1
|
Motelow JE, Malakar A, Murthy SBK, Verbitsky M, Kahn A, Estrella E, Kunkel L, Wiesenhahn M, Becket J, Harris N, Lee R, Adam R, Kiryluk K, Gharavi AG, Brownstein CA. Interstitial Cystitis: a phenotype and rare variant exome sequencing study: Interstitial Cystitis: a phenotype and exome sequencing study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.16.25322147. [PMID: 40034785 PMCID: PMC11875234 DOI: 10.1101/2025.02.16.25322147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a poorly understood and underdiagnosed syndrome of chronic bladder/pelvic pain with urinary frequency and urgency. Though IC/BPS can be hereditary, little is known of its genetic etiology. Using the eMERGE data, we confirmed known phenotypic associations such as gastroesophageal reflux disease and irritable bowel syndrome and detected new associations, including osteoarthrosis/osteoarthritis and Barrett's esophagus. An exome wide ultra-rare variants analysis in 348 IC/BPS and 11,981 controls extended the previously reported association with ATP2C1 and ATP2A2, implicated in Mendelian desquamating skin disorders, but did not provide evidence for other previously proposed pathogenic pathways such as bladder development, nociception or inflammation. Pathway analysis detected new associations with "anaphase-promoting complex-dependent catabolic process", the "regulation of MAPK cascade" and "integrin binding". These findings suggest perturbations in biological networks for epithelial integrity and cell cycle progression in IC/BPS pathogenesis, and provide a roadmap for its future investigation.
Collapse
Affiliation(s)
- Joshua E Motelow
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - Ayan Malakar
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
- Center for Precision Medicine and Genomics, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Sarath Babu Krishna Murthy
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
- Center for Precision Medicine and Genomics, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Miguel Verbitsky
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
- Center for Precision Medicine and Genomics, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Atlas Kahn
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - Elicia Estrella
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Louis Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston MA
| | - Madelyn Wiesenhahn
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston MA
| | - Jaimee Becket
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
- Center for Precision Medicine and Genomics, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Natasha Harris
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
- Center for Precision Medicine and Genomics, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Richard Lee
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston MA
| | - Rosalyn Adam
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston MA
- Department of Surgery, Harvard Medical School, Boston, MA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
- Center for Precision Medicine and Genomics, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston MA
| |
Collapse
|
2
|
Drake LY, Wicher SA, Roos BB, Khalfaoui L, Nesbitt L, Fang YH, Pabelick CM, Prakash YS. Functional role of glial-derived neurotrophic factor in a mixed allergen murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 326:L19-L28. [PMID: 37987758 PMCID: PMC11279745 DOI: 10.1152/ajplung.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
3
|
Hnf1b renal expression directed by a distal enhancer responsive to Pax8. Sci Rep 2022; 12:19921. [PMID: 36402859 PMCID: PMC9675860 DOI: 10.1038/s41598-022-21171-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Xenopus provides a simple and efficient model system to study nephrogenesis and explore the mechanisms causing renal developmental defects in human. Hnf1b (hepatocyte nuclear factor 1 homeobox b), a gene whose mutations are the most commonly identified genetic cause of developmental kidney disease, is required for the acquisition of a proximo-intermediate nephron segment in Xenopus as well as in mouse. Genetic networks involved in Hnf1b expression during kidney development remain poorly understood. We decided to explore the transcriptional regulation of Hnf1b in the developing Xenopus pronephros and mammalian renal cells. Using phylogenetic footprinting, we identified an evolutionary conserved sequence (CNS1) located several kilobases (kb) upstream the Hnf1b transcription start and harboring epigenomic marks characteristics of a distal enhancer in embryonic and adult renal cells in mammals. By means of functional expression assays in Xenopus and mammalian renal cell lines we showed that CNS1 displays enhancer activity in renal tissue. Using CRISPR/cas9 editing in Xenopus tropicalis, we demonstrated the in vivo functional relevance of CNS1 in driving hnf1b expression in the pronephros. We further showed the importance of Pax8-CNS1 interaction for CNS1 enhancer activity allowing us to conclude that Hnf1b is a direct target of Pax8. Our work identified for the first time a Hnf1b renal specific enhancer and may open important perspectives into the diagnosis for congenital kidney anomalies in human, as well as modeling HNF1B-related diseases.
