1
|
Li N, Li G. Sphingolipid signaling in kidney diseases. Am J Physiol Renal Physiol 2025; 328:F431-F443. [PMID: 39933715 DOI: 10.1152/ajprenal.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Sphingolipids are a family of bioactive lipids. The key components include ceramides, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate. Sphingolipids were originally considered to be primarily structural elements of cell membranes but were later recognized as bioactive signaling molecules that play diverse roles in cellular behaviors such as cell differentiation, migration, proliferation, and death. Studies have demonstrated changes in key components of sphingolipids in the kidneys under different conditions and their important roles in the renal function and the pathogenesis of various kidney diseases. This review summarizes the most recent advances in the role of sphingolipid signaling in kidney diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
2
|
Pilco-Terán M, Shabaka A, Furlano M, Tato Ribera A, Galán Carrillo I, Gutiérrez E, Torra R, Fernández-Juárez G. Indications for genetic testing in adults with focal segmental glomerulosclerosis. Nefrologia 2025; 45:135-149. [PMID: 39952830 DOI: 10.1016/j.nefroe.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/23/2024] [Indexed: 02/17/2025] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histological pattern of injury that derives from various pathological processes that affect podocytes, resulting in loss of selectivity of the glomerular filtration membrane, proteinuria and the development of renal failure that progresses to end-stage kidney disease in a significant number of patients. The classification proposed by the 2021 KDIGO guidelines divides FSGS into four categories: primary, secondary, genetic, and FSGS of undetermined cause, thus facilitating its diagnosis and management. Genetic causes of FSGS present significant clinical variability, complicating their identification. Genetic testing is crucial to identify FSGS of genetic cause. The prevalence of genetic FSGS is significant in children and considerable in adults, highlighting the importance of early diagnosis to avoid unnecessary treatments and facilitate genetic counselling. Massive sequencing techniques have revolutionized genetic diagnosis, allowing the identification of more than 60 genes responsible for podocyte damage. This document proposes clinical recommendations for carrying out genetic studies in adults with FSGS, highlighting the need for a correct classification for adequate therapeutic planning and improvement of results in clinical trials.
Collapse
Affiliation(s)
- Melissa Pilco-Terán
- Unidad de enfermedades renales hereditarias, Servicio de Nefrología, Fundació Puigvert, Instituto de investigación biomédica Hospital de Sant Pau, Universidad Autónoma de Barcelona, escuela de Medicina, Barcelona, Spain
| | - Amir Shabaka
- Servicio de Nefrología, Hospital Universitario La Paz, Madrid, Spain
| | - Mónica Furlano
- Unidad de enfermedades renales hereditarias, Servicio de Nefrología, Fundació Puigvert, Instituto de investigación biomédica Hospital de Sant Pau, Universidad Autónoma de Barcelona, escuela de Medicina, Barcelona, Spain
| | - Ana Tato Ribera
- Servicio de Nefrología, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Isabel Galán Carrillo
- Servicio de Nefrología, Hospital General Universitario Morales Meseguer, Murcia, Spain
| | - Eduardo Gutiérrez
- Servicio de Nefrología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Roser Torra
- Unidad de enfermedades renales hereditarias, Servicio de Nefrología, Fundació Puigvert, Instituto de investigación biomédica Hospital de Sant Pau, Universidad Autónoma de Barcelona, escuela de Medicina, Barcelona, Spain
| | | |
Collapse
|
3
|
Gharagozlou S, Wright NM, Murguia-Favela L, Eshleman J, Midgley J, Saygili S, Mathew G, Lesmana H, Makkoukdji N, Gans M, Saba JD. Sphingosine phosphate lyase insufficiency syndrome as a primary immunodeficiency state. Adv Biol Regul 2024; 94:101058. [PMID: 39454238 DOI: 10.1016/j.jbior.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is a genetic disease associated with renal, endocrine, neurological, skin and immune defects. SPLIS is caused by inactivating mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). SPL catalyzes the irreversible degradation of the bioactive sphingolipid sphingosine-1-phosphate (S1P), a key regulator of lymphocyte egress. The SPL reaction represents the only exit point of sphingolipid metabolism, and SPL insufficiency causes widespread sphingolipid derangements that could additionally contribute to immunodeficiency. Herein, we review SPLIS, the sphingolipid metabolic pathway, and various roles sphingolipids play in immunity. We then explore SPLIS-related immunodeficiency by analyzing data available in the published literature supplemented by medical record reviews in ten