1
|
Rybin DA, Sukhova AA, Syomin AA, Zdobnova TA, Berezina EV, Brilkina AA. Characteristics of Callus and Cell Suspension Cultures of Highbush Blueberry ( Vaccinium corymbosum L.) Cultivated in the Presence of Different Concentrations of 2,4-D and BAP in a Nutrient Medium. PLANTS (BASEL, SWITZERLAND) 2024; 13:3279. [PMID: 39683072 DOI: 10.3390/plants13233279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
In this work, cultures of callus and suspension cells originating from leaves of sterile highbush blueberry (Vaccinium corymbosum L.) plants were obtained and characterized. For their active growth and production of phenolic compounds, a combination of 2,4-D at a concentration of 0.34-2.25 µM and BAP at a concentration of 0.45-2.25 µM is effective. An increase in the phytohormone concentration leads to a slowdown in culture formation and reduces their ability to synthesize phenolic compounds. When cultivating V. corymbosum suspension cells over a year (12 passages), they not only retain the ability to synthesize phenolic compounds but also enhance it. By the 12th passage, the content of TSPC in suspension cells reaches 150 mg/g DW, the content of flavonoids reaches 100 mg/g DW, the content of flavans reaches 40 mg/g DW, and the content of proanthocyanidins reaches 30 mg/g DW. The high content of phenolic compounds may be due to the high expression of genes in flavonoid biosynthesis enzymes. V. corymbosum suspension cells accumulate a high level of phenolic compounds during a passage. The ability of V. corymbosum callus and cell suspension cultures in the presence of low concentrations of phytohormones to grow and accumulate biologically active phenolic compounds determines their high economic significance and prospects for organizing a biotechnological method for obtaining phenolic compounds.
Collapse
Affiliation(s)
- Dmitry A Rybin
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Alina A Sukhova
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Andrey A Syomin
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Tatiana A Zdobnova
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Ekaterina V Berezina
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Anna A Brilkina
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Pop CE, Coste A, Vlase AM, Deliu C, Tămaș M, Casian T, Vlase L. Selection of a Digitalis purpurea Cell Line with Improved Bioconversion Capacity of Hydroquinone into Arbutin. Life (Basel) 2024; 14:84. [PMID: 38255699 PMCID: PMC10820698 DOI: 10.3390/life14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to investigate the biotransformation capabilities of a hydroquinone-tolerant Digitalis purpurea cell line (DpHQ) for bioconverting hydroquinone (HQ) into arbutin, a compound with significant therapeutic and cosmetic applications. The research evaluated the influence of various HQ concentrations, feeding protocols, and carbon sources on arbutin bioconversion yield. By using HPLC-MS for the quantification of arbutin in biomass and medium, the study revealed that higher precursor (HQ) concentration led to a more pronounced growth inhibition under single dosing than sequential dosing. At lower sugar (3%) and precursor (4 mM HQ) levels, arbutin predominantly remained within the cells, whereas higher sugar (6%) and HQ (5-6 mM) levels promoted its release into the medium. Arbutin production ranged from 591 mg/L under single dosing to 3049 mg/L with sequential dosing, with the highest yield being achieved with 5 mM HQ in divided doses and 6% glucose. This study holds novelty for being the first to demonstrate the DpHQ's tolerance to high concentrations of HQ and its efficient capabilities to bioconvert HQ to arbutin, indicating that D. purpurea is equipped with the enzymes required for this process. These aspects highlight its potential as a biotechnological source for arbutin synthesis.
Collapse
Affiliation(s)
- Carmen Elena Pop
- Department of Pharmaceutical Industry and Biotechnology, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ana Coste
- Institute of Biological Research Cluj-Napoca, National Institute for Research and Development in Biological Sciences, 48 Republicii Street, 400015 Cluj-Napoca, Romania;
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Constantin Deliu
- Institute of Biological Research Cluj-Napoca, National Institute for Research and Development in Biological Sciences, 48 Republicii Street, 400015 Cluj-Napoca, Romania;
| | - Mircea Tămaș
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (T.C.); (L.V.)