Collapse
|
4
|
Zhou Z, Yan L, Li Y, Zhou J, Ma Y, Tong C. Embryonic developmental process and clinical anatomy of the preperitoneal fascia and its clinical significance. Surg Radiol Anat 2022; 44:1531-1543. [PMID: 36404360 PMCID: PMC9734211 DOI: 10.1007/s00276-022-03046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Many researchers have different views on the origin and anatomy of the preperitoneal fascia. The purpose of this study is to review studies on the anatomy related to the preperitoneal fascia and to investigate the origin, structure, and clinical significance of the preperitoneal fascia in conjunction with previous anatomical findings of the genitourinary fascia, using the embryogenesis of the genitourinary system as a guide. METHODS Publications on the preperitoneal and genitourinary fascia are reviewed, with emphasis on the anatomy of the preperitoneal fascia and its relationship to the embryonic development of the genitourinary organs. We also describe previous anatomical studies of the genitourinary fascia in the inguinal region through the fixation of formalin-fixed cadavers. RESULTS Published literature on the origin, structure, and distribution of the preperitoneal fascia is sometimes inconsistent. However, studies on the urogenital fascia provide more than sufficient evidence that the formation of the preperitoneal fascia is closely related to the embryonic development of the urogenital fascia and its tegument. Combined with previous anatomical studies of the genitourinary fascia in the inguinal region of formalin-fixed cadavers showed that there is a complete fascial system. This fascial system moves from the retroperitoneum to the anterior peritoneum as the preperitoneal fascia. CONCLUSIONS We can assume that the preperitoneal fascia (PPF) is continuous with the retroperitoneal renal fascia, ureter and its accessory vessels, lymphatic vessels, peritoneum of the bladder, internal spermatic fascia, and other peritoneal and pelvic urogenital organ surfaces, which means that the urogenital fascia (UGF) is a complete fascial system, which migrates into PPF in the preperitoneal space and the internal spermatic fascia in the inguinal canal.
Collapse
Affiliation(s)
- Zheqi Zhou
- grid.440288.20000 0004 1758 0451Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, 710068 China ,grid.440747.40000 0001 0473 0092Yan’an University, Yan’an, China
| | - Likun Yan
- grid.440288.20000 0004 1758 0451Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, 710068 China
| | - Yi Li
- grid.440288.20000 0004 1758 0451Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, 710068 China
| | - Jinsong Zhou
- grid.43169.390000 0001 0599 1243Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
| | - Yanbing Ma
- grid.43169.390000 0001 0599 1243Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
| | - Cong Tong
- grid.440288.20000 0004 1758 0451Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, 710068 China
| |
Collapse
|
5
|
Wang IY, Chung CF, Babayeva S, Sogomonian T, Torban E. Loss of Planar Cell Polarity Effector Fuzzy Causes Renal Hypoplasia by Disrupting Several Signaling Pathways. J Dev Biol 2021; 10:jdb10010001. [PMID: 35076510 PMCID: PMC8788523 DOI: 10.3390/jdb10010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
In vertebrates, the planar cell polarity (PCP) pathway regulates tissue morphogenesis during organogenesis, including the kidney. Mutations in human PCP effector proteins have been associated with severe syndromic ciliopathies. Importantly, renal hypoplasia has been reported in some patients. However, the developmental disturbance that causes renal hypoplasia is unknown. Here, we describe the early onset of profound renal hypoplasia in mice homozygous for null mutation of the PCP effector gene, Fuzzy. We found that this phenotype is caused by defective branching morphogenesis of the ureteric bud (UB) in the absence of defects in nephron progenitor specification or in early steps of nephrogenesis. By using various experimental approaches, we show that the loss of Fuzzy affects multiple signaling pathways. Specifically, we found mild involvement of GDNF/c-Ret pathway that drives UB branching. We noted the deficient expression of molecules belonging to the Bmp, Fgf and Shh pathways. Analysis of the primary cilia in the UB structures revealed a significant decrease in ciliary length. We conclude that renal hypoplasia in the mouse Fuzzy mutants is caused by defective UB branching associated with dysregulation of ciliary and non-ciliary signaling pathways. Our work suggests a PCP effector-dependent pathogenetic mechanism that contributes to renal hypoplasia in mice and humans.
