1
|
Chen MX, Li YJ, Wu L, Lv XY, Li Y, Ru J, Yi Y. Optimal conditions and nitrogen removal performance of aerobic denitrifier Comamonas sp. pw-6 and its bioaugmented application in synthetic domestic wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3007-3020. [PMID: 38877627 DOI: 10.2166/wst.2024.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
To assess the possibility of using aerobic denitrification (AD) bacteria with high NO2--N accumulation for nitrogen removal in wastewater treatment, conditional optimization, as well as sole and mixed nitrogen source tests involving AD bacterium, Comamonas sp. pw-6 was performed. The results showed that the optimal carbon source, pH, C/N ratio, rotational speed, and salinity for this strain were determined to be succinate, 7, 20, 160 rpm, and 0%, respectively. Further, this strain preferentially utilized NH4+-N, NO3--N, and NO2--N, and when NO3--N was its sole nitrogen source, 92.28% of the NO3--N (150 mg·L-1) was converted to NO2--N. However, when NH4+-N and NO3--N constituted the mixed nitrogen source, NO3--N utilization by this strain was significantly lower (p < 0.05). Therefore, a strategy was proposed to combine pw-6 bacteria with traditional autotrophic nitrification to achieve the application of pw-6 bacteria in NH4+-N-containing wastewater treatment. Bioaugmented application experiments showed significantly higher NH4+-N removal (5.96 ± 0.94 mg·L-1·h-1) and lower NO3--N accumulation (2.52 ± 0.18 mg·L-1·h-1) rates (p < 0.05) than those observed for the control test. Thus, AD bacteria with high NO2--N accumulation can also be used for practical applications, providing a basis for expanding the selection range of AD strains for wastewater treatment.
Collapse
Affiliation(s)
- Maoxia X Chen
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China E-mail:
| | - Yanjun J Li
- South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Liang Wu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Xiaoyu Y Lv
- South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Yang Li
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Jing Ru
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Yan Yi
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| |
Collapse
|
2
|
Chen J, Shen L, Li Y, Cao H, Chen C, Zhang G, Xu Z, Lu Y. Insights into the nitrogen transformation mechanism of Pseudomonas sp. Y15 capable of heterotrophic nitrification and aerobic denitrification. ENVIRONMENTAL RESEARCH 2024; 240:117595. [PMID: 37926232 DOI: 10.1016/j.envres.2023.117595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Excessive nitrogen (N) discharged in water is a major cause of eutrophication and other severe environmental issues. Biological N removal via heterotrophic nitrification and aerobic denitrification (HN-AD) has drawn particular attention, owing to the merit of concurrent nitrification and denitrification inside one cell. However, the mechanisms underlying N transformation during HN-AD remain unclear. In the present study, the HN-AD strain Pseudomonas sp. Y15 (Y15) was isolated to explore the N distribution and flow, based on stoichiometry and energetics. The total N removal efficiency by Y15 increased linearly with C/N ratio (in the range of 5-15) to ∼96.8%. Of this, ∼32.2% and ∼64.6% were transformed into gas-N and biomass-N, respectively. A new intracellular N metabolic bypass (NO → NO2) was found, to address the substantial gaseous N production during HN-AD. Concering energetics, the large portion of the biomass-N is ascribed to the synthesis of the amino acids that consume low energy. Finally, two novel stoichiometric equations for different N sources were proposed, to describe the overall HN-AD process. This study deepens the fundamental knowledge on HN-AD bacteria and enlightens their use in treating N-contaminated wastewater.
Collapse
Affiliation(s)
- Jinliang Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China.
| | - Yu Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Haipeng Cao
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, PR China
| | - Cuixue Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
3
|
Zheng X, Yan Z, Zhao C, He L, Lin Z, Liu M. Homogeneous environmental selection mainly determines the denitrifying bacterial community in intensive aquaculture water. Front Microbiol 2023; 14:1280450. [PMID: 38029183 PMCID: PMC10653326 DOI: 10.3389/fmicb.2023.1280450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Nitrate reduction by napA (encodes periplasmic nitrate reductase) bacteria and nitrous oxide reduction by nosZ (encodes nitrous oxide reductase) bacteria play important roles in nitrogen cycling and removal in intensive aquaculture systems. This study investigated the diversity, dynamics, drivers, and assembly mechanisms of total bacteria as well as napA and nosZ denitrifiers in intensive shrimp aquaculture ponds over a 100-day period. Alpha diversity of the total bacterial community increased significantly over time. In contrast, the alpha diversity of napA and nosZ bacteria remained relatively stable throughout the aquaculture process. The community structure changed markedly across all groups over the culture period. Total nitrogen, phosphate, total phosphorus, and silicate were identified as significant drivers of the denitrifying bacterial communities. Network analysis revealed complex co-occurrence patterns between total, napA, and nosZ bacteria which fluctuated over time. A null model approach showed that, unlike the total community dominated by stochastic factors, napA and nosZ bacteria were primarily governed by deterministic processes. The level of determinism increased with nutrient loading, suggesting the denitrifying community can be manipulated by bioaugmentation. The dominant genus Ruegeria may be a promising candidate for introducing targeted denitrifiers into aquaculture systems to improve nitrogen removal. Overall, this study provides important ecological insights into aerobic and nitrous oxide-reducing denitrifiers in intensive aquaculture, supporting strategies to optimize microbial community structure and function.
