1
|
Xie M, Hou R, Shan R, Cheng X, Wu P, Luo X, Wei Y, Gao L, Liu X, Chen Q. HDAC3 inhibition mitigates acute kidney injury by alleviating RIPK1-mediated programmed necrosis. Front Pharmacol 2025; 16:1546950. [PMID: 40351427 PMCID: PMC12061726 DOI: 10.3389/fphar.2025.1546950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 05/14/2025] Open
Abstract
Acute kidney injury (AKI) refers to clinical syndromes culminating in rapidly reduced renal function associated with inflammation and the demise of renal tubular epithelial cells. Current research aims to develop strategies which prevent tubular cell death. Here, based on the involvement of histone deacetylases (HDACs) in renal physiology and their established role in renal fibrosis, we investigated the mechanistic contributions of HDACs using a mouse model together with in vitro studies employing human renal epithelial cells. We found HDAC3 expression was upregulated in mouse renal tubules after ischemia/reperfusion and cisplatin treatment. Instructively, treatment with the HDAC3 selective inhibitor RGFP966 exerted potent protective effects, attenuates acute kidney injury in both in vivo and in vitro models. Moreover, RGFP966 was found to reduce inflammation and injury caused by cisplatin and hypoxia-reoxygenation in HK2 cells with transcriptome sequencing revealing that RGFP966 significantly inhibited the upregulation of the necroptosis initiator, RIPK1. Cellular thermal displacement assay and molecular docking demonstrated the physical binding of RGFP966 to HDCA3. In addition, RIPK1 knockdown cell assay signified that RGFP966 targeted RIPK1 and inhibited RIPK1 kinase activity. In summary, these findings established the efficacy of the HDAC3 inhibitor RGFP966 in treating AKI.
Collapse
Affiliation(s)
- Manman Xie
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Rui Hou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Runrun Shan
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xinyu Cheng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Pengcheng Wu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiufeng Luo
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yangyang Wei
- The Armed Police Corps Hospital of Anhui, Hefei, China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Chen
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
2
|
Zheng Y, Zhang TN, Hao PH, Yang N, Du Y. Histone deacetylases and their inhibitors in kidney diseases. Mol Ther 2025:S1525-0016(25)00300-4. [PMID: 40263937 DOI: 10.1016/j.ymthe.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Histone deacetylases (HDACs) have emerged as key regulators in the pathogenesis of various kidney diseases. This review explores recent advancements in HDAC research, focusing on their role in kidney development and their critical involvement in the progression of chronic kidney disease (CKD), acute kidney injury (AKI), autosomal dominant polycystic kidney disease (ADPKD), and diabetic kidney disease (DKD). It also discusses the therapeutic potential of HDAC inhibitors in treating these conditions. Various HDAC inhibitors have shown promise by targeting specific HDAC isoforms and modulating a range of biological pathways. Their protective effects include modulation of apoptosis, autophagy, inflammation, and fibrosis, underscoring their broad therapeutic potential for kidney diseases. However, further research is essential to improve the selectivity of HDAC inhibitors, minimize toxicity, overcome drug resistance, and enhance their pharmacokinetic properties. This review offers insights to guide future research and prevention strategies for kidney disease management.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yue Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Tan RZ, Bai QX, Jia LH, Wang YB, Li T, Lin JY, Liu J, Su HW, Kantawong F, Wang L. Epigenetic regulation of macrophage function in kidney disease: New perspective on the interaction between epigenetics and immune modulation. Biomed Pharmacother 2025; 183:117842. [PMID: 39809127 DOI: 10.1016/j.biopha.2025.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair. Moreover, therapeutic studies targeting these epigenetic interaction mechanisms have found that the application of histone deacetylase inhibitors, histone methyltransferase inhibitors, various nanomaterials, and locked nucleic acids against non-coding RNA have positive effects on the treatment of multiple kidney diseases. This review summarizes the latest research advancements in these epigenetic regulatory mechanisms and therapies, providing a theoretical foundation for further elucidating the pathogenesis of kidney diseases and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qiu-Xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long-Hao Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yi-Bing Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Lin
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hong-Wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
4
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. The Role of Gut Microbiota in the Etiopathogenesis of Multiple Chronic Diseases. Antibiotics (Basel) 2024; 13:392. [PMID: 38786121 PMCID: PMC11117238 DOI: 10.3390/antibiotics13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic diseases (CD) may result from a combination of genetic factors, lifestyle and social behaviours, healthcare system influences, community factors, and environmental determinants of health. These risk factors frequently coexist and interact with one another. Ongoing research and a focus on personalized interventions are pivotal strategies for preventing and managing chronic disease outcomes. A wealth of literature suggests the potential involvement of gut microbiota in influencing host metabolism, thereby impacting various risk factors associated with chronic diseases. Dysbiosis, the perturbation of the composition and activity of the gut microbiota, is crucial in the etiopathogenesis of multiple CD. Recent studies indicate that specific microorganism-derived metabolites, including trimethylamine N-oxide, lipopolysaccharide and uremic toxins, contribute to subclinical inflammatory processes implicated in CD. Various factors, including diet, lifestyle, and medications, can alter the taxonomic species or abundance of gut microbiota. Researchers are currently dedicating efforts to understanding how the natural progression of microbiome development in humans affects health outcomes. Simultaneously, there is a focus on enhancing the understanding of microbiome-host molecular interactions. These endeavours ultimately aim to devise practical approaches for rehabilitating dysregulated human microbial ecosystems, intending to restore health and prevent diseases. This review investigates how the gut microbiome contributes to CD and explains ways to modulate it for managing or preventing chronic conditions.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
5
|
Moll G, Lim WH, Penack O. Editorial: Emerging talents in alloimmunity and transplantation: 2022. Front Immunol 2024; 15:1393026. [PMID: 38558808 PMCID: PMC10978591 DOI: 10.3389/fimmu.2024.1393026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Wai H. Lim
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Olaf Penack
- Department of Hematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, Berlin, Germany
- BIH Biomedical Innovation Academy, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Nevi L, Pöllänen N, Penna F, Caretti G. Targeting Epigenetic Regulators with HDAC and BET Inhibitors to Modulate Muscle Wasting. Int J Mol Sci 2023; 24:16404. [PMID: 38003594 PMCID: PMC10671811 DOI: 10.3390/ijms242216404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Epigenetic changes contribute to the profound alteration in the transcriptional program associated with the onset and progression of muscle wasting in several pathological conditions. Although HDACs and their inhibitors have been extensively studied in the field of muscular dystrophies, the potential of epigenetic inhibitors has only been marginally explored in other disorders associated with muscle atrophy, such as in cancer cachexia and sarcopenia. BET inhibitors represent a novel class of recently developed epigenetic drugs that display beneficial effects in a variety of diseases beyond malignancies. Based on the preliminary in vitro and preclinical data, HDACs and BET proteins contribute to the pathogenesis of cancer cachexia and sarcopenia, modulating processes related to skeletal muscle mass maintenance and/or metabolism. Thus, epigenetic drugs targeting HDACs and BET proteins may emerge as promising strategies to reverse the catabolic phenotype associated with cachexia and sarcopenia. Further preclinical studies are warranted to delve deeper into the molecular mechanisms associated with the functions of HDACs and BET proteins in muscle atrophy and to establish whether their epigenetic inhibitors represent a prospective therapeutic avenue to alleviate muscle wasting.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Noora Pöllänen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | | |
Collapse
|
7
|
Li XY, Yu JT, Dong YH, Shen XY, Hou R, Xie MM, Wei J, Hu XW, Dong ZH, Shan RR, Jin J, Shao W, Meng XM. Protein acetylation and related potential therapeutic strategies in kidney disease. Pharmacol Res 2023; 197:106950. [PMID: 37820854 DOI: 10.1016/j.phrs.2023.106950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.
Collapse
Affiliation(s)
- Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie Wei
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
8
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
9
|
Zhang QQ, Zhang WJ, Chang S. HDAC6 inhibition: a significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front Immunol 2023; 14:1168848. [PMID: 37545520 PMCID: PMC10401441 DOI: 10.3389/fimmu.2023.1168848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.
Collapse
Affiliation(s)
- Qian-qian Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei-jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
10
|
Chen H, Wang J, Ouyang Q, Peng X, Yu Z, Wang J, Huang J. Alterations of gut microbes and their correlation with clinical features in middle and end-stages chronic kidney disease. Front Cell Infect Microbiol 2023; 13:1105366. [PMID: 37033494 PMCID: PMC10079997 DOI: 10.3389/fcimb.2023.1105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Gut microecosystem has been shown to play an important role in human health. In recent years, the concept of the gut-kidney axis has been proposed to explain the potential association between gut microbiota and chronic kidney disease (CKD). Here, a cohort of fecal samples collected from patients with CKD (n = 13) were involved. The composition of gut microbial communities and clinical features in CKD and end-stage renal disease (ESRD) were characterized. Our study focused on the changes in gut microbiome and the correlation with clinical features in patients with CKD and ESRD by analyzing high-throughput sequencing results of collected feces. We elucidated the alterations of gut microbiota in CKD patients at different stages of disease and initially identified the gut microbiota associated with CKD progression. We also combined correlation analysis to identify clinical features closely related to the gut microbiome. Our results offered the possibility of using non-invasive gut microbiome in the early diagnosis of course from CKD to ESRD and provide new insights into the association between clinical features and gut microbiota in CKD.