Collapse
Affiliation(s)
- Irene-Yanran Wang
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Tamara Sogomonian
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Elena Torban
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
6
|
Bhallamudi S, Roos BB, Teske JJ, Wicher SA, McConico A, M Pabelick C, Sathish V, Prakash YS. Glial-derived neurotrophic factor in human airway smooth muscle. J Cell Physiol 2021; 236:8184-8196. [PMID: 34170009 DOI: 10.1002/jcp.30489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022]
Abstract
Airway smooth muscle (ASM) cells modulate the local airway milieu via production of inflammatory mediators and growth factors including classical neurotrophins, such as brain-derived neurotrophic factor (BDNF). The glial cell-derived neurotrophic factor (GDNF) family of ligands (GFLs) are nonclassical neurotrophins and their role in the airway is barely understood. The major GFLs, GDNF and Neurturin (NRTN) bind to GDNF family receptor (GFR) α1 and α2 respectively that pair with Ret receptor to accomplish signaling. In this study, we found GDNF is expressed in human lung and increased in adult asthma, while human ASM expresses GDNF and its receptors. Accordingly, we used human ASM cells to test the hypothesis that ASM expression and autocrine signaling by GFLs regulate [Ca2+ ]i . Serum-deprived ASM cells from non-asthmatics were exposed to 10 ng/ml GDNF or NRTN for 15 min (acute) or 24 h (chronic). In fura-2 loaded cells, acute GDNF or NRTN alone induced [Ca2+ ]i responses, and further enhanced responses to 1 µM ACh or 10 µM histamine. Ret inhibitor (SPP86; 10 µM) or specific GDNF chelator GFRα1-Fc (1 µg/ml) showed roles of these receptors in GDNF effects. In contrast, NRTN did not enhance [Ca2+ ]i response to histamine. Furthermore, conditioned media of nonasthmatic and asthmatic ASM cells showed GDNF secretion. SPP86, Ret inhibitor and GFRα1-Fc chelator markedly decreased [Ca2+ ]i response compared with vehicle, highlighting autocrine effects of secreted GDNF. Chronic GDNF treatment increased histamine-induced myosin light chain phosphorylation. These novel data demonstrate GFLs particularly GDNF/GFRα1 influence ASM [Ca2+ ]i and raise the possibility that GFLs are potential targets of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea McConico
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
8
|
Sanchez-Ferras O, Pacis A, Sotiropoulou M, Zhang Y, Wang YC, Bourgey M, Bourque G, Ragoussis J, Bouchard M. A coordinated progression of progenitor cell states initiates urinary tract development. Nat Commun 2021; 12:2627. [PMID: 33976190 PMCID: PMC8113267 DOI: 10.1038/s41467-021-22931-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/05/2021] [Indexed: 02/08/2023] Open
Abstract
The kidney and upper urinary tract develop through reciprocal interactions between the ureteric bud and the surrounding mesenchyme. Ureteric bud branching forms the arborized collecting duct system of the kidney, while ureteric tips promote nephron formation from dedicated progenitor cells. While nephron progenitor cells are relatively well characterized, the origin of ureteric bud progenitors has received little attention so far. It is well established that the ureteric bud is induced from the nephric duct, an epithelial duct derived from the intermediate mesoderm of the embryo. However, the cell state transitions underlying the progression from intermediate mesoderm to nephric duct and ureteric bud remain unknown. Here we show that nephric duct morphogenesis results from the coordinated organization of four major progenitor cell populations. Using single cell RNA-seq and Cluster RNA-seq, we show that these progenitors emerge in time and space according to a stereotypical pattern. We identify the transcription factors Tfap2a/b and Gata3 as critical coordinators of this progenitor cell progression. This study provides a better understanding of the cellular origin of the renal collecting duct system and associated urinary tract developmental diseases, which may inform guided differentiation of functional kidney tissue.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Alain Pacis
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
| | - Maria Sotiropoulou
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Yuhong Zhang
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Yu Chang Wang
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Mathieu Bourgey
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Jiannis Ragoussis
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
de Mello Santos T, Hinton BT. We, the developing rete testis, efferent ducts, and Wolffian duct, all hereby agree that we need to connect. Andrology 2019; 7:581-587. [PMID: 31033257 DOI: 10.1111/andr.12631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The mechanisms by which the rete testis joins the efferent ducts, which joins the Wolffian duct during development, are not known. Mouse and chick models have been helpful in identifying genes that are important for the development of each part, but genes have not been identified as to those that play a role in the joining of each part. Clinical implications of the failure of the male reproductive tract to form a fully functional conduit for spermatozoa are not trivial. Epididymal disjunction, the failure of the efferent ducts to join the testis, is one of several epididymal anomalies that have been observed in some boys who were cryptorchid at birth. OBJECTIVE A systematic review of studies focusing on the morphogenesis of the mesonephric duct and mesonephric tubules in different species, and identification of clinical issues should there be failure of these tissues to develop. DESIGN PubMed and GUDMAP databases, and review of books on kidney development were searched for studies reporting on the mechanisms of morphogenesis of the kidney and epididymis. MAIN OUTCOMES MEASURE(S) Gaps in our knowledge were identified, and hypotheses coupled with suggestions for future experiments were presented. RESULTS A total of 64 papers were identified as relevant, of which 53 were original research articles and 11 were book chapters and reviews covering morphogenesis and clinical issues. Investigators utilized multiple species including, human, mouse, chick, Xenopus, bovine, and sheep. CONCLUSION Fundamental understanding of the morphogenesis of the male reproductive tract is limited, especially the morphogenesis of the rete testis and efferent ducts. Therefore, it is not surprising that we do not understand how each part unites to form a whole. Only one mechanism of joining of one part of the tract to another was identified: the joining of the Wolffian duct to the cloaca via controlled apoptosis.