SPLIS children. We found 93% of evaluable SPLIS patients had documented evidence of immunodeficiency. Many of the remainder of cases were unevaluable due to lack of available immunological data. Most commonly, SPLIS patients exhibited lymphopenia and T cell-specific lymphopenia, consistent with the established role of the S1P/S1P1/SPL axis in lymphocyte egress. However, low B and NK cell counts, hypogammaglobulinemia, and opportunistic infections with bacterial, viral and fungal pathogens were observed. Diminished responses to childhood vaccinations were less frequently observed. Screening blood tests quantifying recent thymic emigrants identified some lymphopenic SPLIS patients in the newborn period. Lymphopenia has been reported to improve after cofactor supplementation in some SPLIS patients, indicating upregulation of SPL activity. A variety of treatments including immunoglobulin replacement, prophylactic antimicrobials and special preparation of blood products prior to transfusion have been employed in SPLIS. The diverse immune consequences in SPLIS patients suggest that aberrant S1P signaling may not fully explain the extent of immunodeficiency. Further study will be required to fully elucidate the complex mechanisms underlying SPLIS immunodeficiency and determine the most effective prophylaxis against infection.
Collapse
Affiliation(s)
- Saber Gharagozlou
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - NicolaA M Wright
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Luis Murguia-Favela
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Juliette Eshleman
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Julian Midgley
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Seha Saygili
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
| | - Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India.
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA.
| | - Nadia Makkoukdji
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Melissa Gans
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Julie D Saba
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Keller N, Midgley J, Khalid E, Lesmana H, Mathew G, Mincham C, Teig N, Khan Z, Khosla I, Mehr S, Guran T, Buder K, Xu H, Alhasan K, Buyukyilmaz G, Weaver N, Saba JD. Factors influencing survival in sphingosine phosphate lyase insufficiency syndrome: a retrospective cross-sectional natural history study of 76 patients. Orphanet J Rare Dis 2024; 19:355. [PMID: 39334450 PMCID: PMC11429486 DOI: 10.1186/s13023-024-03311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a recently recognized inborn error of metabolism associated with steroid-resistant nephrotic syndrome as well as adrenal insufficiency and immunological, neurological, and skin manifestations. SPLIS is caused by inactivating mutations in SGPL1, encoding the pyridoxal 5'phosphate-dependent enzyme sphingosine-1-phosphate lyase, which catalyzes the final step of sphingolipid metabolism. Some SPLIS patients have undergone kidney transplantation, and others have been treated with vitamin B6 supplementation. In addition, targeted therapies including gene therapy are in preclinical development. In anticipation of clinical trials, it will be essential to characterize the full spectrum and natural history of SPLIS. We performed a retrospective analysis of 76 patients in whom the diagnosis of SPLIS was established in a proband with at least one suggestive finding and biallelic SGPL1 variants identified by molecular genetic testing. The main objective of the study was to identify factors influencing survival in SPLIS subjects. RESULTS Overall survival at last report was 50%. Major influences on survival included: (1) age and organ involvement at first presentation; (2) receiving a kidney transplant, and (3) SGPL1 genotype. Among 48 SPLIS patients with nephropathy who had not received a kidney transplant, two clinical subgroups were distinguished. Of children diagnosed with SPLIS nephropathy before age one (n = 30), less than 30% were alive 2 years after diagnosis, and 17% were living at last report. Among those diagnosed at or after age one (n = 18), ~ 70% were alive 2 years after diagnosis, and 72% were living at time of last report. SPLIS patients homozygous for the SPL R222Q variant survived longer compared to patients with other genotypes. Kidney transplantation significantly extended survival outcomes. CONCLUSION Our results demonstrate that SPLIS is a phenotypically heterogeneous condition. We find that patients diagnosed with SPLIS nephropathy in the first year of life and patients presenting with prenatal findings represent two high-risk subgroups, whereas patients harboring the R222Q SGPL1 variant fare better than the rest. Time to progression from onset of proteinuria to end stage kidney disease varies from less than one month to five years, and kidney transplantation may be lifesaving.
