated the rats into two groups based on freezing behavior: Freezing+ and Freezing0 phenotypes. Resveratrol ameliorated the abnormalities in Monoamine Oxidize -A and Brain-Derived Neurotrophic Factor gene expression in the hippocampus, but only in the Freezing0 rats. Moreover, a negative correlation was found between the number of freezing acts and the levels of Monoamine Oxidize-A and Brain-Derived Neurotrophic Factor mRNAs in the hippocampus. The study results show promise for resveratrol supplementation in PTSD treatment. Further research is warranted to better understand the underlying mechanisms and optimize the potential benefits of resveratrol supplementation for PTSD.
Collapse
Affiliation(s)
- Vadim E. Tseilikman
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
| | - Vladislav A. Shatilov
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Maxim S. Zhukov
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Irina A. Buksha
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Alexandr E. Epitashvily
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Ilya A. Lipatov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Maxim R. Aristov
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Alexandr G. Koshelev
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Marina N. Karpenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (M.N.K.); (D.S.T.)
| | - Dmitrii S. Traktirov
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (M.N.K.); (D.S.T.)
| | - Viktoriya A. Maistrenko
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (M.N.K.); (D.S.T.)
| | - Mustapha Kamel
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Research, Educational and Innovative Center of Chemical and Pharmaceutical Technologies Chemical Technology Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia;
| | - Alexey V. Buhler
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Research, Educational and Innovative Center of Chemical and Pharmaceutical Technologies Chemical Technology Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia;
| | - Elena G. Kovaleva
- Research, Educational and Innovative Center of Chemical and Pharmaceutical Technologies Chemical Technology Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia;
| | - Tatyana S. Kalinina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Anton A. Pashkov
- Federal Neurosurgical Center, 630048 Novosibirsk, Russia;
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Vadim V. Kon’kov
- Zelman Institute of Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Center for Artificial Intelligence and Cyber Security, University of Rijeka, 51000 Rijeka, Croatia
| | - Olga B. Tseilikman
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| |
Collapse
|
12
|
Grabska-Kobyłecka I, Szpakowski P, Król A, Książek-Winiarek D, Kobyłecki A, Głąbiński A, Nowak D. Polyphenols and Their Impact on the Prevention of Neurodegenerative Diseases and Development. Nutrients 2023; 15:3454. [PMID: 37571391 PMCID: PMC10420887 DOI: 10.3390/nu15153454] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
It is well known that neurodegenerative diseases' development and progression are accelerated due to oxidative stress and inflammation, which result in impairment of mitochondrial function, cellular damage, and dysfunction of DNA repair systems. The increased consumption of antioxidants can postpone the development of these disorders and improve the quality of patients' lives who have already been diagnosed with neurodegenerative diseases. Prolonging life span in developed countries contributes to an increase in the incidence ratio of chronic age-related neurodegenerative disorders, such as PD (Parkinson's disease), AD (Alzheimer's disease), or numerous forms of age-related dementias. Dietary supplementation with neuroprotective plant-derived polyphenols might be considered an important element of healthy aging. Some polyphenols improve cognition, mood, visual functions, language, and verbal memory functions. Polyphenols bioavailability differs greatly from one compound to another and is determined by solubility, degree of polymerization, conjugation, or glycosylation resulting from chemical structure. It is still unclear which polyphenols are beneficial because their potential depends on efficient transport across the BBB (blood-brain barrier), bioavailability, and stability in the CNS (central nervous system). Polyphenols improve brain functions by having a direct impact on cells and processes in the CNS. For a direct effect, polyphenolic compounds must be able to overcome the BBB and accumulate in brain tissue. In this review, the latest achievements in studies (animal models and clinical trials) on the effect of polyphenols on brain activity and function are described. The beneficial impact of plant polyphenols on the brain may be summarized by their role in increasing brain plasticity and related cognition improvement. As reversible MAO (monoamine oxidase) inhibitors, polyphenols are mood modulators and improve neuronal self-being through an increase in dopamine, serotonin, and noradrenaline amounts in the brain tissue. After analyzing the prohealth effects of various eating patterns, it was postulated that their beneficial effects result from synergistic interactions between individual dietary components. Polyphenols act on the brain endothelial cells and improve the BBB's integrity and reduce inflammation, thus protecting the brain from additional injury during stroke or autoimmune diseases. Polyphenolic compounds are capable of lowering blood pressure and improving cerebral blood flow. Many studies have revealed that a nutritional model based on increased consumption of antioxidants has the potential to ameliorate the cognitive impairment associated with neurodegenerative disorders. Randomized clinical trials have also shown that the improvement of cognitive functions resulting from the consumption of foods rich in flavonoids is independent of age and health conditions. For therapeutic use, sufficient quantities of polyphenols must cross the BBB and reach the brain tissue in active form. An important issue in the direct action of polyphenols on the CNS is not only their penetration through the BBB, but also their brain metabolism and localization. The bioavailability of polyphenols is low. The most usual oral administration also conflicts with bioavailability. The main factors that limit this process and have an effect on therapeutic efficacy are: selective permeability across BBB, gastrointestinal transformations, poor absorption, rapid hepatic and colonic metabolism, and systemic elimination. Thus, phenolic compounds have inadequate bioavailability for human applications to have any beneficial effects. In recent years, new strategies have been attempted in order to exert cognitive benefits and neuroprotective effects. Converting polyphenols into nanostructures is one of the theories proposed to enhance their bioavailability. The following nanoscale delivery systems can be used to encapsulate polyphenols: nanocapsules, nanospheres, micelles, cyclodextrins, solid lipid nanoparticles, and liposomes. It results in great expectations for the wide-scale and effective use of polyphenols in the prevention of neurodegenerative diseases. Thus far, only natural polyphenols have been studied as neuroprotectors. Perhaps some modification of the chemical structure of a given polyphenol may increase its neuroprotective activity and transportation through the BBB. However, numerous questions should be answered before developing neuroprotective medications based on plant polyphenols.