Collapse
Affiliation(s)
- T de Mello Santos
- Department of Anatomy, Institute of Bioscience, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - B T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
10
|
Davidson AJ, Lewis P, Przepiorski A, Sander V. Turning mesoderm into kidney. Semin Cell Dev Biol 2018; 91:86-93. [PMID: 30172050 DOI: 10.1016/j.semcdb.2018.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
The intermediate mesoderm is located between the somites and the lateral plate mesoderm and gives rise to renal progenitors that contribute to the three mammalian kidney types (pronephros, mesonephros and metanephros). In this review, focusing largely on murine kidney development, we examine how the intermediate mesoderm forms during gastrulation/axis elongation and how it progressively gives rise to distinct renal progenitors along the rostro-caudal axis. We highlight some of the potential signalling cues and core transcription factor circuits that direct these processes, up to the point of early metanephric kidney formation.
Collapse
Affiliation(s)
- Alan J Davidson
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 921019, Auckland 1142, New Zealand.
| | - Paula Lewis
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 921019, Auckland 1142, New Zealand
| | - Aneta Przepiorski
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 921019, Auckland 1142, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 921019, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Morrison CA, Chen H, Cook T, Brown S, Treisman JE. Glass promotes the differentiation of neuronal and non-neuronal cell types in the Drosophila eye. PLoS Genet 2018; 14:e1007173. [PMID: 29324767 PMCID: PMC5783423 DOI: 10.1371/journal.pgen.1007173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/24/2018] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulators can specify different cell types from a pool of equivalent progenitors by activating distinct developmental programs. The Glass transcription factor is expressed in all progenitors in the developing Drosophila eye, and is maintained in both neuronal and non-neuronal cell types. Glass is required for neuronal progenitors to differentiate as photoreceptors, but its role in non-neuronal cone and pigment cells is unknown. To determine whether Glass activity is limited to neuronal lineages, we compared the effects of misexpressing it in neuroblasts of the larval brain and in epithelial cells of the wing disc. Glass activated overlapping but distinct sets of genes in these neuronal and non-neuronal contexts, including markers of photoreceptors, cone cells and pigment cells. Coexpression of other transcription factors such as Pax2, Eyes absent, Lozenge and Escargot enabled Glass to induce additional genes characteristic of the non-neuronal cell types. Cell type-specific glass mutations generated in cone or pigment cells using somatic CRISPR revealed autonomous developmental defects, and expressing Glass specifically in these cells partially rescued glass mutant phenotypes. These results indicate that Glass is a determinant of organ identity that acts in both neuronal and non-neuronal cells to promote their differentiation into functional components of the eye.