Collapse
Affiliation(s)
- Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jingyan Wang
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qin Ouyang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Peng
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Huang, ; Jianwen Wang,
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Jing Huang, ; Jianwen Wang,
| |
Collapse
|
11
|
Sixto-López Y, Gómez-Vidal JA, de Pedro N, Bello M, Rosales-Hernández MC, Correa-Basurto J. In silico design of HDAC6 inhibitors with neuroprotective effects. J Biomol Struct Dyn 2022; 40:14204-14222. [PMID: 34784487 DOI: 10.1080/07391102.2021.2001378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
HDAC6 has emerged as a molecular target to treat neurodegenerative disorders, due to its participation in protein aggregate degradation, oxidative stress process, mitochondrial transport, and axonal transport. Thus, in this work we have designed a set of 485 compounds with hydroxamic and bulky-hydrophobic moieties that may function as HDAC6 inhibitors with a neuroprotective effect. These compounds were filtered by their predicted ADMET properties and their affinity to HDAC6 demonstrated by molecular docking and molecular dynamics simulations. The combination of in silico with in vitro neuroprotective results allowed the identification of a lead compound (FH-27) which shows neuroprotective effect that could be due to HDAC6 inhibition. Further, FH-27 chemical moiety was used to design a second series of compounds improving the neuroprotective effect from 2- to 10-fold higher (YSL-99, YSL-109, YSL-112, YSL-116 and YSL-121; 1.25 ± 0.67, 1.82 ± 1.06, 7.52 ± 1.78, 5.59 and 5.62 ± 0.31 µM, respectively). In addition, the R enantiomer of FH-27 (YSL-106) was synthesized, showing a better neuroprotective effect (1.27 ± 0.60 µM). In conclusion, we accomplish the in silico design, synthesis, and biological evaluation of hydroxamic acid derivatives with neuroprotective effect as suggested by an in vitro model. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico.,Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - José Antonio Gómez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Nuria de Pedro
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
12
|
Peng L, Liu D, Liu H, Xia M, Wan L, Li M, Zhao J, Tang C, Chen G, Qu X, Dong Z, Liu H. Bombesin receptor-activated protein exacerbates cisplatin-induced AKI by regulating the degradation of SIRT2. Nephrol Dial Transplant 2022; 37:2366-2385. [PMID: 35488871 DOI: 10.1093/ndt/gfac164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a public health problem with no specific therapies in the clinic and the underlying pathogenesis of AKI remains obscure. Bombesin receptor-activated protein (BRAP, C6ORF89 protein) was initially discovered as a ligand for a previously orphan G-protein-coupled receptor bombesin-like receptor-3. At present, accepted biological effects of BRAP include cell cycle progression, wound repair and the activation of histone deacetylases. However, its role in kidney disease is unknown. In this study we have investigated the role of BRAP and underlying mechanisms involved in cisplatin (CP)-induced AKI. METHODS Here we used Bc004004 (homologous of C6ORF89 in mice) knockout mice and HK2 cells to investigate the effect of BRAP on AKI in vitro and in vivo. We analyzed ChIP-Seq and RNA-Seq data to search for the upstream regulators of BRAP and downstream mediators of BRAP action in AKI. Immunostaining, real-time polymerase chain reaction (PCR), co-immunoprecipitation, a dual-luciferase reporter assay and ChIP-PCR assay were applied to reveal the upstream and downstream regulation mechanism of BRAP during cisplatin-induced AKI. RESULTS BRAP was downregulated in mice and human kidneys with AKI. Global Bc004004 deletion alleviated tubular cell apoptosis and necroptosis in CP-induced AKI mice, whereas local overexpression of BRAP in kidneys aggravated them. Pan-caspase inhibitor Z-VAD pretreatment attenuated CP-induced blood creatinine increase and kidney injury in wild-type mice but not in BRAP -/- mice. The activation of mixed lineage kinase like-domain was magnified by Z-VAD in CP-treated mice, especially in BRAP -/- mice. The cytoprotective effect of Z-VAD was more substantial than necrostatin-1 (Nec-1, an inhibitor of necroptosis) in CP-treated human kidney proximal tubular epithelial (HK2) cells. Furthermore, Nec-1 pretreatment reduced the CP-induced cell death in BRAP overexpression HK2 cells but did not work in cells with normal BRAP levels. We determined that CP treatment activated the nuclear factor-κB subunit P65 and inhibition of P65 increased the messenger RNA (mRNA) levels of BRAP in HK2 cells. The chromatin immunoprecipitation assay and dual-luciferase reporter gene assay verified P65 binding to the C6ORF89 promoter and reduced its mRNA expression upon CP treatment. Next we found that sirtuin 2 (SIRT2) was downregulated in CP-induced AKI and BRAP levels directly impacted the protein levels of SIRT2. Our findings further confirmed that BRAP regulates the SIRT2 protein levels by affecting SIRT2's interactions with E3 ubiquitin ligase HRD1 and subsequent proteasomal degradation. CONCLUSIONS Our results demonstrated that BRAP played an important role in tubular cell apoptosis and necroptosis during CP-induced AKI. Safe and efficient BRAP inhibitors might be effective therapeutic options for AKI.
Collapse
Affiliation(s)
- Liang Peng
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Di Liu
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Haiyang Liu
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Xia
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lili Wan
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Mei Li
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Junyong Zhao
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xiangpin Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Hong Liu
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
13
|
Bhargava S, Merckelbach E, Noels H, Vohra A, Jankowski J. Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins (Basel) 2022; 14:648. [PMID: 36287917 PMCID: PMC9610479 DOI: 10.3390/toxins14100648] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota consists of trillions of microorganisms, fulfilling important roles in metabolism, nutritional intake, physiology and maturation of the immune system, but also aiding and abetting the progression of chronic kidney disease (CKD). The human gut microbiome consists of bacterial species from five major bacterial phyla, namely Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia. Alterations in the members of these phyla alter the total gut microbiota, with a decline in the number of symbiotic flora and an increase in the pathogenic bacteria, causing or aggravating CKD. In addition, CKD-associated alteration of this intestinal microbiome results in metabolic changes and the accumulation of amines, indoles and phenols, among other uremic metabolites, which have a feedforward adverse effect on CKD patients, inhibiting renal functions and increasing comorbidities such as atherosclerosis and cardiovascular diseases (CVD). A classification of uremic toxins according to the degree of known toxicity based on the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence was selected to identify the representative uremic toxins from small water-soluble compounds, protein-bound compounds and middle molecules and their relation to the gut microbiota was summarized. Gut-derived uremic metabolites accumulating in CKD patients further exhibit cell-damaging properties, damage the intestinal epithelial cell wall, increase gut permeability and lead to the translocation of bacteria and endotoxins from the gut into the circulatory system. Elevated levels of endotoxins lead to endotoxemia and inflammation, further accelerating CKD progression. In recent years, the role of the gut microbiome in CKD pathophysiology has emerged as an important aspect of corrective treatment; however, the mechanisms by which the gut microbiota contributes to CKD progression are still not completely understood. Therefore, this review summarizes the current state of research regarding CKD and the gut microbiota, alterations in the microbiome, uremic toxin production, and gut epithelial barrier degradation.
Collapse
Affiliation(s)
- Shruti Bhargava
- Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, 52062 Aachen, Germany
| | - Erik Merckelbach
- Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, 52062 Aachen, Germany
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, 52062 Aachen, Germany
| | - Ashima Vohra
- Institute of Home Economics, Delhi University, Delhi 110021, India
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, 52062 Aachen, Germany
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, 6211 Maastricht, The Netherlands
| |
Collapse
|
14
|
Romanelli MN, Borgonetti V, Galeotti N. Dual BET/HDAC inhibition to relieve neuropathic pain: Recent advances, perspectives, and future opportunities. Pharmacol Res 2021; 173:105901. [PMID: 34547384 DOI: 10.1016/j.phrs.2021.105901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Despite the intense research on developing new therapies for neuropathic pain states, available treatments have limited efficacy and unfavorable safety profiles. Epigenetic alterations have a great influence on the development of cancer and neurological diseases, as well as neuropathic pain. Histone acetylation has prevailed as one of the well investigated epigenetic modifications in these diseases. Altered spinal activity of histone deacetylase (HDAC) and Bromo and Extra terminal domain (BET) have been described in neuropathic pain models and restoration of these aberrant epigenetic modifications showed pain-relieving activity. Over the last decades HDACs and BETs have been the focus of drug discovery studies, leading to the development of numerous small-molecule inhibitors. Clinical trials to evaluate their anticancer activity showed good efficacy but raised toxicity concerns that limited translation to the clinic. To maximize activity and minimize toxicity, these compounds can be applied in combination of sub-maximal doses to produce additive or synergistic interactions (combination therapy). Recently, of particular interest, dual BET/HDAC inhibitors (multi-target drugs) have been developed to assure simultaneous modulation of BET and HDAC activity by a single molecule. This review will summarize the most recent advances with these strategies, describing advantages and limitations of single drug treatment vs combination regimens. This review will also provide a focus on dual BET/HDAC drug discovery investigations as future therapeutic opportunity for human therapy of neuropathic pain.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
15
|
Xia J, Cao W. Epigenetic modifications of Klotho expression in kidney diseases. J Mol Med (Berl) 2021; 99:581-592. [PMID: 33547909 DOI: 10.1007/s00109-021-02044-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Developments of many renal diseases are substantially influenced by epigenetic modifications of numerous genes, mainly mediated by DNA methylations, histone modifications, and microRNA interference; however, not all gene modifications causally affect the disease onset or progression. Klotho is a critical gene whose repressions in various pathological conditions reportedly involve epigenetic regulatory mechanisms. Klotho is almost unexceptionally repressed early after acute or chronic renal injuries and its levels inversely correlated with the disease progression and severity. Moreover, the strategies of Klotho derepression via epigenetic modulations beneficially change the pathological courses both in vitro and in vivo. Hence, Klotho is not only considered a biomarker of the renal disease but also a potential or even an ideal target of therapeutic epigenetic intervention. Here, we summarize and discuss studies that investigate the Klotho repression and intervention in renal diseases from an epigenetic point of view. These information might shed new sights into the effective therapeutic strategies to prevent and treat various renal disorders.