Collapse
Affiliation(s)
- Izabela Grabska-Kobyłecka
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Aleksandra Król
- Department of Experimental Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland;
| | - Dominika Książek-Winiarek
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Andrzej Kobyłecki
- Interventional Cardiology Lab, Copernicus Hospital, Pabianicka Str. 62, 93-513 Łódź, Poland;
| | - Andrzej Głąbiński
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland
| |
Collapse
|
13
|
Rajeswari M, Pola S, Sravani DSL. Nutritional Modulation of Gut Microbiota Alleviates Metabolic and Neurological Disorders. HUMAN MICROBIOME IN HEALTH, DISEASE, AND THERAPY 2023:97-125. [DOI: 10.1007/978-981-99-5114-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Zhao Y, Zhong X, Yan J, Sun C, Zhao X, Wang X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front Microbiol 2022; 13:956378. [PMID: 36246222 PMCID: PMC9560768 DOI: 10.3389/fmicb.2022.956378] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have been extensively applied in clinical practice, characterized by multi-component and multi-target, many pharmacodynamic substances, complex action mechanisms, and various physiological activities. For the oral administration of natural products, the gut microbiota and clinical efficacy are closely related, but this relationship remains unclear. Gut microbes play an important role in the transformation and utilization of natural products caused by the diversity of enzyme systems. Effective components such as flavonoids, alkaloids, lignans, and phenols cannot be metabolized directly through human digestive enzymes but can be transformed by enzymes produced by gut microorganisms and then utilized. Therefore, the focus is paid to the metabolism of natural products through the gut microbiota. In the present study, we systematically reviewed the studies about gut microbiota and their effect on the biotransformation of various components of natural products and highlighted the involved common bacteria, reaction types, pharmacological actions, and research methods. This study aims to provide theoretical support for the clinical application in the prevention and treatment of diseases and provide new ideas for studying natural products based on gut biotransformation.
Collapse
Affiliation(s)
- Yucui Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyuan Yan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xin Zhao,
| | - Xiaoying Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Xiaoying Wang,
| |
Collapse
|
15
|
Wang P, Shang R, Ma Y, Wang D, Zhao W, Chen F, Hu X, Zhao X. Targeting microbiota-host interactions with resveratrol on cancer: Effects and potential mechanisms of action. Crit Rev Food Sci Nutr 2022; 64:311-333. [PMID: 35917112 DOI: 10.1080/10408398.2022.2106180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Resveratrol (RSV) is a natural polyphenolic compound detected in grapes, berries, and red wine. The anticancer activities of RSV have been observed in vivo and in vitro studies. However, the pharmacology mechanism of RSV is confusing due to its low bioavailability. According to studies of the metabolic characteristics of RSV, the gut intestine is a crucial site of its health benefits. Dietary RSV exhibits a profound effect on the gut microbiota structure and metabolic function. In addition, emerging evidence demonstrates a protective effect of RSV metabolites against carcinogenesis. Therefore, to better understand the anticancer mechanisms of dietary RSV, it is vital to evaluate the role of RSV-microbiota-host interactions in cancer therapy. In this review, we summarized significant findings on the anticancer activities of RSV based on epidemiological, experimental and clinical studies involved in investigating the metabolic characteristics and the traditional anticancer mechanisms of RSV. Special attention is given to the putative mechanisms involving microbiota-host interactions, such as the modulation of gut microecology and the anticancer effects of RSV metabolites. The changes in microbiota-host interactions after RSV supplementation play vital roles in cancer prevention and thus offering a new perspective on nutritional interventions to treat cancer.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Runze Shang
- Department of General Surgery, Affiliated Haixia Hospital of Huaqiao University (The 910 Hospital), Quanzhou, Fujian, China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
16
|
Gates EJ, Bernath AK, Klegeris A. Modifying the diet and gut microbiota to prevent and manage neurodegenerative diseases. Rev Neurosci 2022; 33:767-787. [PMID: 35304983 DOI: 10.1515/revneuro-2021-0146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
The global prevalence of Alzheimer's disease and Parkinson's disease is steadily increasing due to the aging population. The lack of effective drugs against these neurodegenerative disorders makes it imperative to identify new strategies for their prevention and treatment. Recent studies have revealed that harnessing the power of the gut microbiota through modification of diet may be a valuable approach for reducing the risk, modulating the symptoms, and ameliorating the pathophysiological aspects of neurodegenerative diseases. Consuming specific dietary components can alter the prevalence of bacterial communities within the gut to a healthy enterotype, which can influence the production of beneficial metabolites by microbiota. This article focuses on several dietary components, which have been demonstrated to affect the gut microbiota-brain axis and therefore could lead to attenuation of specific pathological processes in neurodegenerative diseases. Published evidence indicates that fermented foods, including kefir, and foods that are high in bioactive polyphenols and complex carbohydrates, such as grapes, pomegranates, and seaweed, may be effective at reducing neuroinflammation, oxidative stress, neurotransmitter dysfunction, and neuronal death associated with Alzheimer's and Parkinson's diseases. Even though experimental evidence supporting the protective properties of the above dietary components in these diseases is emerging, it is evident that further human clinical studies are required to conclusively establish the benefits of any suggested dietary interventions. The translational potential of such research is illustrated by the clinical success of the recently developed Alzheimer's drug, GV-971, which is a seaweed derivative that works by modulating the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Ellen J Gates