Collapse
Affiliation(s)
- Carolyn A. Morrison
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
| | - Hao Chen
- Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
| | - Tiffany Cook
- Center of Molecular Medicine and Genomics and Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Stuart Brown
- Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
| | - Jessica E. Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
12
|
Griffith OW, Wagner GP. The placenta as a model for understanding the origin and evolution of vertebrate organs. Nat Ecol Evol 2017; 1:72. [DOI: 10.1038/s41559-017-0072] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022]
|
13
|
Tain YL, Hsu CN. Developmental Origins of Chronic Kidney Disease: Should We Focus on Early Life? Int J Mol Sci 2017; 18:ijms18020381. [PMID: 28208659 PMCID: PMC5343916 DOI: 10.3390/ijms18020381] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) is becoming a global burden, despite recent advances in management. CKD can begin in early life by so-called "developmental programming" or "developmental origins of health and disease" (DOHaD). Early-life insults cause structural and functional changes in the developing kidney, which is called renal programming. Epidemiological and experimental evidence supports the proposition that early-life adverse events lead to renal programming and make subjects vulnerable to developing CKD and its comorbidities in later life. In addition to low nephron endowment, several mechanisms have been proposed for renal programming. The DOHaD concept opens a new window to offset the programming process in early life to prevent the development of adult kidney disease, namely reprogramming. Here, we review the key themes on the developmental origins of CKD. We have particularly focused on the following areas: evidence from human studies support fetal programming of kidney disease; insight from animal models of renal programming; hypothetical mechanisms of renal programming; alterations of renal transcriptome in response to early-life insults; and the application of reprogramming interventions to prevent the programming of kidney disease.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
14
|
Sugimoto K, Miyazawa T, Nishi H, Miyazaki K, Enya T, Okada M, Takemura T. Heterozygous p.S811F RET gene mutation associated with renal agenesis, oligomeganephronia and total colonic aganglionosis: a case report. BMC Nephrol 2016; 17:146. [PMID: 27717313 PMCID: PMC5055680 DOI: 10.1186/s12882-016-0354-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 09/21/2016] [Indexed: 12/26/2022] Open
Abstract
Background Several shared common gene networks participate in development of interstinal ganglia and also nephron formation; the glial cell line-derived neurotrophic factor/Ret/glial cell line-derived neurotrophic factor receptor gene network is particularly important. Case presentation We encountered a patient with total colonic aganglionosis as well as right renal agenesis and oligomeganephronia. Gene analysis in this patient disclosed a heterozygous p.S811F mutation was in Ret gene exon 14, resulting in a substitution of phenylalanine for serine. The large side chain of phenylalanine obstructed the opening of the hydrophobic pocket of the Ret molecule causing interference with its interaction with adenosine triphosphate and consequent marked reduction in its enzyme activity. This could account for our patient's severe intestinal disease and renal dysplasia. We know of no previous reports of concomitant Hirschsprung’s disease and oligomeganephronia. Conclusions The patient's overall illness could be considered a novel Ret gene mutation syndrome.
Collapse
Affiliation(s)
- Keisuke Sugimoto
- Department of Pediatrics, Kindai University School of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, 589-8511, Japan
| | - Tomoki Miyazawa
- Department of Pediatrics, Kindai University School of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, 589-8511, Japan
| | - Hitomi Nishi
- Department of Pediatrics, Kindai University School of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, 589-8511, Japan
| | - Kohei Miyazaki
- Department of Pediatrics, Kindai University School of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, 589-8511, Japan
| | - Takuji Enya
- Department of Pediatrics, Kindai University School of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, 589-8511, Japan
| | - Mitsuru Okada
- Department of Pediatrics, Kindai University School of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, 589-8511, Japan
| | - Tsukasa Takemura
- Department of Pediatrics, Kindai University School of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, 589-8511, Japan.
| |
Collapse
|
15
|
Jacquinet A, Millar D, Lehman A. Etiologies of uterine malformations. Am J Med Genet A 2016; 170:2141-72. [PMID: 27273803 DOI: 10.1002/ajmg.a.37775] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
Ranging from aplastic uterus (including Mayer-Rokitansky-Kuster-Hauser syndrome) to incomplete septate uterus, uterine malformations as a group are relatively frequent in the general population. Specific causes remain largely unknown. Although most occurrences ostensibly seem sporadic, familial recurrences have been observed, which strongly implicate genetic factors. Through the study of animal models, human syndromes, and structural chromosomal variation, several candidate genes have been proposed and subsequently tested with targeted methods in series of individuals with isolated, non-isolated, or syndromic uterine malformations. To date, a few genes have garnered strong evidence of causality, mainly in syndromic presentations (HNF1B, WNT4, WNT7A, HOXA13). Sequencing of candidate genes in series of individuals with isolated uterine abnormalities has been able to suggest an association for several genes, but confirmation of a strong causative effect is still lacking for the majority of them. We review the current state of knowledge about the developmental origins of uterine malformations, with a focus on the genetic variants that have been implicated or associated with these conditions in humans, and we discuss potential reasons for the high rate of negative results. The evidence for various environmental and epigenetic factors is also reviewed. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adeline Jacquinet
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Center for Human Genetics, Centre Hospitalier Universitaire and University of Liège, Liège, Belgium
| | - Debra Millar
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Child and Family Research Institute, Vancouver, Canada
| |
Collapse
|
16
|
Ma S, Kemmeren P, Aliferis CF, Statnikov A. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation. Sci Rep 2016; 6:22558. [PMID: 26939894 PMCID: PMC4778024 DOI: 10.1038/srep22558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 02/17/2016] [Indexed: 12/15/2022] Open
Abstract
Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods' performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost.