Collapse
Affiliation(s)
- Jinkun Xia
- Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Wangsen Cao
- Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
16
|
Marchione AD, Thompson Z, Kathrein KL. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. Brief Funct Genomics 2021:elab022. [PMID: 33782688 DOI: 10.1093/bfgp/elab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023] Open
Abstract
The complex processes necessary for embryogenesis require a gene regulatory network that is complex and systematic. Gene expression regulates development and organogenesis, but this process is altered and fine-tuned by epigenetic regulators that facilitate changes in the chromatin landscape. Epigenetic regulation of embryogenesis adjusts the chromatin structure by modifying both DNA through methylation and nucleosomes through posttranslational modifications of histone tails. The zebrafish is a well-characterized model organism that is a quintessential tool for studying developmental biology. With external fertilization, low cost and high fecundity, the zebrafish are an efficient tool for studying early developmental stages. Genetic manipulation can be performed in vivo resulting in quick identification of gene function. Large-scale genome analyses including RNA sequencing, chromatin immunoprecipitation and chromatin structure all are feasible in the zebrafish. In this review, we highlight the key events in zebrafish development where epigenetic regulation plays a critical role from the early stem cell stages through differentiation and organogenesis.
Collapse
|
17
|
Chen F, Gao Q, Wei A, Chen X, Shi Y, Wang H, Cao W. Histone deacetylase 3 aberration inhibits Klotho transcription and promotes renal fibrosis. Cell Death Differ 2021; 28:1001-1012. [PMID: 33024274 PMCID: PMC7937860 DOI: 10.1038/s41418-020-00631-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
Development of renal fibrosis is a hallmark of renal aging and chronic kidney disease of all etiologies and characterized by extensive renal cell injuries and subsequent myofibroblast transdifferentiations (MTDs), which are significantly influenced by aberrant histone deacetylase (HDAC) activities. However, the key HDAC isoforms and effectors that are causally involved in the processes remain poorly understood. Here, we report that aberrant HDAC3 induction and its inhibition of Klotho, a renal epithelium-enriched aging suppressor, contribute significantly to renal fibrogenesis. HDAC3 was preferentially elevated with concomitant Klotho suppression in fibrotic kidneys incurred by unilateral ureter obstruction (UUO) and aristolochic acid nephropathy (AAN), whereas Hdac3 knockout resisted the fibrotic pathologies. The HDAC3 elevation is substantially blocked by the inhibitors of TGFβ receptor and Smad3 phosphorylation, suggesting that TGFβ/Smad signal activates Hdac3 transcription. Consistently, an HDAC3-selective inhibitor RGFP966 derepressed Klotho and mitigated the renal fibrotic injuries in both UUO and AAN mice. Further, HDAC3 overexpression or inhibition in renal epithelia inversely affected Klotho abundances and HDAC3 was inducibly associated with transcription regulators NCoR and NF-kB and bound to Klotho promoter in fibrotic kidney, supporting that aberrant HDAC3 targets and transcriptionally inhibits Klotho under renal fibrotic conditions. More importantly, the antirenal fibrosis effects of RGFP966 were largely compromised in mice with siRNA-mediated Klotho knockdown. Hence, HDAC3 aberration and the subsequent Klotho suppression constitute an important regulatory loop that promotes MTD and renal fibrosis and uses of HDAC3-selective inhibitors are potentially effective in treating renal fibrotic disorders.
Collapse
Affiliation(s)
- Fang Chen
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Qi Gao
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Ai Wei
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xingren Chen
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Hongwei Wang
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| | - Wangsen Cao
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
18
|
Sixto-López Y, Gómez-Vidal JA, de Pedro N, Bello M, Rosales-Hernández MC, Correa-Basurto J. Hydroxamic acid derivatives as HDAC1, HDAC6 and HDAC8 inhibitors with antiproliferative activity in cancer cell lines. Sci Rep 2020; 10:10462. [PMID: 32591593 PMCID: PMC7320180 DOI: 10.1038/s41598-020-67112-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/02/2020] [Indexed: 01/04/2023] Open
Abstract
Histone deacetylases (HDACs) belong to a family of enzymes that remove acetyl groups from the ɛ-amino of histone and nonhistone proteins. Additionally, HDACs participate in the genesis and development of cancer diseases as promising therapeutic targets to treat cancer. Therefore, in this work, we designed and evaluated a set of hydroxamic acid derivatives that contain a hydrophobic moiety as antiproliferative HDAC inhibitors. For the chemical structure design, in silico tools (molecular docking, molecular dynamic (MD) simulations, ADME/Tox properties were used to target Zn2+ atoms and HDAC hydrophobic cavities. The most promising compounds were assayed in different cancer cell lines, including hepatocellular carcinoma (HepG2), pancreatic cancer (MIA PaCa-2), breast cancer (MCF-7 and HCC1954), renal cancer (RCC4-VHL and RCC4-VA) and neuroblastoma (SH-SY5Y). Molecular docking and MD simulations coupled to the MMGBSA approach showed that the target compounds have affinity for HDAC1, HDAC6 and HDAC8. Of all the compounds evaluated, YSL-109 showed the best activity against hepatocellular carcinoma (HepG2 cell line, IC50 = 3.39 µM), breast cancer (MCF-7 cell line, IC50 = 3.41 µM; HCC1954 cell line, IC50 = 3.41 µM) and neuroblastoma (SH-SY5Y cell line, IC50 = 6.42 µM). In vitro inhibition assays of compound YSL-109 against the HDACs showed IC50 values of 259.439 µM for HDAC1, 0.537 nM for HDAC6 and 2.24 µM for HDAC8.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation)-SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - José Antonio Gómez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain
| | - Nuria de Pedro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016, Granada, Spain
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation)-SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation)-SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico City, Mexico.
| |
Collapse
|
19
|
Moradzadeh K, Nassiri SM, Gheisari Y. Valproic acid restores the down-regulation of SDF-1 following kidney ischemia; experimental validation of a mathematical prediction. Res Pharm Sci 2020; 15:191-199. [PMID: 32582359 PMCID: PMC7306248 DOI: 10.4103/1735-5362.283819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 12/03/2019] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
Background and purpose Stromal-derived factor (SDF)-1, a chemokine recruiting leucocytes and stem cells, plays an essential role in tissue regeneration. In a previous study, we have unexpectedly found that the expression of this chemokine declines following kidney ischemia reperfusion (IR). To explain this observation, a mathematical model was constructed which proposed histone deacetylase (HDAC) as the main driver of SDF-1 down-regulation. To experimentally verify this prediction, the effect of valproic acid (VPA), a potent HDAC inhibitor, on the kinetics of kidney SDF-1 expression was here assessed. Experimental approach Adult mice were subjected to IR or sham operation and received VPA or vehicle. Next, SDF-1 expression as well as tissue repair indices were measured in a time course manner. Findings / Results The transcriptional expressions of Sdf-1 alpha, beta, and gamma isoforms were noisy in the sham groups but the fluctuations disappeared following IR where a continuous declining trend was observed. VPA induced the over-expression of gamma, but not alpha and beta mRNA in IR mice which was accompanied with protein upregulation. Remarkably, VPA deteriorated kidney injury. Conclusion and implications HDAC inhibition restores SDF-1 down-regulation following kidney IR. The present study is a classic example of the potential of computational modeling for the prediction of biomedical phenomena.
Collapse
Affiliation(s)
- Kobra Moradzadeh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, I.R. Iran
| | - Yousof Gheisari
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
20
|
Williams VR, Konvalinka A, Song X, Zhou X, John R, Pei Y, Scholey JW. Connectivity mapping of a chronic kidney disease progression signature identified lysine deacetylases as novel therapeutic targets. Kidney Int 2020; 98:116-132. [PMID: 32418621 DOI: 10.1016/j.kint.2020.01.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
Tubulointerstitial injury is an important determinant of chronic kidney disease progression, yet treatment is limited. Accordingly, we derived a chronic kidney disease progression signature based on aging and disease in Col4a3-/- mice, a model associated with proteinuria and progressive loss of kidney function. Computational drug repurposing with the Connectivity Map identified vorinostat, a lysine deacetylase inhibitor, as a candidate treatment to reverse progression signature gene expression. Vorinostat administration significantly increased the lifespan of Col4a3-/- mice and attenuated tubulointerstitial fibrosis and JNK phosphorylation in the kidneys of Col4a3-/- mice. In vitro, vorinostat reduced albumin- and angiotensin II-induced activation of canonical mitogen-activated protein kinases in kidney tubular epithelial cells. Finally, a subset of murine progression signature genes was differentially expressed across kidney transcriptomic data from patients with focal segmental glomerulosclerosis, IgA nephropathy, and diabetic nephropathy. Thus, our findings suggest that lysine deacetylase inhibition may be a novel treatment to chronic kidney disease associated with proteinuria and progressive tubulointerstitial injury.
Collapse
Affiliation(s)
| | - Ana Konvalinka
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Division of Nephrology, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Xuewen Song
- Division of Nephrology, University Health Network, Toronto, Canada
| | - Xiaohua Zhou
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology, University Health Network, Toronto, Canada
| | - York Pei
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Division of Nephrology, University Health Network, Toronto, Canada
| | - James W Scholey
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Division of Nephrology, University Health Network, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Chen MC, Lin YC, Liao YH, Liou JP, Chen CH. MPT0G612, a Novel HDAC6 Inhibitor, Induces Apoptosis and Suppresses IFN-γ-Induced Programmed Death-Ligand 1 in Human Colorectal Carcinoma Cells. Cancers (Basel) 2019; 11:cancers11101617. [PMID: 31652644 PMCID: PMC6826904 DOI: 10.3390/cancers11101617] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the leading cause of cancer-associated death worldwide. Histone deacetylases (HDACs) have been implicated in regulating complex cellular mechanisms to influence tumor biology and immunogenicity in various types of cancer. The potential of selective inhibition of HDAC6 has been widely discussed for the treatment of hematologic malignancies. We previously identified that MPT0G612 is a novel HDAC6 inhibitor exhibiting a promising antitumor activity against several solid tumors. The purpose of the present study was to evaluate the feasibility and pharmacological mechanisms of MPT0G612 as a potential therapy for CRC patients. Results revealed that MPT0G612 significantly suppresses the proliferation and viability, as well as induces apoptosis in CRC cells. Autophagy activation with LC3B-II formation and p62 degradation was observed, and the inhibition of autophagy by pharmacological inhibitor or Atg5 knockdown enhances MPT0G612-induced cell death. In addition, HDAC6 knockdown reduces MPT0G612-mediated autophagy and further potentiates apoptotic cell death. Furthermore, MPT0G612 downregulates the expression of PD-L1 induced by IFN-γ in CRC cells. These results suggest that MPT0G612 is a potent cell death inducer through inhibiting HDAC6-associated pathway, and a potential agent for combination strategy with immune checkpoint inhibitors for the treatment of CRC.