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Anna K Bernath
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| |
Collapse
|
17
|
Kantayos V, Kim JS, Baek SH. Enhanced Anti-Skin-Aging Activity of Yeast Extract-Treated Resveratrol Rice DJ526. Molecules 2022; 27:1951. [PMID: 35335317 PMCID: PMC8954687 DOI: 10.3390/molecules27061951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Resveratrol is a powerful antioxidant that defends against oxidative stress in cells but is not found in large quantities in plants. Resveratrol-enriched rice DJ526, which was developed as a functional crop, shows a diverse range of biological activities. Resveratrol production is measured as total resveratrol and its glycoside, piceid, which is mainly found in plant-derived resveratrol. In the present study, elicitation using yeast extract (YE), methyl jasmonate, and jasmonic acid increased resveratrol production in DJ526 rice seeds. DJ526 seeds elicited using 1 g/L (YE1) and 5 g/L yeast extract (YE5) showed enhanced resveratrol production and antioxidant activity. YE5-treated DJ526 seeds showed decreased melanin content by 46.1% and 37.0% compared with the negative control and DJ526 (non-elicitation), respectively. Both YE1 and YE5 efficiently improved the wound-healing activity by reducing the wound gap faster than in untreated cells, with a maximum rate of 60.2% at 24 h and complete closure at 48 h. YE1 and YE5 significantly decreased the levels of proinflammatory cytokine, TNF-α, and enhanced collagen synthesis in inflammatory cells. These findings indicate that YE-treated resveratrol rice DJ526 may improve resveratrol production and could be an active antiaging ingredient for cosmetic and skin therapy applications.
Collapse
Affiliation(s)
| | | | - So-Hyeon Baek
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Korea; (V.K.); (J.-S.K.)
| |
Collapse
|
18
|
Wang Y, Hong C, Wu Z, Li S, Xia Y, Liang Y, He X, Xiao X, Tang W. Resveratrol in Intestinal Health and Disease: Focusing on Intestinal Barrier. Front Nutr 2022; 9:848400. [PMID: 35369090 PMCID: PMC8966610 DOI: 10.3389/fnut.2022.848400] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
The integrity of intestinal barrier determines intestinal homeostasis, which could be affected by various factors, like physical, chemical, and biological stimuli. Therefore, it is of considerable interest and importance to maintain intestinal barrier function. Fortunately, many plant polyphenols, including resveratrol, could affect the health of intestinal barrier. Resveratrol has many biological functions, such as antioxidant, anti-inflammation, anti-tumor, and anti-cardiovascular diseases. Accumulating studies have shown that resveratrol affects intestinal tight junction, microbial composition, and inflammation. In this review, we summarize the effects of resveratrol on intestinal barriers as well as the potential mechanisms (e.g., inhibiting the growth of pathogenic bacteria and fungi, regulating the expression of tight junction proteins, and increasing anti-inflammatory T cells while reducing pro-inflammatory T cells), and highlight the applications of resveratrol in ameliorating various intestinal diseases.
Collapse
Affiliation(s)
- Youxia Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Changming Hong
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zebiao Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuwei Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd., Chengdu, China
| | - Yaoyao Xia
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuying Liang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaohua He
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinyu Xiao
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd., Chengdu, China
- *Correspondence: Wenjie Tang
| |
Collapse
|
19
|
Tıraş ZŞE, Okur HH, Günay Z, Yıldırım HK. Different approaches to enhance resveratrol content in wine. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2022. [DOI: 10.1051/ctv/ctv20223701013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenol with antioxidant properties and possible beneficial effects on human health. Grapes, peanuts, berries, cacao beans and red wine contain resveratrol. Resveratrol attracts attention due to its bioactive properties, however, the concentration of this compound is not high in grape and wine. Therefore, different studies have been carried out to increase resveratrol level in these products. Several factors such as the grapevine variety, the climatic conditions and the viticultural practices used to create stress on the vine affect the level of resveratrol. Winemaking technologies applied during pre-fermentation, fermentation and post–fermentation stages could also have an effect on the concentration of this stilbene. In addition, recent studies have evaluated biotechnological approaches through the use of different bacteria and yeast strains to produce wine with increased resveratrol content. In this review, the most important factors contributing to increase the resveratrol concentration in grapes and wines are examined. Besides, analytical methods to determine resveratrol content in wine are addressed.