Collapse
Affiliation(s)
- Sisi Ma
- Center for Health Informatics and Bioinformatics, New York University Medical Center, New York, New York, USA
| | - Patrick Kemmeren
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Constantin F. Aliferis
- Institute for Health Informatics, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Alexander Statnikov
- Center for Health Informatics and Bioinformatics, New York University Medical Center, New York, New York, USA
| |
Collapse
|
17
|
Katada T, Sakurai H. Proper Notch activity is necessary for the establishment of proximal cells and differentiation of intermediate, distal, and connecting tubule in Xenopus pronephros development. Dev Dyn 2016; 245:472-82. [PMID: 26773453 DOI: 10.1002/dvdy.24386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 12/11/2015] [Accepted: 01/05/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Notch signaling in pronephros development has been shown to regulate establishment of glomus and proximal tubule, but how Notch signal works on competency of pronephric anlagen during the generation of pronephric components remains to be understood. RESULTS We investigated how components of pronephros (glomus, proximal tubule, intermediate tubule, distal tubule, and connecting tubule) were generated in Xenopus embryos by timed overactivation and suppression of Notch signaling. Notch activation resulted in expansion of the glomus and disruption of the proximal tubule formation. Inhibition of Notch signaling reduced expression of wt1 and XSMP-30. In addition, when Notch signaling was overactivated at stage 20 on, intermediate, distal, and connecting tubule markers, gremlin and clcnkb, were decreased while Notch down-regulation increased gremlin and clcnkb. Similar changes were observed with segmental markers, cldn19, cldn14, and rhcg on activation or inhibition of Notch. Although Notch did not affect the expression of pan-pronephric progenitor marker, pax2, its activation inhibited lumen formation in the pronephros. CONCLUSIONS Notch signal is essential for glomus and proximal tubule development and inhibition of Notch is critical for the differentiation of the intermediate, distal, and connecting tubule.
Collapse
Affiliation(s)
- Tomohisa Katada
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroyuki Sakurai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Browne JA, Yang R, Leir SH, Eggener SE, Harris A. Expression profiles of human epididymis epithelial cells reveal the functional diversity of caput, corpus and cauda regions. Mol Hum Reprod 2015; 22:69-82. [PMID: 26612782 DOI: 10.1093/molehr/gav066] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
STUDY HYPOTHESIS Region-specific transcriptional profiling of tissues and cultured epithelial cells from the human epididymis will predict functional specialization along the duct. STUDY FINDING We identified the molecular signature driving functions of the caput, corpus and cauda epithelium, and determined how these differ to establish the regional differentiation of the organ. WHAT IS KNOWN ALREADY The epithelium lining the human male genital ducts has a critical role in fertility. In particular, it controls the luminal environment in the epididymis, which is required for normal sperm maturation and reproductive competence. Studies in many animal species have largely informed our understanding of the molecular basis of epididymis function. However, there are substantial differences between species. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Using RNA sequencing on biological replicates, we described gene expression profiles for tissue from each region of the epididymis and cultured epithelial cells derived from these regions. Bioinformatic tools were then utilized to identify differentially expressed genes (DEGs) between tissues and cells from the caput, corpus and cauda. MAIN RESULTS AND THE ROLE OF CHANCE The data showed that the caput is functionally divergent from the corpus and cauda, which have very similar transcriptomes. Interrogation of DEGs using gene ontology process enrichment analyses showed that processes of ion transport, response to hormone stimulus and urogenital tract development are more evident in the caput, while defense response processes are more important in the corpus/cauda. Consistent with these regional differences in epididymis function, we observed differential expression of transcription factors in the caput and corpus/cauda. LIMITATIONS, REASONS FOR CAUTION Cultured caput, corpus and cauda cells may not faithfully represent the same cells in the intact organ, due to loss of hormonal signals from the testis and communication from other cell types. WIDER IMPLICATIONS OF THE FINDINGS Our data provide a molecular characterization that will facilitate advances in understanding human epididymis epithelium biology in health and disease. They may also reveal the mechanisms coordinating epididymis luminal environment and sperm maturation. LARGE SCALE DATA Data deposited at http://www.ncbi.nlm.nih.gov/geo/GSE72986. STUDY FUNDING AND COMPETING INTERESTS This work was supported by the National Institutes of Health: R01HD068901 (PI: A.H.). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- James A Browne