Collapse
Affiliation(s)
- Nancy Keller
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Julian Midgley
- Department of Nephrology, Alberta Children's Hospital, Calgary, AB, Canada
| | - Ehtesham Khalid
- Ochsner Clinical School, University of Queensland (Australia) and Ochsner Health, New Orleans, LA, USA
| | - Harry Lesmana
- Center for Personalized Genetic Healthcare and Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA
| | - Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India
| | - Christine Mincham
- Department of Nephrology, Perth Children's Hospital, Perth, Australia
| | - Norbert Teig
- Department of Neonatology and Pediatric Intensive Care, Ruhr-Universität Bochum, Bochum, Germany
| | - Zubair Khan
- Department of Pediatrics, NAMO Medical Education and Research Institute, Shri Vinoba Bhave Civil Hospital, Silvassa, Dadra and Nagar Haveli, Daman and Diu, India
| | - Indu Khosla
- Department of Pediatric Pulmonology and Sleep Medicine, NH SRCC Hospital for Children, Mumbai, India
| | - Sam Mehr
- Department of Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Kathrin Buder
- Pediatric Nephrology Department, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Department of General Pediatrics and Hematology/Oncology, University Hospital Tuebingen, University Children's Hospital, Hoppe-Seyler-Strasse 1, 72076, Tuebingen, Germany
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China
| | - Khalid Alhasan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gonul Buyukyilmaz
- Department of Pediatric Endocrinology, Ankara City Hospital, Ankara, Turkey
| | - Nicole Weaver
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Julie D Saba
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| |
Collapse
|
5
|
王 英, 何 庆. [Research progress on monogenic inherited glomerular diseases with central nervous system symptoms]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:652-658. [PMID: 38926384 PMCID: PMC11562061 DOI: 10.7499/j.issn.1008-8830.2312054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
To date, approximately 500 monogenic inherited kidney diseases have been reported, with more than 50 genes associated with the pathogenesis of monogenic isolated or syndromic nephrotic syndrome. Most of these genes are expressed in podocytes of the glomerulus. Neurological symptoms are common extrarenal manifestations of syndromic nephrotic syndrome, and various studies have found connections between podocytes and neurons in terms of morphology and function. This review summarizes the genetic and clinical characteristics of monogenic inherited diseases with concomitant glomerular and central nervous system lesions, aiming to enhance clinicians' understanding of such diseases, recognize the importance of genetic diagnostic techniques for comorbidity screening, and reduce the rates of missed diagnosis and misdiagnosis.