Collapse
|
20
|
Ecogeographic Conditions Dramatically Affect Trans-Resveratrol and Other Major Phenolics’ Levels in Wine at a Semi-Arid Area. PLANTS 2022; 11:plants11050629. [PMID: 35270100 PMCID: PMC8912353 DOI: 10.3390/plants11050629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
Grapevines are susceptible and responsive to their surrounding environment. Factors such as climate region and terroir are known to affect polyphenolic compounds in wine and therefore, its quality. The uniqueness of the terroir in Israel is the variety of soil types and the climatic conditions, ranging from Mediterranean to arid climates. Thus, understanding the effects of climate on grapevine performance in Israel may be a test case for the effect of climate change on grapevine at other areas in the future. First, we present a preliminary survey (2012–2014) in different climate zones and terroirs, which showed that trans-resveratrol concentrations in Merlot and Shiraz were high, while those of Cabernet Sauvignon were significantly lower. A further comprehensive countrywide survey (2016) of Merlot wines from 62 vineyards (53 wineries) compared several phenolic compounds’ concentrations between five areas of different climate and terroir. Results show a connection between trans-resveratrol concentrations, variety, and terroir properties. Furthermore, we show that trans-resveratrol concentrations are strongly correlated to humidity levels at springtime, precipitation, and soil permeability. This work can be considered a glimpse into the possible alterations of wine composition in currently moderate-climate wine-growing areas.
Collapse
|
21
|
Shanmugam H, Ganguly S, Priya B. Plant food bioactives and its effects on gut microbiota profile modulation for better brain health and functioning in Autism Spectrum Disorder individuals: A review. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Haripriya Shanmugam
- Department of Nano Science and Technology Tamil Nadu Agricultural University Coimbatore India
| | | | - Badma Priya
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| |
Collapse
|
22
|
Valletta A, Iozia LM, Leonelli F. Impact of Environmental Factors on Stilbene Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2021; 10:E90. [PMID: 33406721 PMCID: PMC7823792 DOI: 10.3390/plants10010090] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023]
Abstract
Stilbenes are a small family of polyphenolic secondary metabolites that can be found in several distantly related plant species. These compounds act as phytoalexins, playing a crucial role in plant defense against phytopathogens, as well as being involved in the adaptation of plants to abiotic environmental factors. Among stilbenes, trans-resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds were subjected to investigations concerning their bioactivity. This review presents the most updated knowledge of the stilbene biosynthetic pathway, also focusing on the role of several environmental factors in eliciting stilbenes biosynthesis. The effects of ultraviolet radiation, visible light, ultrasonication, mechanical stress, salt stress, drought, temperature, ozone, and biotic stress are reviewed in the context of enhancing stilbene biosynthesis, both in planta and in plant cell and organ cultures. This knowledge may shed some light on stilbene biological roles and represents a useful tool to increase the accumulation of these valuable compounds.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
23
|
Devi A, Anu-Appaiah K. Mixed malolactic co-culture (Lactobacillus plantarum and Oenococcus oeni) with compatible Saccharomyces influences the polyphenolic, volatile and sensory profile of Shiraz wine. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Briskey D, Rao A. Trans-Resveratrol Oral Bioavailability in Humans Using LipiSperse™ Dispersion Technology. Pharmaceutics 2020; 12:pharmaceutics12121190. [PMID: 33302446 PMCID: PMC7763804 DOI: 10.3390/pharmaceutics12121190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a naturally produced compound that has been well researched for its potential health benefits. The primary hindrance towards resveratrol’s therapeutic efficacy is its traditionally poor oral bioavailability. LipiSperse® is a novel delivery system designed to increase the dispersion of lipophilic ingredients, like resveratrol, in aqueous environments. This single-dose, double-blind, randomized study compared the pharmacokinetics of a commercially available resveratrol with (Veri-Sperse®) and without (Veri-te) the LipiSperse® delivery complex. Healthy adults randomly received a single dose of either 150 Veri-te, 75 Veri-Sperse®, or 150 mg Veri-Sperse®. Venous blood samples were taken prior to dosing in a fasted state and at 0.5, 1, 2, 3, 4, 5, 6, 8 and 24 h post supplementation. Plasma trans-resveratrol conjugates were measured by liquid-chromatography tandem mass spectrometry (LC-MS/MS). The area under the curve (AUC) (0–24 h), maximum concentration (Cmax), and time of maximum concentration (Tmax) of plasma conjugates were calculated. The 150 mg dose of Veri-Sperse® had a 2-fold increase in absorption (AUC) and a 3-fold increase in Cmax of trans-resveratrol conjugates compared to 150 mg Veri-te. There was no statistical difference between 75 Veri-Sperse and 150 mg Veri-te for AUC or Cmax of resveratrol conjugates. These findings provide support for the use of LipiSperse® to improve absorption of resveratrol.