- Human Molecular Genetics Program, Lurie Children's Research Center, 2430 North Halsted Street, Box 211, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rui Yang
- Human Molecular Genetics Program, Lurie Children's Research Center, 2430 North Halsted Street, Box 211, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shih-Hsing Leir
- Human Molecular Genetics Program, Lurie Children's Research Center, 2430 North Halsted Street, Box 211, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Scott E Eggener
- Section of Urology, University of Chicago Medical Center, Chicago, IL, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, 2430 North Halsted Street, Box 211, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Renal Transcriptome Analysis of Programmed Hypertension Induced by Maternal Nutritional Insults. Int J Mol Sci 2015; 16:17826-37. [PMID: 26247937 PMCID: PMC4581224 DOI: 10.3390/ijms160817826] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/12/2015] [Accepted: 07/30/2015] [Indexed: 12/25/2022] Open
Abstract
Maternal nutrition can affect development, leading to long-term effects on the health of offspring. The most common outcome is programmed hypertension. We examined whether alterations in renal transcriptome are responsible for generating programmed hypertension among four different models using next-generation RNA sequencing (NGS) technology. Pregnant Sprague-Dawley rats received 50% caloric restriction (CR), intraperitoneal injection of 45 mg/kg streptozotocin, 60% high-fructose (HF) diet, or 1% NaCl in drinking water to conduct CR, diabetes, HF, or high-salt models, respectively. All four models induced programmed hypertension in adult male offspring. We observed 16 shared genes in a two-week-old kidney among four different models. The identified differential expressed genes (DEGs) that are related to the regulation of blood pressure included Adrb3, Alb, Apoe, Calca, Kng1, Adm2, Guca2b, Hba2, Hba-a2, and Ppara. The peroxisome proliferator-activated receptor (PPAR) signaling pathway and glutathione metabolism pathway were shared by the CR, diabetes, and HF models. Conclusively, a variety of maternal nutritional insults induced the same phenotype-programmed hypertension with differential alterations of renal transcriptome in adult male offspring. The roles of DEGs identified by the NGS in this study deserve further clarification to develop ideal maternal dietary interventions and thus spare the next generations from the burden of hypertension.
Collapse
|
20
|
Pax genes in renal development, disease and regeneration. Semin Cell Dev Biol 2015; 44:97-106. [DOI: 10.1016/j.semcdb.2015.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022]
|
21
|
Maternal fructose-intake-induced renal programming in adult male offspring. J Nutr Biochem 2015; 26:642-50. [DOI: 10.1016/j.jnutbio.2014.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
|
22
|
Sheen JM, Yu HR, Tiao MM, Chen CC, Huang LT, Chang HY, Tain YL. Prenatal dexamethasone-induced programmed hypertension and renal programming. Life Sci 2015; 132:41-8. [PMID: 25921765 DOI: 10.1016/j.lfs.2015.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 01/19/2023]
Abstract
AIMS Antenatal glucocorticoids can induce long-term effects on offspring health, including hypertension. Programmed hypertension has been observed in a prenatal dexamethasone (DEX) exposure model. However, how renal programming responds to prenatal DEX at different stages of development and the impact of DEX on programmed hypertension remain unclear. Therefore, we utilized RNA next-generation sequencing (NGS) to analyze the renal transcriptome in the offspring to examine whether key genes and pathways are responsible for DEX-induced renal programming and hypertension. MAIN METHODS Pregnant rats received intraperitoneal dexamethasone from gestational day 16 to 22. Prenatal DEX-induced programmed hypertension was examined in male offspring at 16 weeks of age. KEY FINDINGS Prenatal DEX modified 431 renal transcripts from the nephrogenesis stage to adulthood in a constant manner. At the pre-hypertensive and established hypertension stages, we identified 11 and 13 differentially expressed genes related to blood pressure regulation, respectively. Among these genes, Npr3, Ptgs2, Agt, Edn3, Ephx2, Agtr1b, and Gucy1a3 are associated with endothelium-derived hyperpolarizing and contractile factors (EDHF and EDCF). Genes in the arachidonic acid metabolism pathway may potentially be key genes contributing to programmed hypertension. In addition, DEX induced soluble epoxide hydrolase expression (Ephx2 gene encoding protein). SIGNIFICANCE Prenatal DEX elicits an imbalance between EDHFs and EDCFs that might lead to renal programming and hypertension. The arachidonic acid metabolism pathway is a common pathway contributing to programmed hypertension. Our results highlight candidate genes and pathways involved in renal programming as targets for therapeutic approaches to prevent programmed hypertension in children exposed to antenatal corticosteroids.