Collapse
Affiliation(s)
- Xiafei Zheng
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhongneng Yan
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Chenxi Zhao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Lin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Minhai Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
4
|
Hu YQ, Zeng YX, Du Y, Zhao W, Li HR, Han W, Hu T, Luo W. Comparative genomic analysis of two Arctic Pseudomonas strains reveals insights into the aerobic denitrification in cold environments. BMC Genomics 2023; 24:534. [PMID: 37697269 PMCID: PMC10494350 DOI: 10.1186/s12864-023-09638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Biological denitrification has been commonly adopted for the removal of nitrogen from sewage effluents. However, due to the low temperature during winter, microorganisms in the wastewater biological treatment unit usually encounter problems such as slow cell growth and low enzymatic efficiency. Hence, the isolation and screening of cold-tolerant aerobic denitrifying bacteria (ADB) have recently drawn attention. In our previous study, two Pseudomonas strains PMCC200344 and PMCC200367 isolated from Arctic soil demonstrated strong denitrification ability at low temperatures. The two Arctic strains show potential for biological nitrogen removal from sewage in cold environments. However, the genome sequences of these two organisms have not been reported thus far. RESULTS Here, the basic characteristics and genetic diversity of strains PMCC200344 and PMCC200367 were described, together with the complete genomes and comparative genomic results. The genome of Pseudomonas sp. PMCC200344 was composed of a circular chromosome of 6,478,166 bp with a G + C content of 58.60% and contained a total of 5,853 genes. The genome of Pseudomonas sp. PMCC200367 was composed of a circular chromosome of 6,360,061 bp with a G + C content of 58.68% and contained 5,801 genes. Not only prophages but also genomic islands were identified in the two Pseudomonas strains. No plasmids were observed. All genes of a complete set of denitrification pathways as well as various putative cold adaptation and heavy metal resistance genes in the genomes were identified and analyzed. These genes were usually detected on genomic islands in bacterial genomes. CONCLUSIONS These analytical results provide insights into the genomic basis of microbial denitrification in cold environments, indicating the potential of Arctic Pseudomonas strains in nitrogen removal from sewage effluents at low temperatures.
Collapse
Affiliation(s)
- Yong-Qiang Hu
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Yin-Xin Zeng
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yu Du
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Wei Zhao
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Hui-Rong Li
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Wei Han
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Ting Hu
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| |
Collapse
|
5
|
Paniguel Oliveira E, Giordani A, Kawanishi J, Syrto Octavio de Souza T, Okada DY, Brucha G, Brito de Moura R. Biofilm stratification and autotrophic-heterotrophic interactions in a structured bed reactor (SBRIA) for carbon and nitrogen removal. BIORESOURCE TECHNOLOGY 2023; 372:128639. [PMID: 36681348 DOI: 10.1016/j.biortech.2023.128639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The structured-bed reactor with intermittent aeration (SBRIA) is a promising technology for simultaneous carbon and nitrogen removal from wastewater. An in depth understanding of the microbiological in the reactor is crucial for its optimization. In this research, biofilm samples from the aerobic and anoxic zones of an SBRIA were analyzed through 16S rRNA sequencing to evaluate the bacterial community shift with variations in the airflow and aeration time. The control of the airflow and aeration time were essential to guarantee reactor performances to nitrogen removal close to 80%, as it interfered in nitrifying and denitrifying communities. The aeration time of 1.75 h led to establishment of different nitrogen removal pathways by syntrophic relationships between nitrifier, denitrifier and anammox species. Additionally, the predominance of these different species in the internal and external parts of the biofilm varied according to the airflow.