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (T.C.); (L.V.)
| |
Collapse
|
3
|
Martínez ME, Jorquera L, Poirrier P, Díaz K, Chamy R. Effect of Inoculum Size and Age, and Sucrose Concentration on Cell Growth to Promote Metabolites Production in Cultured Taraxacum officinale (Weber) Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:1116. [PMID: 36903977 PMCID: PMC10004745 DOI: 10.3390/plants12051116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Pentacyclic triterpenes, including lupeol, α- amyrin, and β-amyrin, present a large range of biological activities including anti-inflammatory, anti-cancer, and gastroprotective properties. The phytochemistry of dandelion (Taraxacum officinale) tissues has been widely described. Plant biotechnology offers an alternative for secondary metabolite production and several active plant ingredients are already synthesized through in vitro cultures. This study aimed to establish a suitable protocol for cell growth and to determine the accumulation of α-amyrin and lupeol in cell suspension cultures of T. officinale under different culture conditions. To this end, inoculum density (0.2% to 8% (w/v)), inoculum age (2- to 10-week-old), and carbon source concentration (1%, 2.3%, 3.2%, and 5.5% (w/v)) were investigated. Hypocotyl explants of T. officinale were used for callus induction. Age, size, and sucrose concentrations were statistically significant in cell growth (fresh and dry weight), cell quality (aggregation, differentiation, viability), and triterpenes yield. The best conditions for establishing a suspension culture were achieved by using a 6-week-old callus at 4% (w/v) and 1% (w/v) of sucrose concentration. Results indicate that 0.04 (±0.02) α-amyrin and 0.03 (±0.01) mg/g lupeol can be obtained in suspension culture under these starting conditions at the 8th week of culture. The results of the present study provide a backdrop for future studies in which an elicitor could be incorporated to increase the large-scale production of α-amyrin and lupeol from T. officinale.
Collapse
Affiliation(s)
- María Eugenia Martínez
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Brasil 2085, Valparaíso 237463, Chile
| | - Lorena Jorquera
- Escuela de Ingeniería en Construcción y Transporte, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 237463, Chile
| | - Paola Poirrier
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Brasil 2085, Valparaíso 237463, Chile
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España #1680, Valparaíso 2390123, Chile
| | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Brasil 2085, Valparaíso 237463, Chile
| |
Collapse
|
4
|
Skała E, Olszewska MA, Makowczyńska J, Kicel A. Effect of Sucrose Concentration on Rhaponticum carthamoides (Willd.) Iljin Transformed Root Biomass, Caffeoylquinic Acid Derivative, and Flavonoid Production. Int J Mol Sci 2022; 23:13848. [PMID: 36430325 PMCID: PMC9693310 DOI: 10.3390/ijms232213848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Rhaponticum carthamoides (Willd.) Iljin is a rare, pharmacopoeial, and medicinal plant, endemic to Siberia and endangered due to the massive collection of raw material from the natural habitat. The aim of the current study was to estimate the effect of sucrose concentration (0-7%) on R. carthamoides transformed root growth and on caffeoylquinic acid derivative (CQA) and flavonoid production. Sucrose in higher concentrations may induce osmotic stress and thus may affect secondary metabolism in plants. It was revealed that sucrose concentration influenced R. carthamoides transformed root biomass and modified the phenolic compound metabolic pathway. However, the dynamics of both processes varied significantly. The optimal sucrose level was different for biomass accumulation and the biosynthesis of specialized metabolite. The highest dry weight of roots was achieved for 7% sucrose (31.17 g L-1 of dry weight), while 1% sucrose was found to be optimal for phenolic acid and flavonoid production. Considering the dry weight increase and metabolite accumulation, 3% sucrose was revealed to give optimal yields of CQAs (511.1 mg L-1) and flavonoids (38.9 mg L-1). Chlorogenic acid, 3,5-, 4,5-di-O-caffeoylquinic acids, 1,4,5-O-tricaffeoylquinic acid, and a tentatively-identified tricaffeoylquinic acid derivative 1 were found to be the most abundant specialized metabolites among the identified CQAs. Our findings indicate that R. carthamoides transformed roots may be an efficient source of CQA derivatives, with valuable health-promoting activities.