Collapse
Affiliation(s)
- Mei-Chuan Chen
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Yu-Chen Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Hsuan Liao
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Han Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
22
|
Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, Poveda J, Sanchez-Niño MD, Valiño-Rivas L, Ruiz-Ortega M, Ortiz A, Sanz AB. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dial Transplant 2019. [PMID: 29534238 DOI: 10.1093/ndt/gfy009] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Epigenetics refers to heritable changes in gene expression patterns not caused by an altered nucleotide sequence, and includes non-coding RNAs and covalent modifications of DNA and histones. This review focuses on functional evidence for the involvement of DNA and histone epigenetic modifications in the pathogenesis of kidney disease and the potential therapeutic implications. There is evidence of activation of epigenetic regulatory mechanisms in acute kidney injury (AKI), chronic kidney disease (CKD) and the AKI-to-CKD transition of diverse aetiologies, including ischaemia-reperfusion injury, nephrotoxicity, ureteral obstruction, diabetes, glomerulonephritis and polycystic kidney disease. A beneficial in vivo effect over preclinical kidney injury has been reported for drugs that decrease DNA methylation by either inhibiting DNA methylation (e.g. 5-azacytidine and decitabine) or activating DNA demethylation (e.g. hydralazine), decrease histone methylation by inhibiting histone methyltransferases, increase histone acetylation by inhibiting histone deacetylases (HDACs, e.g. valproic acid, vorinostat, entinostat), increase histone crotonylation (crotonate) or interfere with histone modification readers [e.g. inhibits of bromodomain and extra-terminal proteins (BET)]. Most preclinical studies addressed CKD or the AKI-to-CKD transition. Crotonate administration protected from nephrotoxic AKI, but evidence is conflicting on DNA methylation inhibitors for preclinical AKI. Several drugs targeting epigenetic regulators are in clinical development or use, most of them for malignancy. The BET inhibitor apabetalone is in Phase 3 trials for atherosclerosis, kidney function being a secondary endpoint, but nephrotoxicity was reported for DNA and HDAC inhibitors. While research into epigenetic modulators may provide novel therapies for kidney disease, caution should be exercised based on the clinical nephrotoxicity of some drugs.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Diego Martin-Sanchez
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Olga Ruiz-Andres
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Jonay Poveda
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Lara Valiño-Rivas
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Ana Belén Sanz
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| |
Collapse
|
23
|
Knoppert SN, Valentijn FA, Nguyen TQ, Goldschmeding R, Falke LL. Cellular Senescence and the Kidney: Potential Therapeutic Targets and Tools. Front Pharmacol 2019; 10:770. [PMID: 31354486 PMCID: PMC6639430 DOI: 10.3389/fphar.2019.00770] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing health burden (affecting approximately 13.4% of the population). Currently, no curative treatment options are available and treatment is focused on limiting the disease progression. The accumulation of senescent cells has been implicated in the development of kidney fibrosis by limiting tissue rejuvenation and through the secretion of pro-fibrotic and pro-inflammatory mediators termed as the senescence-associated secretory phenotype. The clearance of senescent cells in aging models results in improved kidney function, which shows promise for the options of targeting senescent cells in CKD. There are several approaches for the development of “senotherapies”, the most rigorous of which is the elimination of senescent cells by the so-called senolytic drugs either newly developed or repurposed for off-target effects in terms of selectively inducing apoptosis in senescent cells. Several chemotherapeutics and checkpoint inhibitors currently used in daily oncological practice show senolytic properties. However, the applicability of such senolytic compounds for the treatment of renal diseases has hardly been investigated. A serious concern is that systemic side effects will limit the use of senolytics for kidney fibrosis. Specifically targeting senescent cells and/or targeted drug delivery to the kidney might circumvent these side effects. In this review, we discuss the connection between CKD and senescence, the pharmacological options for targeting senescent cells, and the means to specifically target the kidney.
Collapse
Affiliation(s)
- Sebastian N Knoppert
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Floris A Valentijn
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Internal Medicine, Diakonessenhuis, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
24
|
Brilli Skvarca L, Han HI, Espiritu EB, Missinato MA, Rochon ER, McDaniels MD, Bais AS, Roman BL, Waxman JS, Watkins SC, Davidson AJ, Tsang M, Hukriede NA. Enhancing regeneration after acute kidney injury by promoting cellular dedifferentiation in zebrafish. Dis Model Mech 2019; 12:dmm.037390. [PMID: 30890583 PMCID: PMC6505474 DOI: 10.1242/dmm.037390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is a serious disorder for which there are limited treatment options. Following injury, native nephrons display limited regenerative capabilities, relying on the dedifferentiation and proliferation of renal tubular epithelial cells (RTECs) that survive the insult. Previously, we identified 4-(phenylthio)butanoic acid (PTBA), a histone deacetylase inhibitor (HDI), as an enhancer of renal recovery, and showed that PTBA treatment increased RTEC proliferation and reduced renal fibrosis. Here, we investigated the regenerative mechanisms of PTBA in zebrafish models of larval renal injury and adult cardiac injury. With respect to renal injury, we showed that delivery of PTBA using an esterified prodrug (UPHD25) increases the reactivation of the renal progenitor gene Pax2a, enhances dedifferentiation of RTECs, reduces Kidney injury molecule-1 (Kim-1) expression, and lowers the number of infiltrating macrophages. Further, we found that the effects of PTBA on RTEC proliferation depend upon retinoic acid signaling and demonstrate that the therapeutic properties of PTBA are not restricted to the kidney but also increase cardiomyocyte proliferation and decrease fibrosis following cardiac injury in adult zebrafish. These studies provide key mechanistic insights into how PTBA enhances tissue repair in models of acute injury and lay the groundwork for translating this novel HDI into the clinic. This article has an associated First Person interview with the joint first authors of the paper. Summary: Mortality associated with AKI is in part due to limited treatments available to ameliorate injury. The authors identify a compound that accelerates AKI recovery and promotes cellular dedifferentiation.
Collapse
Affiliation(s)
- Lauren Brilli Skvarca
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hwa In Han
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Maria A Missinato
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Elizabeth R Rochon
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael D McDaniels
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Abha S Bais
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Beth L Roman
- Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Joshua S Waxman
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Simon C Watkins
- Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alan J Davidson
- Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA .,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Yang M, Chen G, Zhang X, Guo Y, Yu Y, Tian L, Chang S, Chen ZK. Inhibition of class I HDACs attenuates renal interstitial fibrosis in a murine model. Pharmacol Res 2019; 142:192-204. [PMID: 30807866 DOI: 10.1016/j.phrs.2019.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/20/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Renal interstitial fibrosis is the most common of all the forms of chronic kidney disease (CKD). Research has shown that histone deacetylases (HDACs) participate in the process leading to renal fibrosis. However, the effects of class I HDAC inhibitors on the mechanisms of onset and progression of renal interstitial fibrosis are still unclear. Here, we present the effects and mechanisms of action of FK228 (a selective inhibitor of class I HDACs) in the murine model of unilateral ureteral obstruction (UUO) and in vitro models. We investigated the antifibrotic role of FK228 in a murine model of UUO. We used two key effector cell populations, rat renal interstitial fibroblasts and renal tubular epithelial cells exposed to recombinant transforming growth factor-beta 1 (TGF-β1), to explore the mechanistic pathways among in vitro models. The results indicated that FK228 significantly suppressed the production of extracellular matrix (ECM) in both in vivo and in vitro models. FK228 inhibited renal fibroblast activation and proliferation and increased the acetylation of histone H3. We found that FK228 also inhibited the small mothers against decapentaplegic (Smad) and non-Smad signaling pathways. So FK228 could significantly suppress renal interstitial fibrosis via Smad and non-Smad pathways. FK228 may be the basis for a new and effective medicine for alleviating renal fibrosis in the future.
Collapse
Affiliation(s)
- Min Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Gen Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Zhang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuliang Guo
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yan Yu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Li Tian
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhonghua Klaus Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
26
|
Ha SD, Solomon O, Akbari M, Sener A, Kim SO. Histone deacetylase 8 protects human proximal tubular epithelial cells from hypoxia-mimetic cobalt- and hypoxia/reoxygenation-induced mitochondrial fission and cytotoxicity. Sci Rep 2018; 8:11332. [PMID: 30054507 PMCID: PMC6063935 DOI: 10.1038/s41598-018-29463-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
Cell death by hypoxia followed by reoxygenation (H/R) is responsible for tissue injury in multiple pathological conditions. Recent studies found that epigenetic reprogramming mediated by histone deacetylases (HDACs) is implicated in H/R-induced cell death. However, among 18 different isoforms comprising 4 classes (I-IV), the role of each HDAC in cell death is largely unknown. This study examined the role of HDAC8, which is the most distinct isoform of class I, in the hypoxia mimetic cobalt- and H/R-induced cytotoxicity of human proximal tubular HK-2 cells. Using the HDAC8-specific activator TM-2-51 (TM) and inhibitor PCI34051, we found that HDAC8 played a protective role in cytotoxicity. TM or overexpression of wild-type HDAC8, but not a deacetylase-defective HDAC8 mutant, prevented mitochondrial fission, loss of mitochondrial transmembrane potential and release of cytochrome C into the cytoplasm. TM suppressed expression of dynamin-related protein 1 (DRP1) which is a key factor required for mitochondrial fission. Suppression of DRP1 by HDAC8 was likely mediated by decreasing the level of acetylated histone H3 lysine 27 (a hallmark of active promoters) at the DRP1 promoter. Collectively, this study shows that HDAC8 inhibits cytotoxicity induced by cobalt and H/R, in part, through suppressing DRP1 expression and mitochondrial fission.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology & Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, 1400 Western Road, London, Ontario, N6G 2V4, Canada
| | - Ori Solomon
- Department of Microbiology & Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, 1400 Western Road, London, Ontario, N6G 2V4, Canada
| | - Masoud Akbari
- Department of Microbiology & Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, 1400 Western Road, London, Ontario, N6G 2V4, Canada
- Department of Surgery, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6G 2V4, Canada
| | - Alp Sener
- Department of Microbiology & Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, 1400 Western Road, London, Ontario, N6G 2V4, Canada
- Department of Surgery, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6G 2V4, Canada
| | - Sung Ouk Kim
- Department of Microbiology & Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, 1400 Western Road, London, Ontario, N6G 2V4, Canada.