Collapse
Affiliation(s)
- Eduardo Paniguel Oliveira
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| | - Alessandra Giordani
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil; Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo, São Paulo, Brazil.
| | - Juliana Kawanishi
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| | - Theo Syrto Octavio de Souza
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo, São Paulo, Brazil
| | | | - Gunther Brucha
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| | - Rafael Brito de Moura
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| |
Collapse
|
6
|
Hao ZL, Ali A, Ren Y, Su JF, Wang Z. A mechanistic review on aerobic denitrification for nitrogen removal in water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157452. [PMID: 35868390 DOI: 10.1016/j.scitotenv.2022.157452] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The traditional biological nitrogen removal technology consists of two steps: nitrification by autotrophs in aerobic circumstances and denitrification by heterotrophs in anaerobic situations; however, this technology requires a huge area and stringent environmental conditions. Researchers reached the conclusion that the denitrification process could also be carried out in aerobic circumstances with the discovery of aerobic denitrification. The aerobic denitrification process is carried out by aerobic denitrifying bacteria (ADB), most of which are heterotrophic bacteria that can metabolize various forms of nitrogen compounds under aerobic conditions and directly convert ammonia nitrogen to N2 for discharge from the system. Despite the fact that there is no universal agreement on the mechanism of aerobic denitrification, this article reviewed four current explanations for the denitrification mechanism of ADB, including the microenvironment theory, theory of enzyme, electron transport bottlenecks theory, and omics study, and summarized the parameters affecting the denitrification efficiency of ADB in terms of carbon source, temperature, dissolved oxygen (DO), and pH. It also discussed the current status of the application of aerobic denitrification in practical processes. Following the review, the difficulties of present aerobic denitrification technology are outlined and future research options are highlighted. This review may help to improve the design of current wastewater treatment facilities by utilizing ADB for effective nitrogen removal and provide the engineers with relevant references.
Collapse
Affiliation(s)
- Zhen-Le Hao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
7
|
Lu H, Li J, Fu Z, Wang X, Zhou J, Wang J. Comparison of the accelerating effect of graphene oxide and graphene on anaerobic transformation of bisphenol F by Pseudomonas sp. LS. ENVIRONMENTAL TECHNOLOGY 2022; 43:4249-4256. [PMID: 34152266 DOI: 10.1080/09593330.2021.1946167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
It was found that bisphenol F (BPF) could be anaerobically transformed to 4,4-dihydroxybenzophenone using nitrate as an electron acceptor by Pseudomonas sp. LS. However, BPF removal was a slow process under anaerobic conditions. In the present study, effects of graphene oxide (GO) and graphene on the anaerobic transformation of BPF were studied in detail. Results showed that GO (2-10 mg/L) and graphene (2-20 mg/L) could increase the anaerobic biotransformation rate of BPF. For GO-mediated system, GO was partially reduced, and then the reduced GO (rGO) as an electron mediator increased biotransformation rate of BPF. Further analysis showed that the promoting effect of 10 mg/L GO was over 1.5-fold higher compared with that of 10 mg/L graphene. BPF could be transformed using GO as an electron acceptor. GO and graphene was also used as nutrient scaffolds to promote cell growth via adsorbing proteins. Moreover, GO was a better cell growth promoter than graphene. These studies indicated that GO played more roles and exhibited a better accelerating effect on anaerobic removal of BPF compared with graphene.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jingyi Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| |
Collapse
|
8
|
Lee YJ, Lin BL, Lei Z. Nitrous oxide emission mitigation from biological wastewater treatment - A review. BIORESOURCE TECHNOLOGY 2022; 362:127747. [PMID: 35964917 DOI: 10.1016/j.biortech.2022.127747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment processes has emerged as a focal point for academic and practical research amidst pressing environmental issues. This review presents an updated view on the biological pathways for N2O production and consumption in addition to the critical process factors affecting N2O emission. The current research trends including the strain and reactor aspects were then outlined with discussions. Last but not least, the research needs were proposed. The holistic life cycle assessment needs to be performed to evaluate the technical and economic feasibility of the proposed mitigation strategies or recovery options. This review also provides the background information for the proposed future research prospects on N2O mitigation and recovery technologies. As pointed out, dilution effects of the produced N2O gas product would hinder its use as renewable energy; instead, its use as an effective oxidizing agent is proposed as a promising recovery option.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10649, Taiwan
| | - Bin-le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
9
|