Collapse
Affiliation(s)
- Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Joanna Makowczyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Agnieszka Kicel
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
5
|
Al-Quraishy S, Abdel-Maksoud MA, Al-Shaebi EM, Dkhil MA. Botanical candidates from Saudi Arabian flora as potential therapeutics for Plasmodium infection. Saudi J Biol Sci 2021; 28:1374-1379. [PMID: 33613066 PMCID: PMC7878689 DOI: 10.1016/j.sjbs.2020.11.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023] Open
Abstract
Malaria is a lethal parasitic disease affecting over two hundred million people worldwide and kills almost half a million people per year. Until now, there is no curative treatment for this disease that has a substantial morbidity. The available chemotherapeutic agents are unable to completely control the infection with the continuous appearance of drug resistance. Consequently, the search for new therapeutic agents with high safety profiles and low side effects is of paramount importance. Several natural products have been investigated and proven to have antimalarial effects either in vivo or in vitro. A large number of plants have been studied globally for their antimalarial activities. However, studies that have been conducted in this field in Saudi Arabia are not enough. This article presents global and local research on the need for novel natural antimalarial agents with a particular emphasis on studies involving plants from Saudi Arabian flora.
Collapse
Affiliation(s)
- Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | | | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt
| |
Collapse
|
6
|
Spina R, Saliba S, Dupire F, Ptak A, Hehn A, Piutti S, Poinsignon S, Leclerc S, Bouguet-Bonnet S, Laurain-Mattar D. Molecular Identification of Endophytic Bacteria in Leucojum aestivum In Vitro Culture , NMR-Based Metabolomics Study and LC-MS Analysis Leading to Potential Amaryllidaceae Alkaloid Production. Int J Mol Sci 2021; 22:ijms22041773. [PMID: 33578992 PMCID: PMC7916811 DOI: 10.3390/ijms22041773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
In this study, endophytic bacteria belonging to the Bacillus genus were isolated from in vitro bulblets of Leucojum aestivum and their ability to produce Amaryllidaceae alkaloids was studied. Proton Nuclear Magnetic Resonance (1H NMR)-based metabolomics combined with multivariate data analysis was chosen to compare the metabolism of this plant (in vivo bulbs, in vitro bulblets) with those of the endophytic bacteria community. Primary metabolites were quantified by quantitative 1H NMR (qNMR) method. The results showed that tyrosine, one precursor of the Amaryllidaceae alkaloid biosynthesis pathway, was higher in endophytic extract compared to plant extract. In total, 22 compounds were identified including five molecules common to plant and endophyte extracts (tyrosine, isoleucine, valine, fatty acids and tyramine). In addition, endophytic extracts were analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS) for the identification of compounds in very low concentrations. Five Amaryllidaceae alkaloids were detected in the extracts of endophytic bacteria. Lycorine, previously detected by 1H NMR, was confirmed with LC-MS analysis. Tazettine, pseudolycorine, acetylpseudolycorine, 1,2-dihydro-chlidanthine were also identified by LC-MS using the positive ionization mode or by GC-MS. In addition, 11 primary metabolites were identified in the endophytic extracts such as tyramine, which was obtained by decarboxylation of tyrosine. Thus, Bacillus sp. isolated from L. aestivum bulblets synthesized some primary and specialized metabolites in common with the L.aestivum plant. These endophytic bacteria are an interesting new approach for producing the Amaryllidaceae alkaloid such as lycorine.