Collapse
|
6
|
Sedillo JC, Badduke C, Schrodi SJ, Scaria V, Onat OE, Alfadhel M, Ober C, Wentworth-Sheilds W, Steiner RD, Saba JD. Prevalence estimate of sphingosine phosphate lyase insufficiency syndrome in worldwide and select populations. GENETICS IN MEDICINE OPEN 2023; 2:100840. [PMID: 39669624 PMCID: PMC11613930 DOI: 10.1016/j.gimo.2023.100840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/14/2024]
Abstract
Purpose Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is a rare, often fatal, metabolic disorder and monogenic form of steroid-resistant nephrotic syndrome. Other manifestations include primary adrenal insufficiency, ichthyosis, and neurological defects. SPLIS is caused by biallelic pathogenic variants in SGPL1, encoding sphingosine-1-phosphate lyase, a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the final step of sphingolipid metabolism. Treatment is primarily supportive, but pyridoxine supplementation may be therapeutic in some cases, and gene therapy is being explored. We sought to determine the prevalence of SPLIS globally and among different populations to facilitate patient finding in anticipation of SPLIS clinical trials. Methods Using publicly available genomic data sets, including Genome Aggregation Database (gnomAD) v.2.1.1 and gnomAD v3.1.2, Iranome, IndiGen, and private genomic data sets from Israeli, Saudi, South Dakota Hutterite, and Turkish populations, we estimated SPLIS prevalence based on cumulative variant allele frequencies for high-confidence pathogenic variants. SPLIS prevalence estimates were adjusted by the level of inbreeding when the inbreeding coefficient was known. A Bayesian point estimate and 95% credible interval for worldwide SPLIS were calculated based on gnomAD v2.1.1 (GRCh37). Results The SPLIS prevalence estimate based on the total number of samples included from gnomAD v.2.1.1 (n = 141,430) was 0.015/100,000 (95% CI: 0.010 to 0.021). Using additional population data sets, we calculated SPLIS prevalence ranging from 0.046/100,000 to 0.078/100,000 in Turkish and Iranian populations, respectively. Conclusion The estimated worldwide number of SPLIS individuals is 11,707. Individuals with East Asian, Finnish, Turkish, and Iranian ancestries have an especially high estimated prevalence.
Collapse
Affiliation(s)
- Joni C. Sedillo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI
| | - Chansonette Badduke
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, Mathura Road, New Delhi
| | - Onur Emre Onat
- Bezmialem Vakif University, Institute of Health Sciences and Biotechnology, Department of Molecular Biology, Istanbul, Turkey
| | - Majid Alfadhel
- Genetics and Precision Medicine Department (GPM), King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL
| | | | - Robert D. Steiner
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - Julie D. Saba
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| |
Collapse
|
7
|
Khan R, Oskouian B, Lee JY, Hodgin JB, Yang Y, Tassew G, Saba JD. AAV-SPL 2.0, a Modified Adeno-Associated Virus Gene Therapy Agent for the Treatment of Sphingosine Phosphate Lyase Insufficiency Syndrome. Int J Mol Sci 2023; 24:15560. [PMID: 37958544 PMCID: PMC10648410 DOI: 10.3390/ijms242115560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is an inborn error of metabolism caused by inactivating mutations in SGPL1, the gene encoding sphingosine-1-phosphate lyase (SPL), an essential enzyme needed to degrade sphingolipids. SPLIS features include glomerulosclerosis, adrenal insufficiency, neurological defects, ichthyosis, and immune deficiency. Currently, there is no cure for SPLIS, and severely affected patients often die in the first years of life. We reported that adeno-associated virus (AAV) 9-mediated SGPL1 gene therapy (AAV-SPL) given to newborn Sgpl1 knockout mice that model SPLIS and die in the first few weeks of life prolonged their survival to 4.5 months and prevented or delayed the onset of SPLIS phenotypes. In this study, we tested the efficacy of a modified AAV-SPL, which we call AAV-SPL 2.0, in which the original cytomegalovirus (CMV) promoter driving the transgene is replaced with the synthetic "CAG" promoter used in several clinically approved gene therapy agents. AAV-SPL 2.0 infection of human embryonic kidney (HEK) cells led to 30% higher SPL expression and enzyme activity compared to AAV-SPL. Newborn Sgpl1 knockout mice receiving AAV-SPL 2.0 survived ≥ 5 months and showed normal neurodevelopment, 85% of normal weight gain over the first four months, and delayed onset of proteinuria. Over time, treated mice developed nephrosis and glomerulosclerosis, which likely resulted in their demise. Our overall findings show that AAV-SPL 2.0 performs equal to or better than AAV-SPL. However, improved kidney targeting may be necessary to achieve maximally optimized gene therapy as a potentially lifesaving SPLIS treatment.