| |
Collapse
|
27
|
Zhang H, Zhang W, Jiao F, Li X, Zhang H, Wang L, Gong Z. The Nephroprotective Effect of MS-275 on Lipopolysaccharide (LPS)-Induced Acute Kidney Injury by Inhibiting Reactive Oxygen Species (ROS)-Oxidative Stress and Endoplasmic Reticulum Stress. Med Sci Monit 2018; 24:2620-2630. [PMID: 29704392 PMCID: PMC5944402 DOI: 10.12659/msm.906362] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Histone deacetylase (HDAC) inhibitors can attenuate acute kidney injury (AKI)-mediated damage and reduce fibrosis in kidney disease models. The aim of the present study was to investigate the effects of the HDAC inhibitor MS-275 on lipopolysaccharide (LPS)-induced AKI and the associated mechanisms. Material/Methods A LPS-induced model in 6–8 weeks-old mice was established by intraperitoneal injection of LPS (10 mg/kg), with pre-treatment of MS-275 (2 mg/kg/day) administered intraperitoneally for five days. In addition, HK-2 cells were exposed to LPS (1 μg/mL) at 0.1 nM, 1 nM, 10 nM, and 100 nM. For our in vitro MS-275 study, detection programs included histology, biochemical, immunohistochemistry, mRNA and protein expression as well as apoptosis. Results MS-275 ameliorated renal damage, enhanced the survival rate of the LPS-induced sepsis model, decreased the expressions of TNF-α, IL-1β, IL-6, COX-2, and NF-κBp65 nucleus translocation, suppressed the HDAC activity which was enhanced in septic AKI mice, and enhanced the acetylation of histone H3 and H4. Reactive oxygen species (ROS) production was enhanced in the kidney of LPS mice compared to control mice, while MS-275 suppressed the production of ROS in kidney tissue. In the in vitro studies, MS-275 reduced the LPS-induced apoptosis of HK-2 cells, inhibited ROS and MDA production, increased the production GSH and SOD activity, decreased the expressions of CHOP, GRP78, caspase3, and capase12, which was related to endoplasmic reticulum stress in LPS stimulated HK-2 cells. Conclusions MS-275 pre-treatment improved renal function and ameliorated histological alterations, inflammation, and ROS production in LPS-induced AKI mice and may act through inhibiting ROS-oxidative stress and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Haiyue Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Wenbin Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Fangzhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Xun Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Hong Zhang
- Department of Pharmaceutical, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
28
|
Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells. Cell Death Dis 2018; 9:322. [PMID: 29476062 PMCID: PMC5833747 DOI: 10.1038/s41419-018-0374-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
Histone deacetylase inhibitors (HDACi) have therapeutic effects in models of various renal diseases including acute kidney injury (AKI); however, the underlying mechanism remains unclear. Here we demonstrate that two widely tested HDACi (suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA)) protect the kidneys in cisplatin-induced AKI by enhancing autophagy. In cultured renal proximal tubular cells, SAHA and TSA enhanced autophagy during cisplatin treatment. We further verified the protective effect of TSA against cisplatin-induced apoptosis in these cells. Notably, inhibition of autophagy by chloroquine or by autophagy gene 7 (Atg7) ablation diminished the protective effect of TSA. In mice, TSA increased autophagy in renal proximal tubules and protected against cisplatin-induced AKI. The in vivo effect of TSA was also abolished by chloroquine and by Atg7 knockout specifically from renal proximal tubules. Mechanistically, TSA stimulated AMPK and inactivated mTOR during cisplatin treatment of proximal tubule cells and kidneys in mice. Together, these results suggest that HDACi may protect kidneys by activating autophagy in proximal tubular cells.
Collapse
|
29
|
Chun P. Therapeutic effects of histone deacetylase inhibitors on kidney disease. Arch Pharm Res 2017; 41:162-183. [PMID: 29230688 DOI: 10.1007/s12272-017-0998-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/26/2017] [Indexed: 12/12/2022]
Abstract
Increasing evidence has shown the involvement of histone deacetylases (HDACs) in the development and progression of various renal diseases, highlighting its inhibition as a promising therapeutic strategy to prevent kidney diseases. Accordingly, numerous studies have shown that HDAC inhibitors protect the kidneys from various diseases through their effects on multiple pathways, such as suppression of transforming growth factor-β signaling pathway and nuclear factor-κB signaling pathways, augmentation of apoptosis, and inhibition of angiogenesis. To develop more effective and less toxic isoform-selective HDAC inhibitors and further improve clinical outcomes, it is necessary to identify and understand the mechanisms involved in the pathogenesis and progression of renal diseases. This review focuses on the roles of HDAC inhibitors and the mechanisms involved in their therapeutic effects in experimental models of kidney diseases including glomerulosclerosis, tubulointerstitial fibrosis, glomerular and tubulointerstitial inflammation, lupus nephritis, polycystic kidney disease, and renal cell carcinoma (RCC).
Collapse
Affiliation(s)
- Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
30
|
Ma Y, Liu W, Zhang L, Jia G. Effects of Histone Deacetylase Inhibitor Panobinostat (LBH589) on Bone Marrow Mononuclear Cells of Relapsed or Refractory Multiple Myeloma Patients and Its Mechanisms. Med Sci Monit 2017; 23:5150-5157. [PMID: 29080899 PMCID: PMC5674922 DOI: 10.12659/msm.904232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to explore the impact of LBH589 alone or in combination with proteasome inhibitor bortezomib on multiple myeloma (MM) cell proliferation and its mechanism. Material/Methods MM cell line U266 and RRMM-BMMNC were treated with different concentrations of LBH589 alone or in combination with bortezomib. Cell proliferation was detected by MTT assay. Cell cycle and apoptosis was analyzed by flow cytometry. The protein and mRNA level of related genes was determined by Western blotting and qRT-PCR respectively. Results U266 cell and RRMM-BMMNC proliferation were inhibited by different concentrations of LBH589 (0, 10, 20, and 50 nmol/L) alone or 50 nmol/L of LBH589 in combination with bortezomib (10 and 20 nmol/L) in a dose- and time-dependent manner. LBH589 significantly induced G0/G1phase arrest and apoptosis in RRMM-BMMNC in a dose-dependent manner. The effects were significantly higher in all combined groups than in single-agent groups (all P<0.05). The mRNA level of Caspase3 and APAF1 were up-regulated gradually, while TOSO gene expression in RRMM-BMMNC was down-regulated gradually in a dose- and time-dependent manner. Moreover, LBH589 significantly induced hyperacetylation of histone H4, the protein level of PARP notably increased, and the level of Bcl-X decreased. Conclusions LBH589 can inhibit MM cell growth, block the cell cycle, and induce cell apoptosis, which has an anti-resistant effect on multidrug-resistant cells. LBH589 in combination with bortezomib has a synergistic effect on myeloma cells; its mechanism and reversal of drug resistance mechanism is involved in multiple changes in gene expression.
Collapse
Affiliation(s)
- Yanping Ma
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Wenhua Liu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Ling Zhang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Gu Jia
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
31
|
Wang L, Zhu Q, Lu A, Liu X, Zhang L, Xu C, Liu X, Li H, Yang T. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J Hypertens 2017; 35:1899-1908. [PMID: 28509726 PMCID: PMC11157961 DOI: 10.1097/hjh.0000000000001378] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Butyrate, a short-chain fatty acid, is the end product of the fermentation of complex carbohydrates by the gut microbiota. Recently, sodium butyrate (NaBu) has been found to play a protective role in a number of chronic diseases. However, it is still unclear whether NaBu has a therapeutic potential in hypertension. The present study was aimed to investigate the role of NaBu in angiotensin II (Ang II)-induced hypertension and to further explore the underlying mechanism. METHODS Ang II was infused into uninephrectomized Sprague-Dawley rats with or without intramedullary infusion of NaBu for 14 days. Mean arterial blood pressure was recorded by the telemetry system. Renal tissues, serum samples, and 24-h urine samples were collected to examine renal injury and the regulation of the (pro)renin receptor (PRR) and renin. RESULTS Intramedullary infusion of NaBu in Sprague-Dawley rats lowered the Ang II-induced mean arterial pressure from 129 ± 6 mmHg to 108 ± 4 mmHg (P < 0.01). This corresponded with an improvement in Ang II-induced renal injury, including urinary albumin, glomerulosclerosis, and renal fibrosis, as well as the expression of inflammatory mediators tumor necrosis factor α, interleukin 6. The renal expression of PRR, angiotensinogen, angiotensin I-converting enzyme and the urinary excretion of soluble PRR, renin, and angiotensinogen were all increased by Ang II infusion but decreased by NaBu treatment. In cultured innermedullary collecting duct cells, NaBu treatment attenuated Ang II-induced expression of PRR and renin. CONCLUSION These results demonstrate that NaBu exerts an antihypertensive action, likely by suppressing the PRR-mediated intrarenal renin-angiotensin system.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Qing Zhu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Xiaofen Liu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Linlin Zhang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Xiyang Liu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Haobo Li
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
- Veterans Affairs Medical Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
32
|
Sanna MD, Guandalini L, Romanelli MN, Galeotti N. The new HDAC1 inhibitor LG325 ameliorates neuropathic pain in a mouse model. Pharmacol Biochem Behav 2017; 160:70-75. [DOI: 10.1016/j.pbb.2017.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/27/2022]
|
33
|
Li Y, Wang L, Ai W, He N, Zhang L, Du J, Wang Y, Mao X, Ren J, Xu D, Zhou B, Li R, Mai L. Regulation of retinoic acid synthetic enzymes by WT1 and HDAC inhibitors in 293 cells. Int J Mol Med 2017; 40:661-672. [PMID: 28677722 PMCID: PMC5547963 DOI: 10.3892/ijmm.2017.3051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 06/21/2017] [Indexed: 12/27/2022] Open
Abstract
All-trans retinoic acid (atRA), which is mainly generated endogenously via two steps of oxidation from vitamin A (retinol), plays an indispensible role in the development of the kidney and many other organs. Enzymes that catalyze the oxidation of retinol to generate atRA, including aldehyde dehydrogenase 1 family (ALDH1)A1, ALDH1A2 and ALDH1A3, exhibit complex expression patterns at different stages of renal development. However, molecular triggers that control these differential expression levels are poorly understood. In this study, we provide in vitro evidence to demonstrate that Wilms' tumor 1 (WT1) negatively regulates the expression of the atRA synthetic enzymes, ALDH1A1, ALDH1A2 and ALDH1A3, in the 293 cell line, leading to significant blockage of atRA production. Furthermore, we demonstrate that the suppression of ALDH1A1 by WT1 can be markedly attenuated by histone deacetylase inhibitors (HDACis). Taken together, we provide evidence to indicate that WT1 and HDACs are strong regulators of endogenous retinoic acid synthetic enzymes in 293 cells, indicating that they may be involved in the regulation of atRA synthesis.