Hu L, Wang X, Chen C, Chen J, Wang Z, Chen J, Hrynshpan D, Savitskaya T. NosZ gene cloning, reduction performance and structure of Pseudomonas citronellolis WXP-4 nitrous oxide reductase. RSC Adv 2022; 12:2549-2557. [PMID: 35425296 PMCID: PMC8979117 DOI: 10.1039/d1ra09008a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. To alleviate the N2O emission, emerging approaches aim at microbiome biotechnology. In this study, the genome sequence of facultative anaerobic bacteria Pseudomonas citronellolis WXP-4, which efficiently degrades N2O, was obtained by de novo sequencing for the first time, and then, four key reductase structure coding genes related to complete denitrification were identified. The single structural encoding gene nosZ with a length of 1914 bp from strain WXP-4 was cloned in Escherichia coli BL21(DE3), and the N2OR protein (76 kDa) was relatively highly efficiently expressed under the optimal inducing conditions of 1.0 mM IPTG, 5 h, and 30 °C. Denitrification experiment results confirmed that recombinant E. coli had strong denitrification ability and reduced 10 mg L−1 of N2O to N2 within 15 h under the optimal conditions of pH 7.0 and 40 °C, its corresponding N2O reduction rate was almost 2.3 times that of Alcaligenes denitrificans strain TB, but only 80% of that of wild strain WXP-4, meaning that nos gene cluster auxiliary gene deletion decreased the activity of N2OR. The 3D structure of N2OR predicted on the basis of sequence homology found that electron transfer center CuA had only five amino acid ligands, and the S2 of the catalytically active center CuZ only bound one CuI atom. The unique 3D structure was different from previous reports and may be closely related to the strong N2O reduction ability of strain WXP-4 and recombinant E. coli. The findings show a potential application of recombinant E. coli in alleviating the greenhouse effect and provide a new perspective for researching the relationship between structure and function of N2OR. Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. The recombinant E. coli and wild strain WXP-4 demonstrate strong N2O reduction ability.![]()
Collapse
Affiliation(s)
- Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoping Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
10
|
Chen Y, Zhao M, Hu L, Wang Z, Hrynsphan D, Chen J. Characterization and Functional Analysis of Bacillus aryabhattai CY for Acrylic Acid Biodegradation: Immobilization and Metabolic Pathway. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Chen C, Wang Z, Zhao M, Yuan B, Yao J, Chen J, Hrynshpan D, Savitskaya T. A fungus-bacterium co-culture synergistically promoted nitrogen removal by enhancing enzyme activity and electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142109. [PMID: 32898784 DOI: 10.1016/j.scitotenv.2020.142109] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
The fungus Penicillium citrinum WXP-2 and the bacterium Citrobacter freundii WXP-9 were isolated and found to have poor denitrification performance. Surprisingly, co-culture of the two strains which formed fungus-bacterium pellets (FBPs) promoted the removal efficiency of nitrate (NO3--N; 95.78%) and total nitrogen (TN; 81.73%). Nitrogen balance analysis showed that excess degraded NO3--N was primarily converted to N2 (77.53%). Moreover, co-culture increased the dry weight to 0.74 g/L. The diameter of pellets and cell viability also increased by 1.49 and 1.78 times, respectively, indicating that the co-culture exerted a synergistic effect to promote growth. The increase in electron-transmission system activity [99.01 mg iodonitrotetrazolium formazan/(g·L)] and nitrate reductase activity [8.65 mg N/(min·mg protein)] were responsible for denitrification promotion. The FBPs also exhibited the highest degradation rate at 2:1 inoculation ratio and 36 h delayed inoculation of strain WXP-9. Finally, recycling experiments of FBP demonstrated that the high steady TN removal rate could be maintained for five cycles.
Collapse
Affiliation(s)
- Cong Chen
- College of Environmental, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zeyu Wang
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Min Zhao
- College of Environmental, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Bohan Yuan
- College of Environmental, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jiachao Yao
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| |
Collapse
|
12
|
Li S, Zhang H, Huang T, Ma B, Miao Y, Shi Y, Xu L, Liu K, Huang X. Aerobic denitrifying bacterial communities drive nitrate removal: Performance, metabolic activity, dynamics and interactions of core species. BIORESOURCE TECHNOLOGY 2020; 316:123922. [PMID: 32758920 DOI: 10.1016/j.biortech.2020.123922] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Three novel mix-cultured aerobic denitrifying bacteria (Mix-CADB) consortia named D14, X21, and CL exhibited excellent total organic carbon (TOC) removal and aerobic denitrification capacities. The TOC and nitrate removal efficiencies were higher than 93.00% and 98.00%. The results of Biolog demonstrated that three communities displayed high carbon metabolic activity. nirS gene sequencing and ecological network model revealed that Pseudomonas stutzeri, Paracoccus sp., and Paracoccus denitrificans dominated in the D14, X21, and CL communities. The dynamics and co-existence of core species in communities drove the nutrient removal. Response surface methodology showed the predicted total nitrogen removal efficiency reached 99.43% for D14 community. The three Mix-CADB consortia have great potential for nitrogen-polluted aquatic water treatment because of their strong adaptability and removal performance. These results will provide new understanding of co-existence, interaction and dynamics of Mix-CADB consortia for nitrogen removal in nitrogen-polluted aquatic ecosystems.
Collapse
Affiliation(s)
- Sulin Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutian Miao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Xu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|