1
|
Tobías A, Querol X, Roqué M, Suu Lwin K, Yuan L, Ith S, Zin Wai H, Lester Chua P, Solá I, Renzi M, Stafoggia M, Hashizume M. Short-term exposure to desert dust and sandstorms and all-cause and cause-specific mortality and morbidity: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2025; 196:109277. [PMID: 39889591 DOI: 10.1016/j.envint.2025.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Desert dust and sandstorms raise concerns about their adverse effects on human health. Over the last decade, special attention has been given to mineral dust particles from desert sand. However, evidence from previous literature reviews has yielded inconclusive results regarding their health effects. We aim to systematically synthesize evidence on the short-term health effects of desert dust exposure from major dust source areas. METHODS The bibliographic search was conducted using the MEDLINE (PubMed), Scopus, and Web of Science databases to investigate the health effects of short-term exposure to desert dust in human populations, using time series or case-crossover study designs. Study selection and reporting followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We evaluated the risk of bias (RoB) for individual studies and the certainty of evidence (CoE) for environmental exposures, as developed by a group of experts convened by the World Health Organization (WHO). Publication bias was examined using funnel plots and Begg's asymmetry test. RESULTS A total of 71 studies were included in the review, covering data from 1993 to 2024. Most studies focused on Asian and African desert dust, with fewer studies from Arabian, American, and Australian regions. We found a significant increase in the risk for all-cause mortality (Relative Risk, RR = 1.0121, 95 %CI = [1.0045, 1.0199]). In addition, the mortality risk associated with particulate matter less than 10 μm (PM10) was slightly higher on dust days compared to non-dust days, while for particulate matter less than 2.5 μm (PM2.5), the risk was higher on non-dust days. We also observed a significant increase in the risk for cardiovascular mortality (RR = 1.0252, 95 % CI = [1.0100, 1.0407]) during dust days compared to non-dust days, but not for respiratory mortality (RR = 1.0001, 95 % CI = [0.9773, 1.0277]). The risk also increased for cardiovascular (RR = 1.0094, 95 % CI = [1.0014, 1.0174]) and respiratory morbidity (RR = 1.0693, 95 % CI = [1.0188, 1.1224]). CONCLUSION Exposure to desert dust and sandstorms is linked to increased risks of all-cause and cardiovascular mortality, as well as respiratory morbidity. The overall evidence quality for each exposure-outcome combination was assessed as moderate, although data limitations prevent the establishment of specific air quality thresholds for desert dust particles. This review highlights the need for targeted public health interventions in affected regions.
Collapse
Affiliation(s)
- Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Marta Roqué
- Iberoamerican Cochrane Centre, Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Kaung Suu Lwin
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; SingHealth Duke-NUS Global Health Institute, Singapore
| | - Lei Yuan
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sophearen Ith
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Htay Zin Wai
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Paul Lester Chua
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Iván Solá
- Iberoamerican Cochrane Centre, Barcelona, Spain
| | - Matteo Renzi
- Department of Epidemiology, Lazio Regional Health Service/ASL, Roma 1, Rome, Italy
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service/ASL, Roma 1, Rome, Italy
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Sagawa T, Ichinose T, Honda A, Kuroda E, Ishikawa R, Miyasaka N, Nagao M, Okuda T, Kawahito Y, Takano H. Acceleration of acute lung inflammation by IL-1α released through cell death of alveolar macrophages upon phagocytosis of fine Asian sand dust particles. ENVIRONMENT INTERNATIONAL 2024; 194:109178. [PMID: 39662280 DOI: 10.1016/j.envint.2024.109178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Asian sand dust (ASD), a significant desert sand dust, contains sub-2.5 µm fine particles and adversely affects human health, particularly exacerbating respiratory diseases. Despite this, the intricate physiological responses triggered by inhaled ASD particles remain incompletely understood. This study aimed to comprehensively examine the respiratory effects of ASD, focusing on the spatial distribution of inhaled ASD fine particles within the lungs and the immediate physiological responses they incite. Intratracheal administration of ASD fine particles in mice resulted in efficient phagocytosis by alveolar macrophages (AMs), leading to subsequent neutrophilic inflammation. A subset of ASD-phagocytosed AMs underwent necroptosis, releasing interleukin-1α (IL-1α), causing an increase in chemokines and neutrophils. These responses occurred rapidly within hours of exposure, with endotoxin in ASD particles contributing to the process. Despite variations in desert sand dust composition based on collection locale and timing, this study's findings provide a foundational basis for understanding the biological effects of desert sand dust. Insights gained into the biological responses to desert sand dust hold promise for developing preventive measures such as air purifiers, and therapeutic agents such as IL-1α neutralizing antibodies, antibacterial agents and cell death inhibitors for human diseases associated with such environmental exposures.
Collapse
Affiliation(s)
- Tomoya Sagawa
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan; Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Takamichi Ichinose
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Akiko Honda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Etsushi Kuroda
- Department of Immunology, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Raga Ishikawa
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Natsuko Miyasaka
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Megumi Nagao
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Yutaka Kawahito
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan; Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, Japan; Research Institute for Coexistence and Health Science, Kyoto University of Advanced Science, Kyoto, Japan
| |
Collapse
|
3
|
Adeniyi MJ, Fabunmi OA, Awosika A. Unravelling the interplay between Harmattan wind and baroreflex functions: implications on environmental health and cardiovascular pathophysiology. EXPLORATION OF MEDICINE 2024:584-600. [DOI: 10.37349/emed.2024.00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/14/2024] [Indexed: 05/14/2025] Open
Abstract
Harmattan is a season characterized by dust, cold, and sub-humid trade winds in Sub-Saharan countries. It’s similar to meteorological phenomena like Asian dust storms, Santa Ana winds, Australian bushfires, and Saharan dust in the Caribbean. It causes profound changes in the cardiorespiratory system in apparently healthy individuals and increases the risk of hospitalization in susceptible individuals. Exposure to these extreme conditions has been associated with alterations in autonomic function and baroreceptor sensitivity thus resulting in dysregulation of blood pressure control mechanisms. Baroreceptors are critical regulators of hemodynamics and cardiovascular function. They play a vital role in the short-term responses to blood pressure perturbation and are essential for acute restoration of blood pressure following cold exposure. Harmattan wind contains a barrage of chemicals, dust, and particulate matters depending on industrialization, natural and human activities. Particulate matter from Harmattan dust can trigger systemic inflammation and oxidative stress, exacerbating endothelial dysfunction and impairing vascular reactivity thus contributing to the pathogenesis of alterations in baroreceptor insensitivity, and cardiovascular diseases, including hypertension and atherosclerosis. Furthermore, fine particulate matter from dust may penetrate deep into the respiratory tract, activating pulmonary sensory receptors and eliciting reflex responses that influence autonomic tone. The presence of rich acrolein smokes and non-essential heavy metals such as cadmium, lead, and mercury in Harmattan wind also reduces baroreflex sensitivity, culminating in a sustained increase in diastolic and systolic blood pressure. This integrated review aims to provide valuable insights into how changes in each of these environmental constituents alter vital pathophysiologic and immunologic mechanisms of the body leading to baroreceptor instability and ultimately hemodynamic imbalance using available primary studies. Understanding this intricate interplay is crucial for implementing targeted interventions and informed public health strategies to mitigate the adverse effects of extreme environmental exposure and ultimately reduce poor health outcomes in the affected regions.