Collapse
Affiliation(s)
- David Briskey
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4067, Australia;
- RDC Clinical, Newstead, Brisbane, QLD 4006, Australia
| | - Amanda Rao
- RDC Clinical, Newstead, Brisbane, QLD 4006, Australia
- Correspondence: ; Tel.: +617-3102-4486
| |
Collapse
|
25
|
Chung JY, Jeong JH, Song J. Resveratrol Modulates the Gut-Brain Axis: Focus on Glucagon-Like Peptide-1, 5-HT, and Gut Microbiota. Front Aging Neurosci 2020; 12:588044. [PMID: 33328965 PMCID: PMC7732484 DOI: 10.3389/fnagi.2020.588044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a natural polyphenol that has anti-aging and anti-inflammatory properties against stress condition. It is reported that resveratrol has beneficial functions in various metabolic and central nervous system (CNS) diseases, such as obesity, diabetes, depression, and dementia. Recently, many researchers have emphasized the connection between the brain and gut, called the gut-brain axis, for treating both CNS neuropathologies and gastrointestinal diseases. Based on previous findings, resveratrol is involved in glucagon-like peptide 1 (GLP-1) secreted by intestine L cells, the patterns of microbiome in the intestine, the 5-hydroxytryptamine (5-HT) level, and CNS inflammation. Here, we review recent evidences concerning the relevance and regulatory function of resveratrol in the gut-brain axis from various perspectives. Here, we highlight the necessity for further study on resveratrol's specific mechanism in the gut-brain axis. We present the potential of resveratrol as a natural therapeutic substance for treating both neuropathology and gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, South Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
26
|
Berretta M, Bignucolo A, Di Francia R, Comello F, Facchini G, Ceccarelli M, Iaffaioli RV, Quagliariello V, Maurea N. Resveratrol in Cancer Patients: From Bench to Bedside. Int J Mol Sci 2020; 21:E2945. [PMID: 32331450 PMCID: PMC7216168 DOI: 10.3390/ijms21082945] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) is a natural phytoalexin that accumulates in several vegetables and fruits like nuts, grapes, apples, red fruits, black olives, capers, red rice as well as red wines. Being both an extremely reactive molecule and capable to interact with cytoplasmic and nuclear proteins in human cells, resveratrol has been studied over the years as complementary and alternative medicine (CAM) for the therapy of cancer, metabolic and cardiovascular diseases like myocardial ischemia, myocarditis, cardiac hypertrophy and heart failure. This review will describe the main biological targets, cardiovascular outcomes, physico-chemical and pharmacokinetic properties of resveratrol in preclinical and clinical models implementing its potential use in cancer patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Medical Oncology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (F.C.)
| | - Raffaele Di Francia
- Gruppo Oncologico Ricercatori Italiani, GORI-ONLUS, 33170 Pordenone (PN), Italy;
| | - Francesco Comello
- Experimental and Clinical Pharmacology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (F.C.)
| | - Gaetano Facchini
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy;
| | - Manuela Ceccarelli
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Catania, 95122 Catania, Italy;
| | - Rosario Vincenzo Iaffaioli
- Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, 80138 Naples, Italy;
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (V.Q.); (N.M.)
| |
Collapse
|
27
|
Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21072564. [PMID: 32272735 PMCID: PMC7178158 DOI: 10.3390/ijms21072564] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration. Although polyphenols display differences in their effectiveness due to interindividual variability, recent studies indicated that bioactive polyphenols in food and beverages promote health and prevent age-related cognitive decline. Polyphenols have a poor bioavailability and their digestion by gut microbiota produces active metabolites. In fact, dietary bioactive polyphenols need to be modified by microbiota present in the intestine before being absorbed, and to exert health preventive effects by interacting with cellular signalling pathways. This literature review includes an evaluation of the literature in English up to December 2019 in PubMed and Web of Science databases. A total of 307 studies, consisting of research reports, review articles and articles were examined and 146 were included. The review highlights the role of bioactive polyphenols in neurodegeneration, with a particular emphasis on the cellular and molecular mechanisms that are modulated by polyphenols involved in protection from oxidative stress and apoptosis prevention.
Collapse
|
28
|
Abstract
In this work, we studied the biotechnological potential of thirteen probiotic microorganisms currently used to improve human health. We discovered that the majority of the investigated bacteria are able to catalyze the hydration reaction of the unsaturated fatty acids (UFAs). We evaluated their biocatalytic activity toward the three most common vegetable UFAs, namely oleic, linoleic, and linolenic acids. The whole-cell biotransformation experiments were performed using a fatty acid concentration of 3 g/L in anaerobic conditions. Through these means, we assessed that the main part of the investigated strains catalyzed the hydration reaction of UFAs with very high regio- and stereoselectivity. Our biotransformation reactions afforded almost exclusively 10-hydroxy fatty acid derivatives with the single exception of Lactobacillus acidophilus ATCC SD5212, which converted linoleic acid in a mixture of 13-hydroxy and 10-hydroxy derivatives. Oleic, linoleic, and linolenic acids were transformed into (R)-10-hydroxystearic acid, (S)-(12Z)-10-hydroxy-octadecenoic, and (S)-(12Z,15Z)-10-hydroxy-octadecadienoic acids, respectively, usually with very high enantiomeric purity (ee > 95%). It is worth noting that the biocatalytic capabilities of the thirteen investigated strains may change considerably from each other, both in terms of activity, stereoselectivity, and transformation yields. Lactobacillus rhamnosus ATCC 53103 and Lactobacillus plantarum 299 V proved to be the most versatile, being able to efficiently and selectively hydrate all three investigated fatty acids.