Collapse
Affiliation(s)
- Rosella Spina
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.S.); (F.D.)
- Correspondence: (R.S.); (D.L.-M.); Tel.: +33-3-7274-5262 (R.S.); +33-3-7274-5675 (D.L.-M.)
| | - Sahar Saliba
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.S.); (F.D.)
| | - François Dupire
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.S.); (F.D.)
| | - Agata Ptak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140 Krakow, Poland;
| | - Alain Hehn
- Université de Lorraine, INRAE, LAE, F-54000 Nancy, France; (A.H.); (S.P.)
| | - Séverine Piutti
- Université de Lorraine, INRAE, LAE, F-54000 Nancy, France; (A.H.); (S.P.)
| | - Sophie Poinsignon
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (S.P.); (S.B.-B.)
| | | | | | - Dominique Laurain-Mattar
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.S.); (F.D.)
- Correspondence: (R.S.); (D.L.-M.); Tel.: +33-3-7274-5262 (R.S.); +33-3-7274-5675 (D.L.-M.)
| |
Collapse
|
7
|
Ptak A, Morańska E, Skrzypek E, Warchoł M, Spina R, Laurain-Mattar D, Simlat M. Carbohydrates stimulated Amaryllidaceae alkaloids biosynthesis in Leucojum aestivum L. plants cultured in RITA ® bioreactor. PeerJ 2020; 8:e8688. [PMID: 32211230 PMCID: PMC7081780 DOI: 10.7717/peerj.8688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/05/2020] [Indexed: 01/24/2023] Open
Abstract
Background Leucojum aestivum L. is an important medicinal plant which produces Amaryllidaceae alkaloids, especially galanthamine and lycorine. Research is currently exploring the possibility of producing these alkaloids using biotechnological methods, including in vitro cultures. The biosynthesis of alkaloids may be affected by the types and concentrations of carbohydrate sources used in the medium. In the present investigation we performed such studies on in vitro cultures of L. aestivum with a view to obtaining plant material of good quality, characterized, in particular, by a high content of valuable Amaryllidaceae alkaloids. Methods We examined the effects of various types of carbohydrate sources—sucrose, glucose, fructose and maltose—at different concentrations (30, 60 and 90 g/L)—on the quality of L. aestivum plants grown in the RITA® bioreactor. The plants’ quality was assessed by their biomass increments, as well by as analysing photosynthetic pigments, endogenous sugar, phenolics and Amaryllidaceae alkaloid content. We also investigated the effect of sugars on the activity of the antioxidant enzymes catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD). Results The highest biomass increments were observed in plants cultivated in the medium containing 90 g/L sucrose. The highest CAT activity was noted in cultures growing in the medium supplemented with 90 g/L maltose, while the highest POD activity was observed in the presence of 90 g/L fructose and 60 g/L maltose. No differences in SOD activity were observed. Moreover, the sugars did not affect the contents of chlorophyll a and carotenoids, whereas the highest amount of chlorophyll b was recorded in plants growing in the medium with 60 g/L maltose. No statistically significant differences were observed in the contents of endogenous sugars and phenolics in any in vitro conditions. However, the addition of sugar had a decisive effect on the biosynthesis of the Amaryllidaceae alkaloids. The highest distribution of alkaloids occurred in plants cultured in the medium containing 60 g/L sucrose. Six Amaryllidaceae alkaloids were detected in the plant tissue. The addition of 30 g/L fructose in the medium resulted in the accumulation of five alkaloids, including ismine, which was not identified in other analysed tissues. The highest concentration of galanthamine was observed in plants cultured in the presence of 30 g/L fructose and 60 g/L sucrose (39.2 and 37.5 µg/g of dry weight (DW), respectively). The plants grown in the medium containing 60 g/L sucrose exhibited the highest lycorine content (1048 µg/g of DW). Conclusions The type and concentration of sugar used in the medium have an essential influence on the biosynthesis of Amaryllidaceae alkaloids in L. aestivum plants cultured in a RITA® bioreactor. The results point to an interesting approach for commercial production of galanthamine and lycorine.