Collapse
Affiliation(s)
- Mayowa Jeremiah Adeniyi
- Departments of Physiology, Federal University of Health Sciences Otukpo, Benue 972261, Nigeria
| | - Oyesanmi A. Fabunmi
- Health-awareness, Exercise and Cardio-immunologic Research Unit (HECIRU), Department of Physiology, College of Medicine, Ekiti State University, Ado-Ekiti 5363, Nigeria
| | - Ayoola Awosika
- College of Medicine, University of Illinois, Peoria, IL 61606, USA
| |
Collapse
|
4
|
Boura D, Spanakis M, Markakis G, Notas G, Lionis C, Tzanakis N, Paraskakis E. Exploring the Relationship between Wind Patterns and Hospital Admissions Due to Respiratory Symptoms in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:717. [PMID: 38929296 PMCID: PMC11201383 DOI: 10.3390/children11060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Respiratory disorders significantly impact adolescents' health, often resulting in hospital admissions. Meteorological elements such as wind patterns have emerged as potential contributors to respiratory symptoms. However, it remains uncertain whether fluctuations in wind characteristics over extended periods have a tangible impact on respiratory health, particularly in regions characterized by distinct annual wind patterns. Crete is situated in the central-eastern Mediterranean Sea and frequently faces southerly winds carrying Sahara Desert sand from Africa and northerly winds from the Aegean Sea. This retrospective study analyzes long-term wind direction data and their relationship to respiratory symptoms observed in children up to 14 years old admitted at the University Hospital of Heraklion between 2002 and 2010. Symptoms such as headache, dyspnea, dry cough, dizziness, tachypnea, throat ache, and earache were predominantly reported during the presence of southern winds. Fever, productive cough, and chest pain were more frequently reported during northern winds. Cough was the most common symptom regardless of the wind pattern. Southern winds were significantly associated with higher probabilities of productive or non-productive cough, headache, dyspnea, tachypnea, dizziness, earache, and throat ache. Northern winds were related to a higher incidence of productive cough. Rhinitis, asthma, allergies, pharyngitis, and sinusitis were related to southern winds, while bronchiolitis and pneumonia were associated with northern winds. These findings underscore the critical role of local climatic factors, emphasizing their potential impact on exacerbating respiratory conditions in children. Moreover, they point out the need for further research to elucidate the underlying mechanisms and develop targeted interventions for at-risk populations.
Collapse
Affiliation(s)
- Despoina Boura
- Department of Respiratory Medicine, University Hospital of Heraklion, School of Medicine, University of Crete, 71003 Heraklion, Greece; (D.B.); (N.T.)
| | - Marios Spanakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research & Technology–Hellas, 71110 Heraklion, Greece
| | - George Markakis
- Department of Social Work, Faculty of Health Sciences, Hellenic Mediterranean University, 71004 Heraklion, Greece;
| | - George Notas
- Department of Emergency Medicine, University Hospital of Heraklion, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Christos Lionis
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Nikolaos Tzanakis
- Department of Respiratory Medicine, University Hospital of Heraklion, School of Medicine, University of Crete, 71003 Heraklion, Greece; (D.B.); (N.T.)
| | - Emmanouil Paraskakis
- Paediatric Respiratory Unit, Paediatric Department, University of Crete, 71500 Heraklion, Greece
| |
Collapse
|
5
|
Domínguez-Rodríguez A, Baéz-Ferrer N, Avanzas P, Rodríguez S, Abreu-González P, Trujillo-Martin E, Burillo-Putze G, Hernández-Vaquero D. The Association of Desert Dust with the Risk of Acute Coronary Syndrome in Subjects of a Younger Age. J Clin Med 2024; 13:2392. [PMID: 38673666 PMCID: PMC11051357 DOI: 10.3390/jcm13082392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Objectives: Recently, desert dust in Europe has been recognized as a cardiovascular health problem. In Spain, desert dust inflows in recent years have been associated with worsening air quality. The present study examines whether desert dust events are related to the incidence of acute coronary syndrome (ACS) in patients under 55 years of age. Methods: Data from 2416 consecutive patients admitted to a tertiary hospital due to ACS were prospectively analyzed. A case-crossover time-stratified design using Poisson conditional regression models was applied to estimate the impact of desert dust events involving particulate matter concentrations of an aerodynamic diameter <10 μm (PM10) on the incidence of ACS in patients under 55 years of age. Results: Desert dust intrusion on days 0 to 5 before ACS onset showed no significant association with the incidence of ACS in patients under 55 years of age. The incidence rate ratios of PM10 concentrations 1, 2, 3, 3, 4, and 5 days before ACS onset (for changes of 10 µg/m3) were 1.02 (95% CI 0.97-1.1; p = 0.41), 1.01 (95% CI 0.96-1.07; p = 0.66), 0.99 (95% CI 0.94-1.05; p = 0.78), 0.96 (95% CI 0.9-1.02; p = 0.18), and 0.97 (95% CI 0.91-1.04; p = 0.41). Conclusions: Our findings suggest that desert dust is unlikely to be related to the incidence of ACS in patients under 55 years of age.
Collapse
Affiliation(s)
- Alberto Domínguez-Rodríguez
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Cardiología, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Néstor Baéz-Ferrer
- Hospital Universitario de Canarias, Servicio de Cardiología, 38320 Tenerife, Spain;
| | - Pablo Avanzas
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiology Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Department of Medicine, Faculty of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sergio Rodríguez
- Institute of Natural Products and Agrobiology (IPNA), CSIC, 38206 La Laguna, Spain;
| | - Pedro Abreu-González
- Unidad de Fisiología, Departamento de Ciencias Médicas Básicas, Universidad de la Laguna, 38200 Tenerife, Spain;
| | - Elisa Trujillo-Martin
- Hospital Universitario de Canarias, Servicio de Reumatología, 38320 Tenerife, Spain;
| | - Guillermo Burillo-Putze
- Hospital Universitario de Canarias, Servicio de Urgencias, 38320 Tenerife, Spain;
- Faculty of Health Sciences, Universidad Europea de Canarias, 38320 La Orotava, Spain
| | - Daniel Hernández-Vaquero
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Cardiac Surgery Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| |
Collapse
|
6
|
Zhang C, Zhao D, Liu F, Yang J, Ban J, Du P, Lu K, Ma R, Liu Y, Sun Q, Chen S, Li T. Dust particulate matter increases pulmonary embolism onset: A nationwide time-stratified case-crossover study in China. ENVIRONMENT INTERNATIONAL 2024; 186:108586. [PMID: 38521047 DOI: 10.1016/j.envint.2024.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Particulate matter (PM) has been found to elevate the risk of pulmonary embolism (PE) onset. Among the contributors to PM, dust PM stands as the second natural source, and its emissions are escalating due to climate change. Despite this, information on the effect of dust PM on PE onset is scarce. Hence, this study aims to investigate the impacts of dust PM10, dust PM2.5-10, and dust PM2.5 on PE onset. METHODS A nationwide time-stratified case-crossover study was conducted between 2015 and 2020, using data from 18,616 PE onset cases across 1,921 hospitals in China. The analysis employed a conditional logistic regression model to quantify the associations between dust PM10, dust PM2.5-10, and dust PM2.5 and PE onset. Furthermore, the study explored the time-distributed lag pattern of the effect of dust PM on PE development. Stratified analyses were performed based on sex, age, region, and season. RESULTS Dust PM10, dust PM2.5-10, and dust PM2.5 exhibited significant health effects on PE onset, particularly concerning exposure on the same day. The peak estimates were observed at lag 01 day, with the odds ratio being 1.011 [95 % confidence interval (CI): 1.003, 1.019], 1.014 (95 % CI: 1.003, 1.026), and 1.039 (95 % CI: 1.011, 1.068), for a 10 μg/m3 increase in the concentration of dust PM10, dust PM2.5-10, and dust PM2.5, respectively. In addition, the study identified a higher risk of PE onset associated with dust PM exposure during the warm season than that in cool season, particularly for dust PM2.5. CONCLUSIONS The findings from this study suggest that short-term exposure to dust PM, particularly dust PM2.5, may trigger PE onset, posing a significant health threat. Implementing measures to mitigate dust PM emissions and protect patients with PE from dust PM exposure is imperative.
Collapse
Affiliation(s)
- Can Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Dan Zhao
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Feng Liu
- Department of Cardiology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215127, China
| | - Jing Yang
- Department of Cardiology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui hospital, Fudan University, Shanghai 200031, China
| | - Jie Ban
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Kailai Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Runmei Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Siyu Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
7
|
Das S, McEwen A, Prospero J, Spalink D, Chellam S. Respirable Metals, Bacteria, and Fungi during a Saharan-Sahelian Dust Event in Houston, Texas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19942-19955. [PMID: 37943153 PMCID: PMC10862556 DOI: 10.1021/acs.est.3c04158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Although airborne bacteria and fungi can impact human, animal, plant, and ecosystem health, very few studies have investigated the possible impact of their long-range transport in the context of more commonly measured aerosol species, especially those present in an urban environment. We report first-of-kind simultaneous measurements of the elemental and microbial composition of North American respirable airborne particulate matter concurrent with a Saharan-Sahelian dust episode. Comprehensive taxonomic and phylogenetic profiles of microbial communities obtained by 16S/18S/ITS rDNA sequencing identified hundreds of bacteria and fungi, including several cataloged in the World Health Organization's lists of global priority human pathogens along with numerous other animal and plant pathogens and (poly)extremophiles. While elemental analysis sensitively tracked long-range transported Saharan dust and its mixing with locally emitted aerosols, microbial diversity, phylogeny, composition, and abundance did not well correlate with the apportioned African dust mass. Bacterial/fungal diversity, phylogenetic signal, and community turnover were strongly correlated to apportioned sources (especially vehicular emissions and construction activities) and elemental composition (especially calcium). Bacterial communities were substantially more dissimilar from each other across sampling days than were fungal communities. Generalized dissimilarity modeling revealed that daily compositional turnover in both communities was linked to calcium concentrations and aerosols from local vehicles and Saharan dust. Because African dust is known to impact large areas in northern South America, the Caribbean Basin, and the southern United States, the microbiological impacts of such long-range transport should be assessed in these regions.