Collapse
Affiliation(s)
- Ranjha Khan
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Babak Oskouian
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Joanna Y Lee
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Yingbao Yang
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Gizachew Tassew
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Julie D Saba
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Pournasiri Z, Madani A, Nazarpack F, Sayer JA, Chavoshzadeh Z, Nili F, Tran P, Saba JD, Jamee M. Sphingosine phosphate lyase insufficiency syndrome: a systematic review. World J Pediatr 2023; 19:425-437. [PMID: 36371483 DOI: 10.1007/s12519-022-00615-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) or nephrotic syndrome type-14 is caused by biallelic mutations in SGPL1. Here, we conducted a systematic review to delineate the characteristics of SPLIS patients. METHODS A literature search was performed in PubMed, Web of Science, and Scopus databases, and eligible studies were included. For all patients, demographic, clinical, laboratory, and molecular data were collected and analyzed. RESULTS Fifty-five SPLIS patients (54.9% male, 45.1% female) were identified in 19 articles. Parental consanguinity and positive family history were reported in 70.9% and 52.7% of patients, respectively. Most patients (54.9%) primarily manifested within the first year of life, nearly half of whom survived, while all patients with a prenatal diagnosis of SPLIS (27.5%) died at a median [interquartile (IQR)] age of 2 (1.4-5.3) months (P = 0.003). The most prevalent clinical feature was endocrinopathies, including primary adrenal insufficiency (PAI) (71.2%) and hypothyroidism (32.7%). Kidney disorders (42, 80.8%) were mainly in the form of steroid-resistant nephrotic syndrome (SRNS) and progressed to end-stage kidney disease (ESKD) in 19 (36.5%) patients at a median (IQR) age of 6 (1.4-42.6) months. Among 30 different mutations in SGPL1, the most common was c.665G > A (p.Arg222Gln) in 11 (20%) patients. Twenty-six (49.1%) patients with available outcome were deceased at a median (IQR) age of 5 (1.5-30.5) months, mostly following ESKD (23%) or sepsis/septic shock (23%). CONCLUSION In patients with PAI and/or SRNS, SGPL1 should be added to diagnostic genetic panels, which can provide an earlier diagnosis of SPLIS and prevention of ESKD and other life-threatening complications.
Collapse
Affiliation(s)
- Zahra Pournasiri
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Madani
- Department of Pediatric Nephrology, Children's Medical Center, Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nazarpack
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, NE45PL, Tyne and Wear, UK
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15514-15468, Iran
| | - Fatemeh Nili
- Department of Pathology, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Paulina Tran
- Allergy Immunology Division, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Julie D Saba
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15514-15468, Iran.
| |
Collapse
|
9
|
Spizzirri AP, Cobeñas CJ, Suarez ADC. A rare cause of nephrotic syndrome - sphingosine-1-phosphate lyase (SGPL1) deficiency: 2 cases. Pediatr Nephrol 2023; 38:307-308. [PMID: 35997975 DOI: 10.1007/s00467-022-05716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/17/2023]
Affiliation(s)
- Ana Paula Spizzirri
- Department of Nephrology, Hospital de Niños Superiora Sor Maria Ludovica, La Plata, Buenos Aires, Argentina.
| | - Carlos José Cobeñas
- Department of Nephrology, Hospital de Niños Superiora Sor Maria Ludovica, La Plata, Buenos Aires, Argentina
| | - Angela Del Carmen Suarez
- Department of Nephrology, Hospital de Niños Superiora Sor Maria Ludovica, La Plata, Buenos Aires, Argentina
| |
Collapse
|
10
|
Response to Dr. Spizzirri et al. Pediatr Nephrol 2023; 38:309-310. [PMID: 35997973 DOI: 10.1007/s00467-022-05717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/15/2022]
|
11
|
Raza Y, Atallah J, Luberto C. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies. Int J Mol Sci 2022; 23:12745. [PMID: 36361536 PMCID: PMC9654982 DOI: 10.3390/ijms232112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.
Collapse
Affiliation(s)
- Yasharah Raza
- Department of Pharmacological Sciences, Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Jane Atallah
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|