Collapse
Affiliation(s)
- Agata Ptak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Krakow, Poland
| | - Emilia Morańska
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Krakow, Poland
| | - Edyta Skrzypek
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Krakow, Poland
| | - Marzena Warchoł
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Krakow, Poland
| | | | | | - Magdalena Simlat
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
8
|
Sadeghnezhad E, Sharifi M, Zare-Maivan H, Ahmadian Chashmi N. Time-dependent behavior of phenylpropanoid pathway in response to methyl jasmonate in Scrophularia striata cell cultures. PLANT CELL REPORTS 2020; 39:227-243. [PMID: 31707473 DOI: 10.1007/s00299-019-02486-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/02/2019] [Indexed: 05/13/2023]
Abstract
MeJA triggers a time-dependent behavior of the phenylpropanoid compounds. Plant cells produce a large number of metabolites in response to environmental factors. The cellular responses to environmental changes are orchestrated by signaling molecules, such as methyl jasmonate (MeJA). To understand how the MeJA changes the behavior of amino acids, carbohydrates, and phenylpropanoid compounds such as phenolic acids, phenylethanoid-glycosides, and flavonoids in Scrophularia striata cells; we monitored the metabolic responses for different times of exposure. In this study, we performed a time course analysis of metabolites and enzymes in S. striata cells exposed to MeJA (100 µM) and evaluated the metabolic flux towards carbon-rich secondary metabolites production. Moreover, we calculated the biosynthetic energy cost for free amino acids. Our results indicated that MeJA accelerates the sucrose degradation and directs the metabolic fluxes towards a pool of flavonoids and phenylethanoid glycosides through a change in enzyme behavior in the entry point and center of the phenylpropanoid pathway. MeJA also decreased and then raised the amino acid biosynthesis cost in S. striata cells in a time-dependent manner, indicating the cells evolve to utilize amino acids more economically by reducing cell growth. Finally, we classified the marked changes in the metabolites level and enzyme activities into three groups including early-, late-, and oscillatory-response groups to MeJA and summarized our findings as a model depicting pathway interactions during MeJA elicitation. Determination of metabolic levels in response to MeJA suggests that the changes in metabolic responses are time-dependent.
Collapse
Affiliation(s)
- Ehsan Sadeghnezhad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hassan Zare-Maivan
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
9
|
Improved Production of Industrially Important Essential Oils Through Elicitation in the Adventitious Roots of Artemisia amygdalina. PLANTS 2019; 8:plants8100430. [PMID: 31635139 PMCID: PMC6843893 DOI: 10.3390/plants8100430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/03/2022]
Abstract
The limited production of bioactive essential oils in natural plants does not meet the increasing worldwide market demand. Plant cell culture technology can be used for the higher production of industrially important essential oils. In the present study, a suitable method for production of essential oils was developed through establishment and elicitation of adventitious roots (AR) in a medicinally important plant Artemisia amygdalina D. The results indicated that leaf explants cultured on solid Murashige and Skoog (MS) media supplemented with 1.0 mg/L α- naphthalene acetic acid (NAA) and 4% sucrose instigated the higher AR induction frequency (90 ± 4.25) and maximum AR biomass (fresh biomass: 17.7 g/L). Furthermore, in the AR when transiently elicited with different elicitors for different time periods, methyl jasmonate (Me-J: 0.5 mg/L) resulted in the higher production of total phenolic content (TPC: 3.6 mg), total flavonoid content (TFC: 2.3 mg) and phenylalanine ammonia-lyase (PAL: 4.8 U/g×FW) activity, respectively. Nonetheless, considerable levels of the major bioactive compounds such as α-thujene (6.8%), α-pinene (8.3%), 1,8-cineole (16.2%), camphor (8.4%) and verbenole (10.2%) were recorded in the Me-J treated AR. Thus, a feasible protocol for production of essential oils through AR in A. amygdalina was established, which can be exploited for commercial production of the industrially important terpenes.