Collapse
Affiliation(s)
- Sourav Das
- Department
of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Alyvia McEwen
- Department
of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Joseph Prospero
- Rosenstiel
School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149, United States
| | - Daniel Spalink
- Department
of Ecology and Conservation Biology, Texas
A&M University, College
Station, Texas 77843, United States
| | - Shankararaman Chellam
- Department
of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
8
|
Nishita‐Hara C, Kobayashi H, Hara K, Hayashi M. Dithiothreitol-Measured Oxidative Potential of Reference Materials of Mineral Dust: Implications for the Toxicity of Mineral Dust Aerosols in the Atmosphere. GEOHEALTH 2023; 7:e2022GH000736. [PMID: 37426691 PMCID: PMC10326488 DOI: 10.1029/2022gh000736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 07/11/2023]
Abstract
Oxidative stress is a mechanism that might raise the toxicity of mineral dust aerosols. We evaluated the oxidative potential (OP) of four reference materials (RMs) of mineral dusts using dithiothreitol assay. The OP of the water-soluble fraction of the dust RMs accounts for 40%-70% of the OP of the total fraction. The values of total and water-soluble OP normalized by the surface area of insoluble particles showed agreement among the different dust RMs. The surface area of insoluble dust particles was therefore inferred as an important factor affecting the OP of mineral dust. Using the relation between total OP and the surface area of insoluble particles of the dust RMs, we estimated the total OPs of fine and coarse atmospheric mineral dust aerosols assuming a typical particle size distribution of Asian dust aerosols observed in Japan. Mass-normalized total OPs were estimated at 44 and 23 pmol min-1 μg-1 for fine and coarse atmospheric mineral dust particles. They closely approximate the values observed for urban aerosols in Japan, which suggests that mineral dust plume advection can lead to a marked increase in human exposure to redox-active aerosols, even far downwind from mineral dust source regions.
Collapse
Affiliation(s)
- Chiharu Nishita‐Hara
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
| | - Hiroshi Kobayashi
- Division of Life and Environmental SciencesUniversity of YamanashiKofuJapan
| | - Keiichiro Hara
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
- Department of Earth System ScienceFaculty of ScienceFukuoka UniversityFukuokaJapan
| | - Masahiko Hayashi
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
- Department of Earth System ScienceFaculty of ScienceFukuoka UniversityFukuokaJapan
| |
Collapse
|
9
|
Zhang T, Zheng M, Sun X, Chen H, Wang Y, Fan X, Pan Y, Quan J, Liu J, Wang Y, Lyu D, Chen S, Zhu T, Chai F. Environmental impacts of three Asian dust events in the northern China and the northwestern Pacific in spring 2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160230. [PMID: 36395839 DOI: 10.1016/j.scitotenv.2022.160230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
In March 2021, China experienced three dust events (Dust-1, 2, 3), especially the first of which was reported as the strongest one in recent ten years. Their environmental impacts have received great attention, demanding comprehensive study to assess such impacts quantitatively. Multiple advanced measurement methods, including satellite, ground-based lidar, online aerosol speciation instrument, and biogeochemical Argo float, were applied to examine and compare the transport paths, optical and chemical properties, and impacts of these three dust events on urban air quality and marine ecosystem. The results showed that Dust-1 exhibited the largest impacts on urban area, increasing PM10 concentration in Beijing, Shuozhou, and Shijiazhuang up to 7525, 3819, and 2992 μg m-3, respectively. However, due to fast movement of the Mongolian low-pressure cyclone, the duration of northwest wind over the land was quite short (e.g., only 10 h in Beijing), which prevented the transport of dust plume to the northwestern Pacific, resulting in limited impact on the ocean. Dust-2 and Dust-3, though weaker in intensity, were transported directly to the sea, and led to a substantial increase in chlorophyll-a concentration (up to near 3 times) in the northwestern Pacific, comparing to climatological value. This indicates that the impacts of dust events on ocean was not necessarily and positively correlated to their impacts on land. Based on the analyses of land-ocean-space integrated observational data and synoptic systems, this study examined how marine ecosystem responded to three significant Asian dust events in spring 2021 and quantitatively assessed the overall impacts of mega dust storms both on land and ocean, which could also provide an interdisciplinary research methodology for future research on strong aerosol emission events such as wildfire and volcanic eruption.
Collapse
Affiliation(s)
- Tianle Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiaoguang Sun
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Huanhuan Chen
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Xuehua Fan
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Yubing Pan
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Jiannong Quan
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Junyi Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yinan Wang
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Daren Lyu
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shuangling Chen
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fei Chai
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| |
Collapse
|
10
|
Rodríguez-Arias RM, Rojo J, Fernández-González F, Pérez-Badia R. Desert dust intrusions and their incidence on airborne biological content. Review and case study in the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120464. [PMID: 36273688 DOI: 10.1016/j.envpol.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Desert dust intrusions cause the transport of airborne particulate matter from natural sources, with important consequences for climate regulation, biodiversity, ecosystem functioning and dynamics, human health, and socio-economic activities. Some effects of desert intrusions are reinforced or aggravated by the bioaerosol content of the air during these episodes. The influence of desert intrusions on airborne bioaerosol content has been very little studied from a scientific point of view. In this study, a systematic review of scientific literature during 1970-2021 was carried out following the standard protocol Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). After this literature review, only 6% of the articles on airborne transport from desert areas published in the last 50 years are in some way associated with airborne pollen, and of these, only a small proportion focus on the study of pollen-related parameters. The Iberian Peninsula is affected by Saharan intrusions due to its proximity to the African continent and is seeing an increasing trend the number of intrusion events. There is a close relationship among the conditions favouring the occurrence of intrusion episodes, the transport of particulate matter, and the transport of bioaerosols such as pollen grains, spores, or bacteria. The lack of linearity in this relationship and the different seasonal patterns in the occurrence of intrusion events and the pollen season of most plants hinders the study of the correspondence between both phenomena. It is therefore important to analyse the proportion of pollen that comes from regional sources and the proportion that travels over long distances, and the atmospheric conditions that cause greater pollen emission during dust episodes. Current advances in aerobiological techniques make it possible to identify bioaerosols such as pollen and spores that serve as indicators of long-distance transport from remote areas belonging to other bioclimatic and biogeographical units. A greater incidence of desert intrusion episodes may pose a challenge for both traditional systems and for the calibration and correct validation of automatic aerobiological monitoring methods.
Collapse
Affiliation(s)
- R M Rodríguez-Arias
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - J Rojo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - F Fernández-González
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - R Pérez-Badia
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain.
| |
Collapse
|
11
|
Dione C, Talib J, Bwaka AM, Kamga AF, Bita Fouda AA, Hirons L, Latt A, Thompson E, Lingani C, Savatia Indasi V, Adefisan EA, Woolnough SJ. Improved sub-seasonal forecasts to support preparedness action for meningitis outbreak in Africa. CLIMATE SERVICES 2022; 28:100326. [PMID: 36504524 PMCID: PMC9729499 DOI: 10.1016/j.cliser.2022.100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/14/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
West African countries are hit annually by meningitis outbreaks which occur during the dry season and are linked to atmospheric variability. This paper describes an innovative co-production process between the African Centre of Meteorological Applications for Development (ACMAD; forecast producer) and the World Health Organisation Regional Office for Africa (WHO AFRO; forecast user) to support awareness, preparedness and response actions for meningitis outbreaks. Using sub-seasonal to seasonal (S2S) forecasts, this co-production enables ACMAD and WHO AFRO to build initiative that increases the production of useful climate services in the health sector. Temperature and relative humidity forecasts are combined with dust forecasts to operationalize a meningitis early warning system (MEWS) across the African meningitis belt with a two-week lead time. To prevent and control meningitis, the MEWS is produced from week 1 to 26 of the year. This study demonstrates that S2S forecasts have good skill at predicting dry and warm atmospheric conditions precede meningitis outbreaks. Vigilance levels objectively defined within the MEWS are consistent with reported cases of meningitis. Alongside developing a MEWS, the co-production process provided a framework for analysis of climate and environmental risks based on reanalysis data, meningitis burden, and health service assessment, to support the development of a qualitative roadmap of country prioritization for defeating meningitis by 2030 across the WHO African region. The roadmap has enabled the identification of countries most vulnerable to meningitis epidemics, and in the context of climate change, supports plans for preventing, preparing, and responding to meningitis outbreaks.