Collapse
|
29
|
Man AWC, Li H, Xia N. Resveratrol and the Interaction between Gut Microbiota and Arterial Remodelling. Nutrients 2020; 12:nu12010119. [PMID: 31906281 PMCID: PMC7019510 DOI: 10.3390/nu12010119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
Arterial remodelling refers to the alteration in the structure of blood vessel that contributes to the progression of hypertension and other cardiovascular complications. Arterial remodelling is orchestrated by the crosstalk between the endothelium and vascular smooth muscle cells (VSMC). Vascular inflammation participates in arterial remodelling. Resveratrol is a natural polyphenol that possesses anti-oxidant and anti-inflammatory properties and has beneficial effects in both the endothelium and VSMC. Resveratrol has been studied for the protective effects in arterial remodelling and gut microbiota, respectively. Gut microbiota plays a critical role in the immune system and inflammatory processes. Gut microbiota may also regulate vascular remodelling in cardiovascular complications via affecting endothelium function and VSMC proliferation. Currently, there is new evidence showing that gut microbiota regulate the proliferation of VSMC and the formation of neointimal hyperplasia in response to injury. The change in population of the gut microbiota, as well as their metabolites (e.g., short-chain fatty acids) could critically contribute to VSMC proliferation, cell cycle progression, and migration. Recent studies have provided strong evidence that correlate the effects of resveratrol in arterial remodelling and gut microbiota. This review aims to summarize recent findings on the resveratrol effects on cardiovascular complications focusing on arterial remodelling and discuss the possible interactions of resveratrol and the gut microbiota that modulate arterial remodelling.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| |
Collapse
|
30
|
Yao R, Wong CB, Nakamura K, Mitsuyama E, Tanaka A, Kuhara T, Odamaki T, Xiao JZ. Bifidobacterium breve MCC1274 with glycosidic activity enhances in vivo isoflavone bioavailability. Benef Microbes 2019; 10:521-531. [PMID: 31090459 DOI: 10.3920/bm2018.0179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyphenols are plant derived compounds that exert many beneficial health effects to the human host. However, associated health benefits of dietary polyphenol are highly dependent on their intestinal metabolism, bioavailability, and absorption. Bifidobacteria, which represent the key members of gut microbiota, have been suggested to promote gut microbial homeostasis and may be involved in the metabolism of polyphenols. In this study, the capabilities of thirteen Bifidobacterium strains in hydrolysing polyphenol glycosides were evaluated. Among the tested strains, Bifidobacterium breve MCC1274 was found to possess the highest β-glucosidase activity and strong capability to convert daidzin and trans-polydatin to their aglycones; while kinetic analysis revealed that B. breve MCC1274 hydrolysed more than 50% of daidzin and trans-polydatin at less than 3 h of incubation. Further investigation using rats with an antibiotics-disturbed microbiome revealed that following the ingestion of daidzin glycoside, oral administration of B. breve MCC1274 significantly enhanced the plasma concentration of daidzein in rats pre-treated with antibiotics as compared to antibiotics-pre-treated control and non-treated control groups. The relative abundance of Actinobacteria and the total numbers of B. breve were also significantly higher in antibiotics-pre-treated rats administered with B. breve MCC1274 than that of the control groups. These findings suggest that B. breve MCC1274 is effective in enhancing the bioavailability of daidzein in the gut under dysbiosis conditions and may potentially improve intestinal absorption of isoflavones and promote human health.
Collapse
Affiliation(s)
- R Yao
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - C B Wong
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - K Nakamura
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - E Mitsuyama
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - A Tanaka
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - T Kuhara
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - T Odamaki
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - J-Z Xiao
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| |
Collapse
|
31
|
Driscoll K, Deshpande A, Chapp A, Li K, Datta R, Ramakrishna W. Anti-inflammatory and immune-modulating effects of rice callus suspension culture (RCSC) and bioactive fractions in an in vitro inflammatory bowel disease model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:364-376. [PMID: 30831485 DOI: 10.1016/j.phymed.2018.12.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rice callus suspension culture (RCSC) has been shown to exhibit potent antiproliferative activity in multiple cancer cell lines. RCSC and its bioactive compounds can fill the need for drugs with no side effects. HYPOTHESIS/PURPOSE The anti-inflammatory potential of RCSC and its bioactive fractions on normal colon epithelial cell lines, was investigated. STUDY DESIGN Three cell lines, InEpC, NCM356 and CCD841-CoN were treated with proinflammatory cytokines followed by RCSC. Cytoplasmic and nuclear ROS were assayed with fluorescent microscopy and flow cytometer. Expression analysis of immune-related genes was performed in RCSC-treated cell lines. RCSC was fractionated using column chromatography and HPLC. Pooled fractions 10-18 was used to test for antiproliferative activity using colon adenocarcinoma cell line, SW620 and anti-inflammatory activity using CCD841-CoN. Mass spectrometric analysis was performed to identify candidate compounds in four fractions. RESULTS RCSC treatment showed differential effects with higher cytoplasmic ROS levels in NCM356 and CCD841-CoN and lower ROS levels in InEpC. Nuclear generated ROS levels increased in all three treated cell lines. Flow cytometry analysis of propidium iodide stained cells indicated mitigation of cell death caused by inflammation in RCSC treated groups in both NCM356 and CCD841-CoN. Genes encoding transcription factors and cytokines were differentially regulated in NCM356 and CCD841-CoN cell lines treated with RCSC which provided insights into possible pathways. Analysis of pooled fractions 10-18 by HPLC identified 8 peaks. Cell viability assay with fractions 10-18 using SW620 showed that the number of viable cells were greatly reduced which was similar to 6X and 33X RCSC with very little effect on normal cells which similar to 1X RCSC. RCSC fractions increased nuclear and cytoplasmic ROS vs. both untreated and inflammatory control. Analysis of four fractions by mass spectrometry identified 4-deoxyphloridzin, 5'-methoxycurcumin, piceid and lupeol as candidate compounds which are likely to be responsible for the antiproliferative, anti-inflammatory and immune-regulating properties of RCSC. CONCLUSION RCSC and its fractions showed anti-inflammatory activity on inflamed colon epithelial cells. Downstream target candidate genes which are likely to mediate RCSC effects were identified. Candidate compounds responsible for the antiproliferative and anti-inflammatory activity of RCSC and its fractions provide possible drug targets.