Collapse
Affiliation(s)
- Yifan Li
- Central Laboratory, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Lei Wang
- Central Laboratory, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Weipeng Ai
- Department of Clinical Pharmacology, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Nianhui He
- Department of Clinical Pharmacology, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Lin Zhang
- Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Jihui Du
- Central Laboratory, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Yong Wang
- Department of Gastroenterology, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Xingjian Mao
- Central Laboratory, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Junqi Ren
- Department of Pathology, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Dan Xu
- Department of Clinical Laboratory, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Bei Zhou
- Central Laboratory, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Rong Li
- Central Laboratory, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Liwen Mai
- Central Laboratory, Shenzhen Nanshan People's Hospital/Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| |
Collapse
|
34
|
Lin W, Zhang Q, Liu L, Yin S, Liu Z, Cao W. Klotho restoration via acetylation of Peroxisome Proliferation-Activated Receptor γ reduces the progression of chronic kidney disease. Kidney Int 2017; 92:669-679. [PMID: 28416226 DOI: 10.1016/j.kint.2017.02.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023]
Abstract
Klotho is an anti-aging protein mainly expressed in the kidney. Reduced Klotho expression closely correlates with the development and progression of chronic kidney disease (CKD). Klotho is also a downstream gene of Peroxisome Proliferation-Activated Receptor γ (PPARγ), a major transcription factor whose functions are significantly affected by post-translational modifications including acetylation. However, whether PPARγ acetylation regulates renal Klotho expression and function in CKD is unknown. Here we test whether renal damage and reduced Klotho expression in the adenine CKD mouse model can be attenuated by the pan histone deacetylase (HDAC) inhibitor trichostatin A. This inhibition up-regulated Klotho mainly through an enhancement of PPARγ acetylation, stimulation of PPARγ binding to Klotho promoter, and PPARγ-dependent increase in Klotho transcription, with a substantial control of the regulation occurring via PPARγ acetylations on K240 and K265. Consistently trichostatin A-induced reversal of Klotho loss and renoprotective effects were abrogated in PPARγ knockout mice, supporting that PPARγ is an essential acetylation target for Klotho restoration and renal protection. Intriguingly, the kidneys of adenine-fed CKD mice displayed deregulated HDAC3 up-regulation. Selective HDAC3 inhibition effectively alleviated Klotho loss and kidney injury, whereas the protective effects were largely abolished when Klotho was knocked down by siRNA, suggesting that aberrant HDAC3 and Klotho loss are crucial components involved in the renal damage of mice with CKD. Our study identified an important signaling cascade and key components contributing to the pathogenesis of CKD. Thus, targeting Klotho loss by HDAC3 inhibition has promising therapeutic potential for the reduction of CKD progression.
Collapse
Affiliation(s)
- Wenjun Lin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qin Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Lin Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shasha Yin
- Department of Basic Medical Science and Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Wangsen Cao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; Department of Basic Medical Science and Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
35
|
Singh RS, Chaudhary DK, Mohan A, Kumar P, Chaturvedi CP, Ecelbarger CM, Godbole MM, Tiwari S. Greater efficacy of atorvastatin versus a non-statin lipid-lowering agent against renal injury: potential role as a histone deacetylase inhibitor. Sci Rep 2016; 6:38034. [PMID: 27901066 PMCID: PMC5128790 DOI: 10.1038/srep38034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors have been shown to improve diabetic nephropathy. However, whether they provide protection via Histone deacetylases (HDAC) inhibition is not clear. We conducted a comparative evaluation of Atorvastatin (AT) versus the non-statin cholesterol-lowering drug, Ezetimibe (EZT) on severity of diabetic nephropathy. Streptozotocin-treated male Wistar rats were fed a cholesterol-supplemented diet and gavaged daily with vehicle, AT or EZT. Control rats received normal diet and gavaged vehicle (n = 8-9/group). Diabetes increased blood glucose, urine albumin-to-creatinine ratio (ACR), kidney pathology and HDAC activity, and reduced renal E-cadherin levels. Both AT and EZT reduced circulating cholesterol, attenuated renal pathology, and did not lower blood glucose. However, AT was significantly more effective than EZT at reducing kidney pathology and HDAC activity. Chromatin immunoprecipitation revealed a significantly higher association of acetylated H3 and H4 with the E-cadherin promoter in kidneys from AT-, relative to EZT- or vehicle-treated rats. Moreover, we demonstrated a direct effect of AT, but not EZT, on HDAC-inhibition and, H3 and H4- acetylation in primary glomerular mesangial cells. Overall, both AT and EZT attenuated diabetic nephropathy; however, AT exhibited greater efficacy despite a similar reduction in circulating cholesterol. HDAC-inhibition may underlie greater efficacy of statins in attenuating kidney injury.
Collapse
Affiliation(s)
- Ravi Shankar Singh
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Dharmendra Kumar Chaudhary
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Aradhana Mohan
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Praveen Kumar
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | | | - Madan M. Godbole
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
36
|
Xiong C, Masucci MV, Zhou X, Liu N, Zang X, Tolbert E, Zhao TC, Zhuang S. Pharmacological targeting of BET proteins inhibits renal fibroblast activation and alleviates renal fibrosis. Oncotarget 2016; 7:69291-69308. [PMID: 27732564 PMCID: PMC5342478 DOI: 10.18632/oncotarget.12498] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
Bromodomain and extra-terminal (BET) protein inhibitors have been shown to effectively inhibit tumorgenesis and ameliorate pulmonary fibrosis by targeting bromodomain proteins that bind acetylated chromatin markers. However, their pharmacological effects in renal fibrosis remain unclear. In this study, we examined the effect of I-BET151, a selective and potent BET inhibitor, on renal fibroblast activation and renal fibrosis. In cultured renal interstitial fibroblasts, exposure of cells to I-BET151, or silencing of bromodoma in-containing protein 4 (Brd4), a key BET protein isoform, significantly reduced their activation as indicated by decreased expression of α-smooth muscle actin, collagen 1 and fibronectin. In a murine model of renal fibrosis induced by unilateral ureteral obstruction (UUO), administration of I-BET151 suppressed the deposition of extracellular matrix proteins, renal fibroblast activation and macrophage infiltration. Mechanistically, I-BET151 treatment abrogated UUO-induced phosphorylation of epidermal growth factor receptor and platelet growth factor receptor-β. It also inhibited the activation of Smad-3, STAT3 and NF-κB pathways, as well as the expression of c-Myc and P53 transcription factors in the kidney. Moreover, BET inhibition resulted in the reduction of renal epithelial cells arrested at the G2/M phase of cell cycle after UUO injury. Finally, injury to the kidney up-regulated Brd4, and I-BET151 treatment abrogated its expression. Brd4 was also highly expressed in human fibrotic kidneys. These data indicate that BET proteins are implicated in the regulation of signaling pathways and transcription factors associated with renal fibrogenesis, and suggest that pharmacological inhibition of BET proteins could be a potential treatment for renal fibrosis.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Monica V. Masucci
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Evelyn Tolbert
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Ting C. Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University, Providence, RI, USA
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
37
|
Mahajan A, Rodan AR, Le TH, Gaulton KJ, Haessler J, Stilp AM, Kamatani Y, Zhu G, Sofer T, Puri S, Schellinger JN, Chu PL, Cechova S, van Zuydam N, Arnlov J, Flessner MF, Giedraitis V, Heath AC, Kubo M, Larsson A, Lindgren CM, Madden PAF, Montgomery GW, Papanicolaou GJ, Reiner AP, Sundström J, Thornton TA, Lind L, Ingelsson E, Cai J, Martin NG, Kooperberg C, Matsuda K, Whitfield JB, Okada Y, Laurie CC, Morris AP, Franceschini N. Trans-ethnic Fine Mapping Highlights Kidney-Function Genes Linked to Salt Sensitivity. Am J Hum Genet 2016; 99:636-646. [PMID: 27588450 PMCID: PMC5011075 DOI: 10.1016/j.ajhg.2016.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/08/2016] [Indexed: 01/09/2023] Open
Abstract
We analyzed genome-wide association studies (GWASs), including data from 71,638 individuals from four ancestries, for estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We identified 20 loci attaining genome-wide-significant evidence of association (p < 5 × 10(-8)) with kidney function and highlighted that allelic effects on eGFR at lead SNPs are homogeneous across ancestries. We leveraged differences in the pattern of linkage disequilibrium between diverse populations to fine-map the 20 loci through construction of "credible sets" of variants driving eGFR association signals. Credible variants at the 20 eGFR loci were enriched for DNase I hypersensitivity sites (DHSs) in human kidney cells. DHS credible variants were expression quantitative trait loci for NFATC1 and RGS14 (at the SLC34A1 locus) in multiple tissues. Loss-of-function mutations in ancestral orthologs of both genes in Drosophila melanogaster were associated with altered sensitivity to salt stress. Renal mRNA expression of Nfatc1 and Rgs14 in a salt-sensitive mouse model was also reduced after exposure to a high-salt diet or induced CKD. Our study (1) demonstrates the utility of trans-ethnic fine mapping through integration of GWASs involving diverse populations with genomic annotation from relevant tissues to define molecular mechanisms by which association signals exert their effect and (2) suggests that salt sensitivity might be an important marker for biological processes that affect kidney function and CKD in humans.