Collapse
Affiliation(s)
- Cheikh Dione
- African Centre of Meteorological Applications for Development (ACMAD), Niamey, Niger
| | - Joshua Talib
- UK Centre for Ecology and Hydrology (UKCEH), Wallingford, United Kingdom
| | - Ado M. Bwaka
- World Health Organization, Intercountry Support Team, Ouagadougou, Burkina Faso
| | - André F. Kamga
- African Centre of Meteorological Applications for Development (ACMAD), Niamey, Niger
| | | | - Linda Hirons
- National Centre for Atmospheric Science (NCAS), University of Reading, United Kingdom
| | - Anderson Latt
- World Health Organization, Emergencies hub Dakar, Senegal
| | - Elisabeth Thompson
- National Centre for Atmospheric Science (NCAS), University of Reading, United Kingdom
| | - Clement Lingani
- World Health Organization, Intercountry Support Team, Ouagadougou, Burkina Faso
| | - Victor Savatia Indasi
- African Centre of Meteorological Applications for Development (ACMAD), Niamey, Niger
| | - Elijah A. Adefisan
- African Centre of Meteorological Applications for Development (ACMAD), Niamey, Niger
| | - Steve J. Woolnough
- National Centre for Atmospheric Science (NCAS), University of Reading, United Kingdom
| |
Collapse
|
12
|
Monteiro A, Basart S, Kazadzis S, Votsis A, Gkikas A, Vandenbussche S, Tobias A, Gama C, García-Pando CP, Terradellas E, Notas G, Middleton N, Kushta J, Amiridis V, Lagouvardos K, Kosmopoulos P, Kotroni V, Kanakidou M, Mihalopoulos N, Kalivitis N, Dagsson-Waldhauserová P, El-Askary H, Sievers K, Giannaros T, Mona L, Hirtl M, Skomorowski P, Virtanen TH, Christoudias T, Di Mauro B, Trippetta S, Kutuzov S, Meinander O, Nickovic S. Multi-sectoral impact assessment of an extreme African dust episode in the Eastern Mediterranean in March 2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156861. [PMID: 35750162 DOI: 10.1016/j.scitotenv.2022.156861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
In late March 2018, a large part of the Eastern Mediterranean experienced an extraordinary episode of African dust, one of the most intense in recent years, here referred to as the "Minoan Red" event. The episode mainly affected the Greek island of Crete, where the highest aerosol concentrations over the past 15 yeas were recorded, although impacts were also felt well beyond this core area. Our study fills a gap in dust research by assessing the multi-sectoral impacts of sand and dust storms and their socioeconomic implications. Specifically, we provide a multi-sectoral impact assessment of Crete during the occurrence of this exceptional African dust event. During the day of the occurrence of the maximum dust concentration in Crete, i.e. March 22nd, 2018, we identified impacts on meteorological conditions, agriculture, transport, energy, society (including closing of schools and cancellation of social events), and emergency response systems. As a result, the event led to a 3-fold increase in daily emergency responses compare to previous days associated with urban emergencies and wildfires, a 3.5-fold increase in hospital visits and admissions for Chronic Obstructive Pulmonary Disease (COPD) exacerbations and dyspnoea, a reduction of visibility causing aircraft traffic disruptions (eleven cancellations and seven delays), and a reduction of solar energy production. We estimate the cost of direct and indirect effects of the dust episode, considering the most affected socio-economic sectors (e.g. civil protection, aviation, health and solar energy production), to be between 3.4 and 3.8 million EUR for Crete. Since such desert dust transport episodes are natural, meteorology-driven and thus to a large extent unavoidable, we argue that the efficiency of actions to mitigate dust impacts depends on the accuracy of operational dust forecasting and the implementation of relevant early warning systems for social awareness.
Collapse
Affiliation(s)
- Alexandra Monteiro
- CESAM & Department of Environment and Planning, University of Aveiro, Aveiro, Portugal.
| | - Sara Basart
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Stelios Kazadzis
- Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Switzerland
| | - Athanasios Votsis
- Dept. of Governance and Technology for Sustainability, University of Twente, Enschede, Netherlands; Climate Change and Society, Finnish Meteorological Institute, Helsinki, Finland
| | - Antonis Gkikas
- IAASARS, National Observatory of Athens, 15236 Athens, Greece
| | | | - Aurelio Tobias
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Carla Gama
- CESAM & Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Carlos Pérez García-Pando
- Barcelona Supercomputing Center (BSC), Barcelona, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | | | - George Notas
- School of Medicine and University Hospital, Department of Emergency Medicine, University of Crete, 70013 Heraklion, Greece
| | - Nick Middleton
- St Anne's College, University of Oxford, Oxford OX2 6HS, United Kingdom
| | - Jonilda Kushta
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia 2121, Cyprus
| | | | - Kostas Lagouvardos
- Institute of Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), Greece
| | - Panagiotis Kosmopoulos
- Institute of Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), Greece
| | - Vasiliki Kotroni
- Institute of Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), Greece
| | - Maria Kanakidou
- Environmental Chemical Processes Laboratory, Chemistry Department, University of Crete, 70013 Heraklion, Greece
| | - Nikos Mihalopoulos
- Institute of Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), Greece; Environmental Chemical Processes Laboratory, Chemistry Department, University of Crete, 70013 Heraklion, Greece
| | - Nikos Kalivitis
- IAASARS, National Observatory of Athens, 15236 Athens, Greece; Environmental Chemical Processes Laboratory, Chemistry Department, University of Crete, 70013 Heraklion, Greece
| | - Pavla Dagsson-Waldhauserová
- Agricultural University of Iceland, Keldnaholt, 112 Reykjavik, Iceland; Faculty of Environmental Sciences, Czech University of Life Sciences, Prague 165 21, Czech Republic
| | - Hesham El-Askary
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA; Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria 21522, Egypt
| | - Klaus Sievers
- ZAMG - Zentralanstalt für Meteorologie und Geodynamik, Wien, Austria
| | - T Giannaros
- Institute of Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), Greece
| | - Lucia Mona
- Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA), Tito Scalo (PZ), Italy
| | - Marcus Hirtl
- ZAMG - Zentralanstalt für Meteorologie und Geodynamik, Wien, Austria
| | - Paul Skomorowski
- ZAMG - Zentralanstalt für Meteorologie und Geodynamik, Wien, Austria
| | - Timo H Virtanen
- Finnish Meteorological Institute, Climate Research, 00101 Helsinki, Finland
| | - Theodoros Christoudias
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia 2121, Cyprus
| | - Biagio Di Mauro
- Institute of Polar Sciences, National Research Council of Italy, Milano, Italy
| | - Serena Trippetta
- Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA), Tito Scalo (PZ), Italy
| | - Stanislav Kutuzov
- Dept. of Glaciology, Institute of Geography Russian Academy of Sciences, Russia; Faculty of Geography and Geoinformation Technologies, National Research University Higher School of Economics, Russia
| | - Outi Meinander
- Finnish Meteorological Institute, Climate Research, 00101 Helsinki, Finland
| | | |
Collapse
|
13
|
Aerosol Distributions and Sahara Dust Transport in Southern Morocco, from Ground-Based and Satellite Observations. REMOTE SENSING 2022. [DOI: 10.3390/rs14102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigates aerosols distributions and a strong Sahara dust-storm event that occurred by early August 2018, in the South of Morocco. We used columnar aerosol optical depth (AOD), Angstrom Exponent (AE) and volume size distributions (VSD) as derived from ground-based observations by 2 AERONET (AErosol RObotic NETwork) sun-photometers at Saada (31.63°N, 8.16°W) and Ouarzazate (30.93°N, 6.91°W) sites, over the periods 2004–2019 and 2012–2015, respectively. The monthly seasonal distributions of AOD, AE, and VSD showed a seasonal trend dominated by the annual cycle, with a maximum aerosol load during summer (July–August) and a minimum in winter (December–January), characterized by a coarse mode near the radius of 2.59 μm and a fine mode at the radius of 0.16 μm, respectively. Indeed, this study showed that aerosol populations in southern Morocco are dominated by Saharan desert dust, especially during the summer season. The latter can sometimes be subject of dust-storm events. The case study presented in this paper reports on one of these events, which happened in early August 2018. The HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model was used to simulate air-mass back-trajectories during the event. In agreement with ground-based (AERONET sun-photometers) and satellite (CALIOP, MODIS and AIRS) observations, HYSPLIT back-trajectories showed that the dust air-mass at the 4-km layer, the average height of the dust plume, has crossed southern Morocco over the Saada site, with a westward direction towards the Atlantic Ocean, before it changed northward up to the Portuguese coasts.