Collapse
Affiliation(s)
- Kyle Driscoll
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Aparna Deshpande
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Andrew Chapp
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Kefeng Li
- School of Medicine, University of California, San Diego, CA, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Wusirika Ramakrishna
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA; Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
32
|
Fang J, Luo L, Ke Z, Liu C, Yin L, Yao Y, Feng Q, Huang C, Zheng P, Fan S. Polydatin protects against acute cholestatic liver injury in mice via the inhibition of oxidative stress and endoplasmic reticulum stress. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients 2018; 10:nu10111651. [PMID: 30400297 PMCID: PMC6266067 DOI: 10.3390/nu10111651] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
Resveratrol is a polyphenol which has been shown to have beneficial effects on metabolic syndrome-related alterations in experimental animals, including glucose and lipid homeostasis improvement and a reduction in fat mass, blood pressure, low-grade inflammation, and oxidative stress. Clinical trials have been carried out to address its potential; however, results are still inconclusive. Even though resveratrol is partly metabolized by gut microbiota, the relevance of this “forgotten organ” had not been widely considered. However, in the past few years, data has emerged suggesting that the therapeutic potential of this compound may be due to its interaction with gut microbiota, reporting changes in bacterial composition associated with beneficial metabolic outcomes. Even though data is still scarce and for the most part observational, it is promising nevertheless, suggesting that resveratrol supplementation could be a useful tool for the treatment of metabolic syndrome and its associated conditions.
Collapse
|
34
|
Muñoz O, Fuentealba C, Ampuero D, Figuerola F, Estévez AM. The effect of Lactobacillus acidophilus and Lactobacillus casei on the in vitro bioaccessibility of flaxseed lignans (Linum usitatissimum L.). Food Funct 2018; 9:2426-2432. [PMID: 29629722 DOI: 10.1039/c8fo00390d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Secoisolariciresinol (SECO) is present in flaxseeds as a glucoside, secoisolariciresinol diglucoside (SDG), which can be metabolized to enterodiol (ED) and enterolactone (EL) by the human intestinal microbiota. The aim of this study was to evaluate the effect of Lactobacillus casei and Lactobacillus acidophilus on the bioaccessibility of flaxseed lignans from a complete in vitro digestion of whole flaxseeds (WFs) and flaxseed flour (FF). Lignans are only detected in the large intestine. The bioaccessibility of SDG for FF digestion can be ordered as follows: control (without probiotics) > L. casei > L. acidophilus; and for WF digestion, only in the presence of L. casei SDG was detected. For SECO and EL, the presence of both probiotics had no effect on FF and WF digestion. However, in the digestion of WF both L. casei and L. acidophilus increased ED bioaccessibility in the first 12 h; but both probiotics had no significant effect on FF digestion.
Collapse
Affiliation(s)
- O Muñoz
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral de Chile. Campus Isla Teja s/n. Valdivia, Chile
| | | | | | | | | |
Collapse
|
35
|
Ahn HJ, You HJ, Park MS, Johnston TV, Ku S, Ji GE. Biocatalysis of Platycoside E and Platycodin D3 Using Fungal Extracellular β-Glucosidase Responsible for Rapid Platycodin D Production. Int J Mol Sci 2018; 19:ijms19092671. [PMID: 30205574 PMCID: PMC6163259 DOI: 10.3390/ijms19092671] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Platycodi radix (i.e., Platycodon grandiflorum root) products (e.g., tea, cosmetics, and herbal supplements) are popular in East Asian nutraceutical markets due to their reported health benefits and positive consumer perceptions. Platycosides are the key drivers of Platycodi radixes' biofunctional effects; their nutraceutical and pharmaceutical activities are primarily related to the number and varieties of sugar side-chains. Among the various platycosides, platycodin D is a major saponin that demonstrates various nutraceutical activities. Therefore, the development of a novel technology to increase the total platycodin D content in Platycodi radix extract is important, not only for consumers' health benefits but also producers' commercial applications and manufacturing cost reduction. It has been reported that hydrolysis of platycoside sugar moieties significantly modifies the compound's biofunctionality. Platycodi radix extract naturally contains two major platycodin D precursors (platycoside E and platycodin D3) which can be enzymatically converted to platycodin D via β-d-glucosidase hydrolysis. Despite evidence that platycodin D precursors can be changed to platycodin D in the Platycodi radix plant, there is little research on increasing platycodin D concentrations during processing. In this work, platycodin D levels in Platycodi radix extracts were significantly increased via extracellular Aspergillus usamii β-d-glucosidase (n = 3, p < 0.001). To increase the extracellular β-d-glucosidase activity, A. usamii was cultivated in a culture media containing cellobiose as its major carbon source. The optimal pH and temperature of the fungal β-d-glucosidase were 6.0 and 40.0 °C, respectively. Extracellular A. usamii β-d-glucosidase successfully converted more than 99.9% (w/v, n = 3, p < 0.001) of platycoside E and platycodin D3 into platycodin D within 2 h under optimal conditions. The maximum level of platycodin D was 0.4 mM. Following the biotransformation process, the platycodin D was recovered using preparatory High Performance Liquid Chromatography (HPLC) and applied to in vitro assays to evaluate its quality. Platycodin D separated from the Platycodi radix immediately following the bioconversion process showed significant anti-inflammatory effects from the Lipopolysaccharide (LPS)-induced macrophage inflammatory responses with decreased nitrite and IL-6 production (n = 3, p < 0.001). Taken together, these results provide evidence that biocatalysis of Platycodi radix extracts with A. usamii may be used as an efficient method of platycodin D-enriched extract production and novel Platycodi radix products may thereby be created.