Collapse
Affiliation(s)
- Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan; Department of Traditional Chinese Medicine, Chang Gung University, Linkow, Taiwan
| | - Hsin-Yu Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
Stewart K, Bouchard M. Coordinated cell behaviours in early urogenital system morphogenesis. Semin Cell Dev Biol 2014; 36:13-20. [PMID: 25220017 DOI: 10.1016/j.semcdb.2014.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022]
Abstract
The elaboration of functional kidneys during embryonic development proceeds in a stepwise manner, starting with the formation of the embryonic pro- and mesonephros, followed by the induction and growth of the final metanephric kidney. These early stages of urinary tract development are critical for the embryo as a failure in pro/mesonephros morphogenesis leads to major developmental defects, often incompatible with life. The formation of the pro/mesonephros and its central component the nephric duct, is also interesting as it offers a relatively simple system to study cell biological behaviours underlying tissue morphogenesis. This system is especially well adapted to study the questions of cell lineage specification, epithelial integrity and plasticity, tissue interactions, collective cell migration/guidance and programmed cell death. In this review, we establish the link between these cell behaviours, their molecular regulators and early genitourinary tract development.
Collapse
Affiliation(s)
- Katherine Stewart
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, 1160 Pine Avenue W., Montreal, QC, Canada H3A 1A3
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, 1160 Pine Avenue W., Montreal, QC, Canada H3A 1A3.
| |
Collapse
|
24
|
Cerqueira DM, Tran U, Romaker D, Abreu JG, Wessely O. Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts. Dev Biol 2014; 394:54-64. [PMID: 25127994 DOI: 10.1016/j.ydbio.2014.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/29/2014] [Accepted: 07/30/2014] [Indexed: 11/29/2022]
Abstract
The kidney is a homeostatic organ required for waste excretion and reabsorption of water, salts and other macromolecules. To this end, a complex series of developmental steps ensures the formation of a correctly patterned and properly proportioned organ. While previous studies have mainly focused on the individual signaling pathways, the formation of higher order receptor complexes in lipid rafts is an equally important aspect. These membrane platforms are characterized by differences in local lipid and protein compositions. Indeed, the cells in the Xenopus pronephric kidney were positive for the lipid raft markers ganglioside GM1 and Caveolin-1. To specifically interfere with lipid raft function in vivo, we focused on the Sterol Carrier Protein 2 (scp2), a multifunctional protein that is an important player in remodeling lipid raft composition. In Xenopus, scp2 mRNA was strongly expressed in differentiated epithelial structures of the pronephric kidney. Knockdown of scp2 did not interfere with the patterning of the kidney along its proximo-distal axis, but dramatically decreased the size of the kidney, in particular the proximal tubules. This phenotype was accompanied by a reduction of lipid rafts, but was independent of the peroxisomal or transcriptional activities of scp2. Finally, disrupting lipid micro-domains by inhibiting cholesterol synthesis using Mevinolin phenocopied the defects seen in scp2 morphants. Together these data underscore the importance for localized signaling platforms in the proper formation of the Xenopus kidney.
Collapse
Affiliation(s)
- Débora M Cerqueira
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA; Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas-CCS, Av. Carlos Chagas Filho, 373 bloco F2 sala 15, Rio de Janeiro 21949-590, Brazil
| | - Uyen Tran
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA
| | - Daniel Romaker
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA
| | - José G Abreu
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas-CCS, Av. Carlos Chagas Filho, 373 bloco F2 sala 15, Rio de Janeiro 21949-590, Brazil
| | - Oliver Wessely
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA.
| |
Collapse
|