Collapse
|
14
|
Barnaba F, Alvan Romero N, Bolignano A, Basart S, Renzi M, Stafoggia M. Multiannual assessment of the desert dust impact on air quality in Italy combining PM10 data with physics-based and geostatistical models. ENVIRONMENT INTERNATIONAL 2022; 163:107204. [PMID: 35366556 DOI: 10.1016/j.envint.2022.107204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Desert dust storms pose real threats to air quality and health of millions of people in source regions, with associated impacts extending to downwind areas. Europe (EU) is frequently affected by atmospheric transport of desert dust from the Northern Africa and Middle East drylands. This investigation aims at quantifying the role of desert dust transport events on air quality (AQ) over Italy, which is among the EU countries most impacted by this phenomenon. We focus on the particulate matter (PM) metrics regulated by the EU AQ Directive. In particular, we use multiannual (2006-2012) PM10 records collected in hundreds monitoring sites within the national AQ network to quantify daily and annual contributions of dust during transport episodes. The methodology followed was built on specific European Commission guidelines released to evaluate the natural contributions to the measured PM-levels, and was partially modified, tested and adapted to the Italian case in a previous study. Overall, we show that impact of dust on the yearly average PM10 has a clear latitudinal gradient (from less than 1 to greater than 10 µg/m3 going from north to south Italy), this feature being mainly driven by an increased number of dust episodes per year with decreasing latitude. Conversely, the daily-average dust-PM10 (≅12 µg/m3) is more homogenous over the country and shown to be mainly influenced by the site type, with enhanced values in more urbanized locations. This study also combines the PM10 measurements-approach with geostatistical modelling. In particular, exploiting the dust-PM10 dataset obtained at site- and daily-resolution over Italy, a geostatistical, random-forest model was set up to derive a daily, spatially-continuous field of desert-dust PM10 at high (1-km) resolution. This finely resolved information represent the basis for a follow up investigation of both acute and chronic health effects of desert dust over Italy, stemming from daily and annual exposures, respectively.
Collapse
Affiliation(s)
- Francesca Barnaba
- National Research Council, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Rome, Italy.
| | - Nancy Alvan Romero
- National Research Council, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Rome, Italy; University of Rome 'La Sapienza', Department of Information Engineering, Electronics and Telecommunications (DIET), Rome, Italy(1)
| | - Andrea Bolignano
- Environmental Protection Agency of the Lazio Region, ARPA-Lazio, Rome, Italy
| | - Sara Basart
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Matteo Renzi
- Department of Epidemiology (DEP), Lazio Region Health Service / ASL Roma 1, Rome, Italy
| | - Massimo Stafoggia
- Department of Epidemiology (DEP), Lazio Region Health Service / ASL Roma 1, Rome, Italy
| |
Collapse
|
15
|
McElroy S, Dimitrova A, Evan A, Benmarhnia T. Saharan Dust and Childhood Respiratory Symptoms in Benin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4743. [PMID: 35457613 PMCID: PMC9025829 DOI: 10.3390/ijerph19084743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023]
Abstract
Mineral dust is one of the largest natural constituents of coarse particulate matter (PM10). Most of these dust emissions originate from northern Africa, and several hundred tera-grams of dust are emitted annually from this region. Previous evidence has linked dust PM10 to adverse respiratory outcomes in children. However, most of these studies have been from high-income countries (HICs) or examined dust from other regions of the world, mainly Asia. Evidence from low-to-middle-income countries (LMICs) in Africa is scarce. Respiratory infections are one of the leading causes of under-five mortality across the globe. However, there is a poignant disparity in studies examining these outcomes in children in the region where most dust is emitted. This study linked remotely sensed satellite data to a nationally representative survey to examine acute exposure to dust in children living in Benin using a time-stratified case-crossover analysis. We identified acute effects of exposure to dust and increased risk of cough in children under five. The effect of increased risk is strongest within two weeks of exposure and dissipates by four weeks. Children living in rural areas and households with lower income had a greater risk of adverse respiratory outcomes when exposed to dust. We could elucidate the specific period and conditions of increased risk for respiratory problems in children living in Benin.
Collapse
Affiliation(s)
- Sara McElroy
- Hebert Wertheim School of Public Health, University of California, La Jolla, CA 92093, USA
- San Diego State University, San Diego, CA 92182, USA
| | - Anna Dimitrova
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA; (A.D.); (A.E.); (T.B.)
| | - Amato Evan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA; (A.D.); (A.E.); (T.B.)
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA; (A.D.); (A.E.); (T.B.)
| |
Collapse
|
16
|
Negral L, Aznar F, Galera MD, Costa-Gómez I, Moreno-Grau S, Moreno JM. Phenological and seismological impacts on airborne pollen types: A case study of Olea pollen in the Region of Murcia, Mediterranean Spanish climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152686. [PMID: 34973329 DOI: 10.1016/j.scitotenv.2021.152686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The rationale of this paper was to investigate whether earthquakes impact airborne pollen concentrations, considering some meteorological parameters. Atmospheric pollen concentrations in the Region of Murcia Aerobiological Network (Spain) were studied in relation to the occurrence of earthquakes of moment magnitude (up to Mw = 5.1) and intensity (intensity up to grade VII on the European Macroseismic Scale). In this study, a decade (2010-2019) was considered across the cities of the network. Earthquakes were detected in 12 out of 1535 days in the Olea Main Pollen Season in Cartagena, 49 out of 1481 days in the Olea Main Pollen Season in Lorca, and 39 out of 1441 days in the Olea Main Pollen Season in Murcia. The Olea pollen grains in this network were attributed to the species Olea europaea, i.e., the olive tree, a taxon that appears widely in the Mediterranean basin, in both cultivated and wild subspecies. Differences between the Olea concentration on days with and without earthquakes were only found in Lorca (Kruskal-Wallis: p-value = 0.026). The low frequency and intensity of the earthquakes explained these results. The most catastrophic earthquake felt in Lorca on May 11th, 2011 (IVII, Mw = 5.1, 9 casualties) did not result in clear variations in pollen concentrations, while meteorology (e.g., African Dust Outbreak) might have conditioned these pollen concentrations. The research should be broadened to other active seismological areas to reinforce the hypothesis of seismological impact on airborne pollen concentrations.
Collapse
Affiliation(s)
- L Negral
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain.
| | - F Aznar
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain.
| | - M D Galera
- Department of Applied Mathematics and Statistics, Technical University of Cartagena, Cartagena, Spain.
| | - I Costa-Gómez
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain.
| | - S Moreno-Grau
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain.
| | - J M Moreno
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain.
| |
Collapse
|
17
|
Ogunjo S, Olaniyan O, Olusegun C, Kayode F, Okoh D, Jenkins G. The Role of Meteorological Variables and Aerosols in the Transmission of COVID-19 During Harmattan Season. GEOHEALTH 2022; 6:e2021GH000521. [PMID: 35229057 PMCID: PMC8865058 DOI: 10.1029/2021gh000521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 05/26/2023]
Abstract
The role of atmospheric parameters and aerosols in the transmission of COVID-19 within tropical Africa, especially during the harmattan season, has been under-investigated in published papers. The harmattan season within the West African region is associated with significant dust incursion from the Bodele depression and biomass burning. In this study, the correlation between atmospheric parameters (temperature and humidity) and aerosols with COVID-19 cases and fatalities within seven locations in tropical Nigeria during the harmattan period was investigated. COVID-19 infection cases were found to be significantly positively correlated with atmospheric parameters (temperature and humidity) in the southern part of the country while the number of fatalities showed weaker significant correlation with particulate matters only in three locations. The significant correlation values were found to be between 0.22 and 0.48 for particulate matter and -0.19 to -0.32 for atmospheric parameters. Although, temperature and humidity showed negative correlations in some locations, the impact is smaller compared to particulate matter. In December, COVID-19 cases in all locations showed strong correlation with particulate matter except in Kano State. It is suggested that a reduction in atmospheric particulate matter can be used as a control measure for the spread of COVID-19.