Collapse
Affiliation(s)
- Hyung Jin Ahn
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Hyun Ju You
- Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul 08826, Korea.
| | - Myung Su Park
- Department of Hotel Culinary Arts, Yeonsung University, Anyang 14001, Korea.
| | - Tony V Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
- Research Center, BIFIDO Co., Ltd., Hongcheon 25117, Korea.
| |
Collapse
|
36
|
Navarro G, Martínez-Pinilla E, Ortiz R, Noé V, Ciudad CJ, Franco R. Resveratrol and Related Stilbenoids, Nutraceutical/Dietary Complements with Health-Promoting Actions: Industrial Production, Safety, and the Search for Mode of Action. Compr Rev Food Sci Food Saf 2018; 17:808-826. [PMID: 33350112 DOI: 10.1111/1541-4337.12359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
This paper reviews the potential of stilbenoids as nutraceuticals. Stilbenoid compounds in wine are considered key factors in health-promoting benefits. Resveratrol and resveratrol-related compounds are found in a large diversity of vegetal products. The stilbene composition varies from wine to wine and from one season to another. Therefore, the article also reviews how food science and technology and wine industry may help in providing wines and/or food supplements with efficacious concentrations of stilbenes. The review also presents results from clinical trials and those derived from genomic/transcriptomic studies. The most studied stilbenoid, resveratrol, is a very safe compound. On the other hand, the potential benefits of stilbene intake are multiple and are apparently due to downregulation more than upregulation of gene expression. The field may take advantage from identifying the mechanism of action(s) and from providing useful data to show evidence for specific health benefits in a given tissue or for combating a given disease.
Collapse
Affiliation(s)
- Gemma Navarro
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Inst. de Salud Carlos III, Madrid, Spain.,Inst. of Biomedicine of the Univ. of Barcelona (IBUB), Barcelona, Spain.,Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Dept. of Morphology and Cell Biology, Faculty of Medicine, Univ. of Oviedo, Asturias, Spain.,Inst. de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Psicología, Univ. de Oviedo, Plaza Feijóo s/n, 33003 Oviedo, Asturias, Spain.,Inst. de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Raquel Ortiz
- Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| | - Véronique Noé
- Dept. of Biochemistry and Physiology, School of Pharmacy, Univ. of Barcelona, Barcelona, Spain.,Inst. of Nanotechnology of the Univ. of Barcelona (IN2UB), Barcelona, Spain
| | - Carlos J Ciudad
- Dept. of Biochemistry and Physiology, School of Pharmacy, Univ. of Barcelona, Barcelona, Spain.,Inst. of Nanotechnology of the Univ. of Barcelona (IN2UB), Barcelona, Spain
| | - Rafael Franco
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Inst. de Salud Carlos III, Madrid, Spain.,Inst. of Biomedicine of the Univ. of Barcelona (IBUB), Barcelona, Spain.,Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Kuo HP, Wang R, Lin YS, Lai JT, Lo YC, Huang ST. Pilot scale repeated fed-batch fermentation processes of the wine yeast Dekkera bruxellensis for mass production of resveratrol from Polygonum cuspidatum. BIORESOURCE TECHNOLOGY 2017; 243:986-993. [PMID: 28747009 DOI: 10.1016/j.biortech.2017.07.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Resveratrol has long been used as an ingredient in functional foods. Currently, Polygonum cuspidatum extract is the greatest natural source for resveratrol because of high concentrations of glycosidic-linked resveratrol. Thus, developing a cost-effective procedure to hydrolyze glucoside could substantially enhance resveratrol production from P. cuspidatum. This study selected Dekkera bruxellensis from several microorganisms based on its bioconversion and enzyme-specific activities. We demonstrated that the cells could be reused at least nine times while maintaining an average of 180.67U/L β-glucosidase activity. The average resveratrol bioconversion efficiency within five rounds of repeated usage was 108.77±0.88%. This process worked effectively when the volume was increased to 1200L, a volume at which approximately 35mgL-1h-1 resveratrol per round was produced. This repeated fed-batch bioconversion process for resveratrol production is comparable to enzyme or cell immobilization strategies in terms of reusing cycles, but without incurring additional costs for immobilization.
Collapse
Affiliation(s)
- Hsiao-Ping Kuo
- Bioresources Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Reuben Wang
- Department of Food Science, Tunghai University, Taiwan No. 1727, Sec. 4 Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Yi-Sheng Lin
- Bioresources Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Jinn-Tsyy Lai
- Bioresources Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Yi-Chen Lo
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4 Roosevelt Rd., Taipei 10617, Taiwan
| | - Shyue-Tsong Huang
- Bioresources Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan.
| |
Collapse
|