Collapse
|
10
|
Transcriptome Analysis and Metabolic Profiling of Lycoris Radiata. BIOLOGY 2019; 8:biology8030063. [PMID: 31470601 PMCID: PMC6784096 DOI: 10.3390/biology8030063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022]
Abstract
Lycoris radiata belongs to the Amaryllidaceae family and is a bulbous plant native to South Korea, China, and Japan. Galantamine, a representative alkaloid of Amaryllidaceae plants, including L. radiata, exhibits selective and dominant acetylcholinesterase inhibition. In spite of the economic and officinal importance of L. radiata, the molecular biological and biochemical information on L. radiata is relatively deficient. Therefore, this study provides functional information of L. radiata, describe galantamine biosynthesis in the various organs, and provide transcriptomic and metabolic datasets to support elucidation of galantamine biosynthesis pathway in future studies. The results of studies conducted in duplicate revealed the presence of a total of 325,609 and 404,019 unigenes, acquired from 9,913,869,968 and 10,162,653,038 raw reads, respectively, after trimming the raw reads using CutAdapt, assembly using Trinity package, and clustering using CD-Hit-EST. All of the assembled unigenes were aligned to the public databases, including National Center for Biotechnology Information (NCBI) non-redundant protein (NR) and nucleotide (Nt) database, SWISS-PROT (UniProt) protein sequence data bank, The Arabidopsis Information Resource (TAIR), the Swiss-Prot protein database, Gene Ontology (GO), and Clusters of Orthologous Groups (COG) database to predict potential genes and provide their functional information. Based on our transcriptome data and published literatures, eight full-length cDNA clones encoding LrPAL2, LrPAL3, LrC4H2, LrC3H, LrTYDC2, LrNNR, LrN4OMT, and LrCYP96T genes, involved in galantamine biosynthesis, were identified in L. radiata. In order to investigate galantamine biosynthesis in different plant parts of L. radiata grown in a growth chamber, gene expression levels were measured through quantitative real-time polymerase chain reaction (qRT-PCR) analysis using these identified genes and galantamine levels were quantified by high-performance liquid chromatography (HPLC) analysis. The qRT-PCR data revealed high expression levels of LrNNR, LrN4OMT, and LrCYP96T in the bulbs, and, as expected, we observed higher amounts of galantamine in the bulbs than in the root and leaves. Additionally, a total of 40 hydrophilic metabolites were detected in the different organs using gas-chromatography coupled with time-of-flight mass spectrometry. In particular, a strong positive correlation between galantamine and sucrose, which provides energy for the secondary metabolite biosynthesis, was observed.
Collapse
|
11
|
Kapoor S, Sharma A, Bhardwaj P, Sood H, Saxena S, Chaurasia OP. Enhanced Production of Phenolic Compounds in Compact Callus Aggregate Suspension Cultures of Rhodiola imbricata Edgew. Appl Biochem Biotechnol 2018; 187:817-837. [PMID: 30090988 DOI: 10.1007/s12010-018-2851-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 01/23/2023]
Abstract
Rhodiola imbricata is a rare medicinal plant of the trans-Himalayan region of Ladakh. It is used for the treatment of numerous health ailments. Compact callus aggregate (CCA) suspension cultures of Rhodiola imbricata were established to counter extinction threats and for production of therapeutically valuable phenolic compounds to meet their increasing industrial demands. The present study also investigated the effect of jasmonic acid (JA) on production of phenolic compounds and bioactivities in CCA suspension cultures. CCA suspension cultures established in an optimized Murashige and Skoog medium supplemented with 30 g/l sucrose, 3 mg/l NAA, and 3 mg/l BAP showed maximum biomass accumulation (8.43 g/l DW) and highest salidroside production (3.37 mg/g DW). Upon 100 μM JA treatment, salidroside production (5.25 mg/g DW), total phenolic content (14.69 mg CHA/g DW), total flavonoid content (4.95 mg RE/g DW), and ascorbic acid content (17.93 mg/g DW) were significantly increased in cultures. In addition, DPPH-scavenging activity (56.32%) and total antioxidant capacity (60.45 mg QE/g DW) were significantly enhanced upon JA treatment, and this was positively correlated with increased accumulation of phenolic compounds. JA-elicited cultures exhibited highest antimicrobial activity against Escherichia coli. This is the first report describing the enhanced production of phenolic compounds and bioactivities from JA-elicited CCA suspension cultures of Rhodiola imbricata.