Collapse
Affiliation(s)
- S. Ogunjo
- Department of PhysicsFederal University of TechnologyAkureNigeria
| | - O. Olaniyan
- National Weather Forecasting and Climate Research CentreNigerian Meteorological AgencyAbujaNigeria
| | - C.F. Olusegun
- Centre for Atmospheric ResearchNational Space Research and Development AgencyKogi State University CampusAnyigbaNigeria
| | - F. Kayode
- Centre for Atmospheric ResearchNational Space Research and Development AgencyKogi State University CampusAnyigbaNigeria
| | - D. Okoh
- Centre for Atmospheric ResearchNational Space Research and Development AgencyKogi State University CampusAnyigbaNigeria
| | - G. Jenkins
- Department of Meteorology and Atmospheric SciencesPenn State UniversityUniversity ParkPAUSA
| |
Collapse
|
18
|
Davies-Barrett AM, Roberts CA, Antoine D. Time to be nosy: Evaluating the impact of environmental and sociocultural changes on maxillary sinusitis in the Middle Nile Valley (Neolithic to Medieval periods). INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 34:182-196. [PMID: 34303286 DOI: 10.1016/j.ijpp.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the prevalence of maxillary sinusitis in people who lived in the Middle Nile Valley across different periods, cultures, and environmental conditions. MATERIALS 481 skeletons from 13 sites, curated at the British Museum, London, were analysed. The sites ranged in date from the Neolithic to Medieval periods (c. 4900 BCE-CE 1500). METHODS Bony changes within the maxillary sinuses, associated with sinusitis and oroantral fistulae were systematically recorded according to pre-established criteria. RESULTS There were significant differences in the prevalence of maxillary sinusitis between time period/subsistence economy groups. The Neolithic hunter-gatherer/early agricultural group had the lowest prevalence, whilst the urban group demonstrated the highest frequency of the disease. CONCLUSIONS Factors involved in the development of maxillary sinusitis are manifold and complex. However, the results indicate that increased aridity in Sudan in later periods and intensification of agricultural practices may have played a role in increasing prevalence of the disease. Urban environments, including crowding, poor sanitation, and industrial air pollution, could also have influenced susceptibility to maxillary sinusitis. SIGNIFICANCE Prior to this paper, the impact of arid environments on respiratory health in the past had received little attention despite growing clinical research on the topic. Both arid and urban environments are predicted to expand in the future. This paper provides a deep-time perspective on an issue of increasing concern today. LIMITATIONS Poor preservation of skeletons and a lack of archaeological settlement data for some sites. FUTURE RESEARCH Investigation of a greater range of populations from different environments/climates.
Collapse
Affiliation(s)
- Anna M Davies-Barrett
- School of History, Archaeology and Religion, Cardiff University, John Percival Building, Colum Drive, Cardiff, CF10 3EU, UK; Department of Archaeology, Durham University, Dawson Building, South Road, Durham, DH1 3LE, UK; Department of Egypt and Sudan, The British Museum, Great Russell Street, Bloomsbury, London, WC1B 3DG, UK.
| | - Charlotte A Roberts
- Department of Archaeology, Durham University, Dawson Building, South Road, Durham, DH1 3LE, UK
| | - Daniel Antoine
- Department of Egypt and Sudan, The British Museum, Great Russell Street, Bloomsbury, London, WC1B 3DG, UK
| |
Collapse
|
19
|
Davies-Barrett AM, Owens LS, Eeckhout PA. Paleopathology of the Ychsma: Evidence of respiratory disease during the Late Intermediate Period (AD 1000-1476) at the Central Coastal site of Pachacamac, Peru. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 34:63-75. [PMID: 34153817 DOI: 10.1016/j.ijpp.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate evidence for maxillary sinusitis and pulmonary inflammation in archaeological skeletons dating to the Late Intermediate Period (AD 1000-1476) at the site of Pachacamac, Peru. MATERIALS Thirty-nine individuals (male, female, and unknown sex; 16+ years age-at-death) were analyzed for inflammatory periosteal reaction (IPR) on the visceral (inner) surfaces of the ribs, and 16 individuals were analyzed for evidence of maxillary sinusitis. METHODS All individuals were macroscopically examined for bony changes in the maxillary sinuses and new bone formation on the ribs according to pre-established criteria. RESULTS Some 33.3% (13/39) of individuals had IPR on the ribs and 93.8% (15/16) had bony changes in the maxillary sinuses. CONCLUSIONS Respiratory disease was likely prevalent in people buried at Pachacamac during the Late Intermediate Period. A number of factors may have increased the risk of developing respiratory disease, including exposure to poor air quality and increased crowding and social mixing, resulting from pilgrimage to this important ritual center. SIGNIFICANCE This paper represents one of the first systematic analyses of evidence for respiratory disease in Peruvian and South American human skeletal remains, demonstrating the suitability of the region for further study. LIMITATIONS A limited sample was available for analysis. Additionally, the site's skeletal preservation was excellent, meaning the sample available for assessment of maxillary sinusitis was smaller, being limited to individuals with post-mortem breakage. FURTHER RESEARCH The results of this study should stimulate further much needed systematic investigation of evidence for respiratory disease in other Peruvian and South American populations.
Collapse
Affiliation(s)
- Anna M Davies-Barrett
- School of History, Archaeology and Religion, Cardiff University, John Percival Building, Colum Drive, Cardiff, CF10 3EU, United Kingdom.
| | - Lawrence S Owens
- University of Winchester. Sparkford Road, Winchester, SO22 4NR, United Kingdom; University of South Africa, Preller Street, Muckleneuk, Pretoria, 0002, South Africa
| | - Peter A Eeckhout
- Faculté de Philosophie et Sciences Sociales CP133/01, Université libre de Bruxelles, Av. F. Roosevelt 50, 1050, Brussels, Belgium
| |
Collapse
|
20
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
21
|
Analysis of Mineral Aerosol in the Surface Layer over the Caspian Lowland Desert by the Data of 12 Summer Field Campaigns in 2002–2020. ATMOSPHERE 2021. [DOI: 10.3390/atmos12080985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In-situ knowledge on characteristics of mineral aerosols is important for weather and climate prediction models, particularly for modeling such processes as the entrainment, transport and deposition of aerosols. However, field measurements of the dust emission flux, dust size distribution and its chemical composition under realistic wind conditions remain rare. In this study, we present experimental data over annual expeditions in the arid and semi-arid zones of the Caspian Lowland Desert (Kalmykia, south of Russia); we evaluate characteristics of mineral aerosol concentration and fluxes, estimate its chemical composition and calculate its long-distance transport characteristics. The mass concentration in different years ranges from several tens to several hundred of μg m−3. The significant influence of wind velocity on the value of mass and counting concentration and on the proposed entrainment mechanisms is confirmed. An increased content of anthropogenic elements (S, Sn, Pb, Bi, Mo, Ag, Cd, Hg, etc.), which is characteristic for all observation points in the south of the European Russia, is found. The trajectory analysis show that long-range air particles transport from the Caspian Lowland Desert to the central regions of European Russia tends to increase in the recent decades.
Collapse
|
22
|
López-Villarrubia E, Costa Estirado O, Íñiguez Hernández C, Ballester Díez F. Do Saharan Dust Days Carry a Risk of Hospitalization From Respiratory Diseases for Citizens of the Canary Islands (Spain)? Arch Bronconeumol 2021; 57:464-470. [PMID: 35698952 DOI: 10.1016/j.arbr.2020.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/12/2020] [Indexed: 06/15/2023]
Abstract
BACKGROUND Saharan dust meets the Canary Islands at the beginning of its westward path across the North Atlantic, exceeding the European daily levels for PM10; for this reason, their two provincial capital cities, constitute optimal sites where to evaluate the health effects of this natural event. OBJECTIVES To assess the short-term association between Saharan Dust Days (SDDs) and respiratory morbidity in the two capital cities. METHODS We carried out a time-series analysis with daily emergency hospital admissions due to all respiratory system diseases, chronic obstructive pulmonary disease (COPD) and asthma between 2001 and 2005, assessing the independent effect of SDDs, defined according to the application of the methodology accepted by the European Environmental Office. We also examined accumulated effect, and some other specific SDDs' features. RESULTS We found a short-term association between SDDs and the increase in admission risk for the three outcomes during concurrent SDDs, compared to non-SDDs, that spread from 0 to 5th day: 22.6% (95% confidence interval [CI], 10.4, 36.0) for all respiratory diseases and 29.9% (95%CI: 6.6, 58.4) for COPD in Santa Cruz de Tenerife, and 33.4% (95%CI: -2.1,82.0) for asthma in Las Palmas de Gran Canaria. We obtained a robust association when Saharan dust transported at low altitude, when SDDs belonged to long episodes (≥5days), from the fifth SDD onwards and those SDDs with medium (50<PM<150) or high (≥150) PM10 levels. CONCLUSIONS We found evidence that SDDs carry a risk of emergency hospital admission from respiratory diseases in the Canary Islands.