Collapse
Affiliation(s)
- Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Aylin R Rodan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75229, USA
| | - Thu H Le
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Gu Zhu
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Sanjana Puri
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75229, USA
| | - Jeffrey N Schellinger
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75229, USA
| | - Pei-Lun Chu
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sylvia Cechova
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Natalie van Zuydam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Johan Arnlov
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 751 85, Sweden; School of Health and Social Studies, Dalarna University, Falun 791 88, Sweden
| | - Michael F Flessner
- National Institute of Diabetes, Digestive, and Kidney Disease, NIH, Bethesda, MD 20892, USA
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala 752 37, Sweden
| | - Andrew C Heath
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Anders Larsson
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 751 85, Sweden
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK
| | - Pamela A F Madden
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Grant W Montgomery
- Molecular Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - George J Papanicolaou
- Epidemiology Branch, Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 751 85, Sweden
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 751 85, Sweden
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 752 37, Sweden; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianwen Cai
- Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas G Martin
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - John B Whitfield
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Department of Biostatistics, University of Liverpool, Liverpool L69 3GL, UK.
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
38
|
Wang W, Cui SS, Lu R, Zhang H. Is there any therapeutic value for the use of histone deacetylase inhibitors for chronic pain? Brain Res Bull 2016; 125:44-52. [PMID: 27090944 DOI: 10.1016/j.brainresbull.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
Chronic pain is a complex clinical condition that reduces the quality of life for billions of people. In recent years, the role of epigenetic modulation in the control of long-term neuronal plasticity has attracted the attention of pain researchers. The epigenetic mechanisms include covalent modifications of DNA and/or histone proteins. Mounting evidence suggests that the activity of histone deacetylases (HDACs) and levels of histone acetylation are dynamic and that these enzymes modulate pain-related synaptic plasticity. Therefore, HDACs play essential roles in chronic pain development and maintenance. In this mini review, we will discuss the role of HDACs in the pathogenesis of chronic pain and will consider the therapeutic value of HDAC inhibitors in treating chronic pain.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Shan-Shan Cui
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan 430071, China.
| | - Rui Lu
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Hui Zhang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
39
|
Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions. Transplantation 2016; 100:23-38. [PMID: 26356174 DOI: 10.1097/tp.0000000000000878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are changes to the genome that occur without any alteration in DNA sequence. These changes include cytosine methylation of DNA at cytosine-phosphate diester-guanine dinucleotides, histone modifications, microRNA interactions, and chromatin remodeling complexes. Epigenetic modifications may exert their effect independently or complementary to genetic variants and have the potential to modify gene expression. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. There is emerging evidence that epigenetics play an important role in health and disease. However, the impact of epigenetic modifications on the outcomes of kidney transplantation is currently poorly understood and deserves further exploration. Kidney transplantation is the best treatment option for end-stage renal disease, but allograft loss remains a significant challenge that leads to increased morbidity and return to dialysis. Epigenetic modifications may influence the activation, proliferation, and differentiation of the immune cells, and therefore may have a critical role in the host immune response to the allograft and its outcome. The epigenome of the donor may also impact kidney graft survival, especially those epigenetic modifications associated with early transplant stressors (e.g., cold ischemia time) and donor aging. In the present review, we discuss evidence supporting the role of epigenetic modifications in ischemia-reperfusion injury, host immune response to the graft, and graft response to injury as potential new tools for the diagnosis and prediction of graft function, and new therapeutic targets for improving outcomes of kidney transplantation.
Collapse
|
40
|
Abstract
Ciliopathy nephronophthisis (NPHP), a common cause of end-stage renal disease (ESRD) in children and young adults, is characterized by disintegration of the tubular basement membrane accompanied by irregular thickening and attenuation, interstitial fibrosis and tubular atrophy, and occasionally cortico-medullary cyst formation. Pharmacological approaches that delay the development of ESRD could potentially extend the window of therapeutic opportunity for this group of patients, generating time to find an appropriate donor or even for new treatments to mature. In this review we provide an overview of compounds that have been tested to ameliorate kidney cysts and/or fibrosis. We also revisit paclitaxel as a potential strategy to target fibrosis in NPHP. At low dosage this chemotherapy drug shows promising results in rodent models of renal fibrosis. Possible adverse events and safety of paclitaxel treatment in pediatric patients would need to be investigated, as would the efficacy, optimum dose, and administration schedule for the treatment of renal fibrosis in NPHP patients. Paclitaxel is an approved drug for human use with known pharmacokinetics, which could potentially be used in other ciliopathies through targeting the microtubule skeleton.
Collapse
Affiliation(s)
- Gisela G Slaats
- Department of Nephrology and Hypertension, F03.233, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Marc R Lilien
- Department of Pediatric Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rachel H Giles
- Department of Nephrology and Hypertension, F03.233, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
41
|
TGF-β induces miR-30d down-regulation and podocyte injury through Smad2/3 and HDAC3-associated transcriptional repression. J Mol Med (Berl) 2015; 94:291-300. [PMID: 26432290 DOI: 10.1007/s00109-015-1340-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/06/2015] [Accepted: 09/07/2015] [Indexed: 01/23/2023]
Abstract
The microRNA-30 family plays important roles in maintaining kidney homeostasis. Patients with focal segmental glomerulosclerosis (FSGS) have reduced miR-30 levels in glomerulus. TGF-β represses miR-30s in kidney podocytes, which leads to cytoskeleton damage and podocyte apoptosis. In this study, we investigated the mechanism by which TGF-β represses miR-30d in vitro. The human miR-30d promoter contains multiple copies of Smad binding element-like sequences. A fragment of 150 base pairs close to the transcription start site was negatively regulated by TGF-β to a similar extent as the 1.8 kb promoter, which was blocked by histone-deacetylase inhibition. TGF-β specifically enhanced HDAC3 expression. Knockdown of HDAC3 by shRNA or a selective inhibitor RGFP966 significantly relieved the repression of miR-30d mRNA and the promoter transcription. TGF-β promoted HDAC3 association with Smad2/3 and NCoR and caused their accumulation at the putative Smad binding site on the miR-30d promoter, which was prohibited by TSA or RGFP966. Furthermore, TSA or RGFP966 treatment reversed TGF-β-induced up-regulation of miR-30d targets Notch1 and p53 and alleviated the podocyte cytoskeleton damage and apoptosis. Taken together, these findings pinpoint that TGF-β represses miR-30d through a Smad2/3-HDAC3-NCoR repression complex and provide novel insights into a potential target for the treatment of podocyte injury-associated glomerulopathies. Key message: MiR-30d promoter is negatively regulated by TGF-β. TGF-β down-regulates miR-30 through Smad signaling pathway. HDAC3 and NCoR are recruited by Smad2/3 to mediate miR-30d repression by TGF-β. HDAC3 acts as a critical player in TGF-β-induced miR-30d repression and podocyte injuries.
Collapse
|
42
|
Yan-Fang T, Zhi-Heng L, Li-Xiao X, Fang F, Jun L, Gang L, Lan C, Na-Na W, Xiao-Juan D, Li-Chao S, Wen-Li Z, Pei-Fang X, He Z, Guang-Hao S, Yan-Hong L, Yi-Ping L, Yun-Yun X, Hui-Ting Z, Yi W, Mei-Fang J, Lin L, Jian N, Shao-Yan H, Xue-Ming Z, Xing F, Jian W, Jian P. Molecular Mechanism of the Cell Death Induced by the Histone Deacetylase Pan Inhibitor LBH589 (Panobinostat) in Wilms Tumor Cells. PLoS One 2015; 10:e0126566. [PMID: 26176219 PMCID: PMC4503685 DOI: 10.1371/journal.pone.0126566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/03/2015] [Indexed: 01/20/2023] Open
Abstract
Background Wilms tumor (WT) is an embryonic kidney cancer, for which histone acetylation might be a therapeutic target. LBH589, a novel targeted agent, suppresses histone deacetylases in many tumors. This study investigated the antitumor activity of LBH589 in SK-NEP-1 and G401 cells. Methods SK-NEP-1 and G401 cell growth was assessed by CCK-8 and in nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometry detected apoptosis in cell culture. Gene expressions of LBH589-treated tumor cells were analyzed using an Arraystar Human LncRNA Array. The Multi Experiment View cluster software analyzed the expression data. Differentially expressed genes from the cluster analyses were imported into the Ingenuity Pathway Analysis tool. Results LBH589 inhibited cell proliferation of SK-NEP-1 and G401 cells in a dose-dependent manner. Annexin V, TUNEL and Hochest 33342 staining analysis showed that LBH589-treated cells showed more apoptotic features compared with the control. LBH589 treatment inhibited the growth of SK-NEP-1 xenograft tumors in nude mice. Arraystar Human LncRNA Array analysis of genes and lncRNAs regulated by LBH589 identified 6653 mRNAs and 8135 lncRNAs in LBH589-treated SK-NEP-1 cells. The most enriched gene ontology terms were those involved in nucleosome assembly. KEGG pathway analysis identified cell cycle proteins, including CCNA2, CCNB2, CCND1, CCND2, CDK4, CDKN1B and HDAC2, etc. Ingenuity Pathway Analysis identified important upstream molecules: HIST2H3C, HIST1H4A, HIST1A, HIST1C, HIST1D, histone H1, histone H3, RPRM, HSP70 and MYC. Conclusions LBH589 treatment caused apoptosis and inhibition of cell proliferation of SK-NEP-1and G401 cells. LBH589 had a significant effect and few side effects on SK-NEP-1 xenograft tumors. Expression profiling, and GO, KEGG and IPA analyses identified new targets and a new “network” of genes responding to LBH589 treatment in SK-NEP-1 cells. RPRM, HSP70 and MYC may be important regulators during LBH589 treatment. Our results provide new clues to the proapoptotic mechanism of LBH589.