Collapse
Affiliation(s)
- Sahil Kapoor
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Ankita Sharma
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Pushpender Bhardwaj
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Hemant Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat (Solan), Himachal Pradesh, 173215, India.
| | - Shweta Saxena
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Om Prakash Chaurasia
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| |
Collapse
|
12
|
Mushtaq S, Abbasi BH, Uzair B, Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI JOURNAL 2018; 17:420-451. [PMID: 29805348 PMCID: PMC5962900 DOI: 10.17179/excli2018-1174] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it.
Collapse
Affiliation(s)
- Sadaf Mushtaq
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan.,EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37200 Tours, France
| | - Bushra Uzair
- Department of Bioinformatics & Biotechnology, Faculty of Basic & Applied Sciences, International Islamic University, Sector H-8, Islamabad, Pakistan
| | - Rashda Abbasi
- Institute of Biomedical & Genetic Engineering (IBGE), Sector G-9/1, Islamabad, Pakistan
| |
Collapse
|
13
|
Modarres M, Esmaeilzadeh Bahabadi S, Taghavizadeh Yazdi ME. Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose. Cytotechnology 2018; 70:741-750. [PMID: 29349583 DOI: 10.1007/s10616-017-0178-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/02/2017] [Indexed: 11/26/2022] Open
Abstract
Salvia leriifolia Benth. (Lamiaceae) is an endangered medicinal plant with hypoglycemic, anti-inflammatory and analgesic properties. Many of the beneficial effects of Salvia spp. are attributed to the phenolic compounds. In the present study, an efficient procedure has been developed for establishment of cell suspension culture of S. leriifolia as a strategy to obtain an in vitro phenolic acids producing cell line for the first time. The effect of growth regulators and various concentrations of sucrose have been analyzed, to optimize biomass growth and phenolic acids production. The callus used for this purpose was obtained from leaves of 15-day-old in vitro seedlings, on Murashige and Skoog (MS) basal medium supplemented with different hormone balances including benzylaminopurine (BAP) and indole butyric acid (IBA); 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KIN); naphthaleneacetic acid (NAA) and BAP. Modified MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA was the optimal condition for callus formation with the highest induction rate (100%), the best callus growth and the highest phenolic acids content. No callus induction was observed in combinations of IBA and BAP. Cell suspension cultures were established by transferring 0.5 g of callus to 30 mL liquid MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA. Dynamics of phenolic acids production has been investigated during the growth cycle of the suspension cultures. The maximum content of caffeic acid and salvianolic acid B were observed on the 15th day of the cultivation cycle while the highest amount of rosmarinic acid was observed on the first day. In response to various sucrose concentrations, cell cultures with 40 g/L sucrose not only produced the highest dry biomass but also the highest induction of caffeic acid and salvianolic acid B. The highest amount of rosmarinic acid was observed in media containing 50 g/L sucrose. These prepared cell suspension cultures provided a useful system for further enhanced production of phenolic acids at a large scale.
Collapse
Affiliation(s)
- Masoomeh Modarres
- Department of Biology, Faculty of Basic Science, Farhangian University, Mashhad, Iran
| | | | | |
Collapse
|