Collapse
Affiliation(s)
- Elena López-Villarrubia
- Dirección General de Salud Pública. Gobierno de Canarias, Alfonso XIII, 4, 35003 Las Palmas de Gran Canaria, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Olga Costa Estirado
- Dirección General de Salud Pública. Gobierno de Canarias, Alfonso XIII, 4, 35003 Las Palmas de Gran Canaria, Spain; FISABIO-UJI-Universitat de València, Epidemiology and Environmental Health Joint Research Unit, Avenida de Catalunya 21, 46020 Valencia, Spain
| | - Carmen Íñiguez Hernández
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; FISABIO-UJI-Universitat de València, Epidemiology and Environmental Health Joint Research Unit, Avenida de Catalunya 21, 46020 Valencia, Spain
| | - Ferran Ballester Díez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; FISABIO-UJI-Universitat de València, Epidemiology and Environmental Health Joint Research Unit, Avenida de Catalunya 21, 46020 Valencia, Spain; Department of Nursing, University of Valencia, C/ Jaume Roig, 46010 Valencia, Spain
| |
Collapse
|
23
|
Domínguez-Rodríguez A, Rodríguez S, Baez-Ferrer N, Avanzas P, Abreu-González P, Silva J, Morís C, Hernández-Vaquero D. Impacto del polvo sahariano en la incidencia de síndrome coronario agudo. Rev Esp Cardiol (Engl Ed) 2021. [DOI: 10.1016/j.recesp.2020.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Abstract
Supplemental Digital Content is available in the text. Desert dust is assumed to have substantial adverse effects on human health. However, the epidemiologic evidence is still inconsistent, mainly because previous studies used different metrics for dust exposure and its corresponding epidemiologic analysis. We aim to provide a standardized approach to the methodology for evaluating the short-term health effects of desert dust.
Collapse
|
25
|
Domínguez-Rodríguez A, Báez-Ferrer N, Abreu-González P, Rodríguez S, Díaz R, Avanzas P, Hernández-Vaquero D. Impact of Desert Dust Events on the Cardiovascular Disease: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10040727. [PMID: 33673156 PMCID: PMC7918944 DOI: 10.3390/jcm10040727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Whether or not inhalation of airborne desert dust has adverse health effects is unknown. The present study, based on a systematic review and meta-analysis, was carried out to assess the influence desert dust on cardiovascular mortality, acute coronary syndrome, and heart failure. Methods: A systematic search was made in PubMed and Embase databases for studies published before March 2020. Studies based on daily measurements of desert dust were identified. The meta-analysis evaluated the impact of desert dust on cardiovascular events the same day (lag 0) of the exposure and during several days after the exposure (lags 1 to 5). The combined impact of several days of exposure was also evaluated. The incidence rate ratio (IRR) with 95% confidence intervals (CI) was calculated using the inverse variance random effects method. Results: Of the 589 identified titles, a total of 15 studies were selected. The impact of desert dust on the incidence of cardiovascular mortality was statistically significant (IRR = 1.018 (95%CI 1.008–1.027); p < 0.001) in lag 0 of the dust episode, in the following day (lag 1) (IRR = 1.005 (95%CI 1.001–1.009); p = 0.022), and during both days combined (lag 0–1) (IRR = 1.015 (95%CI 1.003–1.028); p = 0.014). Conclusions: The inhalation to desert dust results in a 2% increase (for every 10 µg/m3) in cardiovascular mortality risk.
Collapse
Affiliation(s)
- Alberto Domínguez-Rodríguez
- Servicio de Cardiología, Hospital Universitario de Canarias, 38010 Tenerife, Spain;
- Departamento de Enfermería, Universidad de La Laguna, 38200 Tenerife, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-922-679040; Fax: +34-922-678460
| | - Néstor Báez-Ferrer
- Servicio de Cardiología, Hospital Universitario de Canarias, 38010 Tenerife, Spain;
| | - Pedro Abreu-González
- Departamento de Fisiología, Facultad de Medicina, Universidad de La Laguna, 38200 Tenerife, Spain;
| | - Sergio Rodríguez
- Estación Experimental de Zonas Áridas, EEZA, CSIC, 04120 Almería, Spain;
- Instituto de Productos Naturales y Agrobiología, IPNA, CSIC, 38206 Tenerife, Spain
| | - Rocío Díaz
- Área del Corazón, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.D.); (P.A.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Pablo Avanzas
- Área del Corazón, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.D.); (P.A.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Asturias, Spain
| | - Daniel Hernández-Vaquero
- Área del Corazón, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.D.); (P.A.); (D.H.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| |
Collapse
|
26
|
Iyasere OS, Bateson M, Beard AP, Guy JH. Provision of Additional Cup Drinkers Mildly Alleviated Moderate Heat Stress Conditions in Broiler Chickens. J APPL ANIM WELF SCI 2020; 24:188-199. [PMID: 33222535 DOI: 10.1080/10888705.2020.1846534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sixty-four broilers of a commercial strain in a 2 × 2 factorial design with two environmental conditions: normal (N; 20°C, 50% RH) or MHS (30°C, 70% RH for 6 h/day for 3 consecutive days), and two drinker treatments; standard (B; a bell drinker/pen) or additional (A; as B + two cup drinkers). Each treatment had 16 birds with half of them implanted with temperature-ID chips to estimate the change in core body temperature (ΔCBT). Comb (CT) and feet (FT) temperatures were measured with atemperature probe, behavior was recorded with digital cameras, daily weight gain, feed intakes and litter moisture content (LMC) were also monitored. Data were subjected to General Linear Model (GLM) analysis. MHS broilers had greater ΔCBT, CT, and FT and more time spent panting and drinking compared to N broilers. Provision of additional cup drinkers reduced ΔCBT but enhanced heat loss from the comb and feet. At 6HS, MHS birds showed a tendency to spend more time drinking from the cup drinkers compared to N birds without compromising LMC. MHS suppressed feed intake and not weight gain.
Collapse
Affiliation(s)
- Oluwaseun S Iyasere
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Melissa Bateson
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew P Beard
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan H Guy
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Ayanlade A, Sergi C, Ayanlade OS. Malaria and meningitis under climate change: initial assessment of climate information service in Nigeria. METEOROLOGICAL APPLICATIONS 2020; 27. [DOI: 10.1002/met.1953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2024]
Abstract
AbstractIt is often difficult to define the relationship and the influence of climate on the occurrence and distribution of disease. To examine this issue, the effects of climate indices on the distributions of malaria and meningitis in Nigeria were assessed over space and time. The main purpose of the study was to evaluate the relationships between climatic variables and the prevalence of malaria and meningitis, and develop an early warning system for predicting the prevalence of malaria and meningitis as the climate varies. An early warning system was developed to predetermine the months in a year that people are vulnerable to malaria and meningitis. The results revealed a significant positive relationship between rainfall and malaria, especially during the wet season with correlation coefficient R2 ≥ 60.0 in almost all the ecological zones. In the Sahel, Sudan and Guinea, there appears to be a strong relationship between temperature and meningitis with R2 > 60.0. In all, the results further reveal that temperatures and aerosols have a strong relationship with meningitis. The assessment of these initial data seems to support the finding that the occurrence of meningitis is higher in the northern region, especially the Sahel and Sudan. In contrast, malaria occurrence is higher in the southern part of the study area. We suggest that a thorough investigation of climate parameters is critical for the reallocation of clinical resources and infrastructures in economically underprivileged regions.