Collapse
Affiliation(s)
- Tao Yan-Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li Zhi-Heng
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xu Li-Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Lu Jun
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li Gang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Cao Lan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Wang Na-Na
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Du Xiao-Juan
- Department of Gastroenterology, the 5th Hospital of Chinese PLA, Yin chuan, China
| | - Sun Li-Chao
- Department of Cell and Molecular Biology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhao Wen-Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xiao Pei-Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhao He
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Su Guang-Hao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li Yan-Hong
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li Yi-Ping
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xu Yun-Yun
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhou Hui-Ting
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Wu Yi
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jin Mei-Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Liu Lin
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Ni Jian
- Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing, China
| | - Hu Shao-Yan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhu Xue-Ming
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Feng Xing
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Wang Jian
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
- * E-mail: (PJ); (WJ)
| | - Pan Jian
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
- * E-mail: (PJ); (WJ)
| |
Collapse
|
43
|
Basta J, Rauchman M. The nucleosome remodeling and deacetylase complex in development and disease. Transl Res 2015; 165:36-47. [PMID: 24880148 PMCID: PMC4793962 DOI: 10.1016/j.trsl.2014.05.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity, and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis, and accelerated aging. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer.
Collapse
Affiliation(s)
- Jeannine Basta
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri; John Cochran Division, VA St. Louis Health Care System, St. Louis, Missouri
| | - Michael Rauchman
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri; John Cochran Division, VA St. Louis Health Care System, St. Louis, Missouri.
| |
Collapse
|
44
|
Mau T, Yung R. Potential of epigenetic therapies in non-cancerous conditions. Front Genet 2014; 5:438. [PMID: 25566322 PMCID: PMC4271720 DOI: 10.3389/fgene.2014.00438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/25/2014] [Indexed: 12/20/2022] Open
Abstract
There has been an explosion of knowledge in the epigenetics field in the past 20 years. The first epigenetic therapies have arrived in the clinic for cancer treatments. In contrast, much of the promise of epigenetic therapies for non-cancerous conditions remains in the laboratories. The current review will focus on the recent progress that has been made in understanding the pathogenic role of epigenetics in immune and inflammatory conditions, and how the knowledge may provide much needed new therapeutic targets for many autoimmune diseases. Dietary factors are increasingly recognized as potential modifiers of epigenetic marks that can influence health and diseases across generations. The current epigenomics revolution will almost certainly complement the explosion of personal genetics medicine to help guide treatment decisions and disease risk stratification.
Collapse
Affiliation(s)
- Theresa Mau
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan Ann Arbor, MI, USA
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan Ann Arbor, MI, USA ; Department of Veterans Affairs Ann Arbor Health System, Geriatric Research, Education and Clinical Care Center Ann Arbor, MI, USA
| |
Collapse
|
45
|
Ganai SA, Kalladi SM, Mahadevan V. HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J Biomol Struct Dyn 2014; 33:1185-97. [PMID: 25012937 DOI: 10.1080/07391102.2014.938247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Post-translational modifications on the tails of core and linker histones dictate transcription and have vital roles in disease and development. Acetylation and deacetylation events enabled by histone acetyl transferases and histone deacetylases (HDACs) on the chromatin milieu are intricately involved in gene regulation. Inhibition of HDACs is emerging as a powerful strategy in regenerative therapy, transplantation, development and in nuclear reprogramming events. Valproic acid (VPA), belonging to the short-chain fatty acid group of HDAC inhibitors, modulates the epigenome altering gene expression profiles across cell lines. This work attempts to explore the methylation profiles triggered by VPA treatment on human embryonic kidney cells (HEK 293) through a biochemical and computational approach. VPA treatment (for 48 h) has been observed to hypermethylate lysine 4 on the core histone H3 and confers a hypomethylation status of H3 lysine 27 in HEK 293 cells leaving the nuclear area and nuclear contour unaltered. Our structural docking and Binding Free Energy (BFE) calculations establish an active role for VPA in inhibiting the demethylase JARID1A (Jumonji, AT Rich Interactive Domain 1A) and the methyl-transferase EZH2 (Enhancer of Zeste Homologue 2). This work has also proven that VPA can inhibit the activity of proteins like GSK3β and PKCβII involved in developmental disorders. This work establishes a dynamic correlation between histone methylation events and HDAC inhibition and may define newer epigenetic strategies for treating neurodevelopmental and oncological disorders.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- a Center for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology , SASTRA University , Thanjavur 613401 , India
| | | | | |
Collapse
|
46
|
Abstract
Renal tubule epithelial cells can regenerate in response to acute injury. Although this process remains poorly understood, it appears to involve the reactivation of pathways that are operative during embryonic kidney formation. A better understanding of renal regeneration may lead to the development of new therapies that can attenuate acute kidney injury or expedite recovery. The zebrafish is being used as a model to understand renal regeneration. In this review, we summarize the current knowledge on zebrafish kidney formation, describe methods for inducing acute injury, and focus on the unique capacity of the zebrafish adult kidney to undergo de novo nephron formation in response to damage.
Collapse
Affiliation(s)
- Veronika Sander
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
47
|
Abstract
Acute kidney injury (AKI) is a risk factor for chronic kidney disease and death. Despite progress made in understanding the cellular and molecular basis of AKI pathogenesis there has been no improvement in the high mortality rate from this disease in decades. Epigenetics is one of the most intensively studied fields of biology today and represents a new paradigm for understanding the pathophysiology of disease. Although epigenetics of AKI is a nascent field, the available information already is providing compelling evidence that chromatin biology plays a critical role in this disease. In this article we explore what is known about the contribution of epigenetic mechanisms to the pathophysiology of AKI and how this knowledge already is guiding the development of new diagnostic tools and epigenetic therapies.
Collapse
|
48
|
Bechtel-Walz W, Huber TB. Chromatin dynamics in kidney development and function. Cell Tissue Res 2014; 356:601-8. [PMID: 24817101 DOI: 10.1007/s00441-014-1884-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
Epigenetic mechanisms are fundamental key features of developing cells connecting developmental regulatory factors to chromatin modification. Changes in the environment during renal development can have long-lasting effects on the permanent tissue structure and the level of expression of important functional genes. These changes are believed to contribute to kidney disease occurrence and progression. Although the mechanisms of early patterning and cell fate have been well described for renal development, little is known about associated epigenetic modifications and their impact on how genes interact to specify the renal epithelial cells of nephrons and how this specification is relevant to maintaining normal renal function. A better understanding of the renal cell-specific epigenetic modifications and the interaction of different cell types to form this highly complex organ will not only help to better understand developmental defects and early loss of kidney function in children, but also help to understand and improve chronic disease progression, cell regeneration and renal aging.
Collapse
Affiliation(s)
- Wibke Bechtel-Walz
- Renal Division, University Hospital Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany,
| | | |
Collapse
|
49
|
Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, West J, Korotchenko VN, McDermott L, Day BW, Davidson AJ, Harris RC, de Caestecker MP, Hukriede NA. Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 2013; 24:943-53. [PMID: 23620402 DOI: 10.1681/asn.2012111055] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At present, there are no effective therapies to ameliorate injury, accelerate recovery, or prevent postinjury fibrosis after AKI. Here, we sought to identify candidate compounds that accelerate recovery after AKI by screening for small molecules that increase proliferation of renal progenitor cells in zebrafish embryos. One compound identified from this screen was the histone deacetylase inhibitor methyl-4-(phenylthio)butanoate, which we subsequently administered to zebrafish larvae and mice 24-48 hours after inducing AKI. In zebrafish, treatment with the compound increased larval survival and proliferation of renal tubular epithelial cells. In mice, treatment accelerated recovery, reduced postinjury tubular atrophy and interstitial fibrosis, and increased the regenerative capacity of actively cycling renal tubular cells by decreasing the number of cells in G2/M arrest. These data suggest that accelerating recovery may be a viable approach to treating AKI and provide proof of concept that a screen in zebrafish embryos can identify therapeutic candidates for kidney injury.
Collapse
|
50
|
Van Beneden K, Mannaerts I, Pauwels M, Van den Branden C, van Grunsven LA. HDAC inhibitors in experimental liver and kidney fibrosis. FIBROGENESIS & TISSUE REPAIR 2013; 6:1. [PMID: 23281659 PMCID: PMC3564760 DOI: 10.1186/1755-1536-6-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/29/2012] [Indexed: 02/08/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have been extensively studied in experimental models of cancer, where their inhibition of deacetylation has been proven to regulate cell survival, proliferation, differentiation and apoptosis. This in turn has led to the use of a variety of HDAC inhibitors in clinical trials. In recent years the applicability of HDAC inhibitors in other areas of disease has been explored, including the treatment of fibrotic disorders. Impaired wound healing involves the continuous deposition and cross-linking of extracellular matrix governed by myofibroblasts leading to diseases such as liver and kidney fibrosis; both diseases have high unmet medical needs which are a burden on health budgets worldwide. We provide an overview of the potential use of HDAC inhibitors against liver and kidney fibrosis using the current understanding of these inhibitors in experimental animal models and in vitro models of fibrosis.
Collapse
Affiliation(s)
- Katrien Van Beneden
- Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inge Mannaerts
- Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marina Pauwels
- Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Leo A van Grunsven
- Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|