Collapse
Affiliation(s)
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology University of Alberta Edmonton Alberta Canada
| | - Oluwatoyin S. Ayanlade
- African Institute for Science Policy and Innovation Obafemi Awolowo University Ile‐Ife Nigeria
| |
Collapse
|
28
|
Ayanlade A, Nwayor IJ, Sergi C, Ayanlade OS, Di Carlo P, Jeje OD, Jegede MO. Early warning climate indices for malaria and meningitis in tropical ecological zones. Sci Rep 2020; 10:14303. [PMID: 32868821 PMCID: PMC7459128 DOI: 10.1038/s41598-020-71094-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022] Open
Abstract
This study aims at assessing the impacts of climate indices on the spatiotemporal distribution of malaria and meningitis in Nigeria. The primary focus of the research is to develop an Early Warning System (EWS) for assessing climate variability implications on malaria and meningitis spread in the study area. Both climate and health data were used in the study to determine the relationship between climate variability and the occurrence of malaria and meningitis. The assessment was based on variations in different ecological zones in Nigeria. Two specific sample locations were randomly selected in each ecological zone for the analysis. The climatic data used in this study are dekadal precipitation, minimum and maximum temperature between 2000 and 2018, monthly aerosol optical depth between 2000 and 2018. The results show that temperature is relatively high throughout the year because the country is located in a tropical region. The significant findings of this study are that rainfall has much influence on the occurrence of malaria, while temperature and aerosol have more impact on meningitis. We found the degree of relationship between precipitation and malaria, there is a correlation coefficient R2 ≥ 70.0 in Rainforest, Freshwater, and Mangrove ecological zones. The relationship between temperature and meningitis is accompanied by R2 ≥ 72.0 in both Sahel and Sudan, while aerosol and meningitis harbour R2 = 77.33 in the Sahel. The assessment of this initial data seems to support the finding that the occurrences of meningitis are higher in the northern region, especially the Sahel and Sudan. In contrast, malaria occurrence is higher in the southern part of the study area. In all, the multiple linear regression results revealed that rainfall was directly associated with malaria with β = 0.64, p = 0.001 but aerosol was directly associated with meningitis with β = 0.59, p < 0.001. The study concludes that variability in climatic elements such as low precipitation, high temperature, and aerosol may be the major drivers of meningitis occurrence.
Collapse
Affiliation(s)
- Ayansina Ayanlade
- Department of Geography, Obafemi Awolowo University, Ile-Ife, Nigeria.
| | - Isioma J Nwayor
- Department of Geography, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Oluwatoyin S Ayanlade
- African Institute for Science Policy and Innovation, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Paola Di Carlo
- PROMISE Department, University of Palermo, Palermo, Italy
| | - Olajumoke D Jeje
- Department of Geography, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Margaret O Jegede
- African Institute for Science Policy and Innovation, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
29
|
DeFelice T. Relationship between temporal anomalies in PM 2.5 concentrations and reported influenza/influenza-like illness activity. Heliyon 2020; 6:e04726. [PMID: 32835121 PMCID: PMC7428445 DOI: 10.1016/j.heliyon.2020.e04726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/06/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
A small number of studies suggest atmospheric particulate matter with diameters 2.5 micron and smaller (PM2.5) may possibly play a role in the transmission of influenza and influenza-like illness (ILI) symptoms. Those studies were predominantly conducted under moderately to highly polluted outdoor atmospheres. The purpose of this study was to extend the data set to include a less polluted atmospheric environment. A relationship between PM2.5 and ILI activity extended to include lightly to moderately polluted atmospheres could imply a more complicated mechanism than that suggested by existing studies. We obtained concurrent PM2.5 mass concentration data, meteorological data and reported Influenza and influenza-like illness (ILI) activity for the light to moderately polluted atmospheres over the Tucson, AZ region. We found no relation between PM2.5 mass concentration and ILI activity. There was an expected relation between ILI, activity, temperature, and relative humidity. There was a possible relation between PM2.5 mass concentration anomalies and ILI activity. These results might be due to the small dataset size and to the technological limitations of the PM measurements. Further study is recommended since it would improve the understanding of ILI transmission and thereby improve ILI activity/outbreak forecasts and transmission model accuracies.
Collapse
|
30
|
Hashizume M, Kim Y, Ng CFS, Chung Y, Madaniyazi L, Bell ML, Guo YL, Kan H, Honda Y, Yi SM, Kim H, Nishiwaki Y. Health Effects of Asian Dust: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:66001. [PMID: 32589456 PMCID: PMC7319773 DOI: 10.1289/ehp5312] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Potential adverse health effects of Asian dust exposure have been reported, but systematic reviews and quantitative syntheses are lacking. OBJECTIVE We reviewed epidemiologic studies that assessed the risk of mortality, hospital admissions, and symptoms/dysfunction associated with exposure to Asian dust. METHODS We performed a systematic search of PubMed and Web of Science to identify studies that reported the association between Asian dust exposure and human health outcomes. We conducted separate meta-analyses using a random-effects model for mortality and hospital admissions for a specific health outcome and assessed pooled estimates for each lag when at least three studies were available for a specific lag. RESULTS We identified 89 studies that met our inclusion criteria for the systematic review, and 21 studies were included in the meta-analysis. The pooled estimates (percentage changes) of mortality from circulatory and respiratory causes for Asian dust days vs. non-Asian dust days were 2.33% [95% confidence interval (CI): 0.76, 3.93] increase at lag 0 and 3.99% (95% CI: 0.08, 8.06) increase at lag 3, respectively. The increased risk for hospital admissions for respiratory disease, asthma, and pneumonia peaked at lag 3 by 8.85% (95% CI: 0.80, 17.55), 14.55% (95% CI: 6.74, 22.94), and 8.51% (95% CI: 2.89, 14.44), respectively. Seven of 12 studies reported reduced peak expiratory flow, and 16 of 21 studies reported increased respiratory symptoms associated with Asian dust exposure. There were substantial variations between the studies in definitions of Asian dust, study designs, model specifications, and confounder controls. DISCUSSION We found evidence of increased mortality and hospital admissions for circulatory and respiratory events. However, the number of studies included in the meta-analysis was not large and further evidences are merited to strengthen our conclusions. Standardized protocols for epidemiological studies would facilitate interstudy comparisons. https://doi.org/10.1289/EHP5312.
Collapse
Affiliation(s)
- Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yoonhee Kim
- Department of Global Environmental Health, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chris Fook Sheng Ng
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Yeonseung Chung
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Lina Madaniyazi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Michelle L Bell
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Yue Leon Guo
- Environmental and Occupational Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seung-Muk Yi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Ho Kim
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Yuji Nishiwaki
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
31
|
López-Villarrubia E, Costa Estirado O, Íñiguez Hernández C, Ballester Díez F. Do Saharan Dust Days Carry a Risk of Hospitalization From Respiratory Diseases for Citizens of the Canary Islands (Spain)? Arch Bronconeumol 2020; 57:S0300-2896(20)30087-9. [PMID: 32402548 DOI: 10.1016/j.arbres.2020.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Saharan dust meets the Canary Islands at the beginning of its westward path across the North Atlantic, exceeding the European daily levels for PM10; for this reason, their two provincial capital cities, constitute optimal sites where to evaluate the health effects of this natural event. OBJECTIVES To assess the short-term association between Saharan Dust Days (SDDs) and respiratory morbidity in the two capital cities. METHODS We carried out a time-series analysis with daily emergency hospital admissions due to all respiratory system diseases, chronic obstructive pulmonary disease (COPD) and asthma between 2001 and 2005, assessing the independent effect of SDDs, defined according to the application of the methodology accepted by the European Environmental Office. We also examined accumulated effect, and some other specific SDDs' features. RESULTS We found a short-term association between SDDs and the increase in admission risk for the three outcomes during concurrent SDDs, compared to non-SDDs, that spread from 0 to 5th day: 22.6% (95% confidence interval [CI], 10.4, 36.0) for all respiratory diseases and 29.9% (95%CI: 6.6, 58.4) for COPD in Santa Cruz de Tenerife, and 33.4% (95%CI: -2.1,82.0) for asthma in Las Palmas de Gran Canaria. We obtained a robust association when Saharan dust transported at low altitude, when SDDs belonged to long episodes (≥5days), from the fifth SDD onwards and those SDDs with medium (50 CONCLUSIONS We found evidence that SDDs carry a risk of emergency hospital admission from respiratory diseases in the Canary Islands.
Collapse
Affiliation(s)
- Elena López-Villarrubia
- Dirección General de Salud Pública. Gobierno de Canarias, Alfonso XIII, 4, 35003 Las Palmas de Gran Canaria, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Olga Costa Estirado
- Dirección General de Salud Pública. Gobierno de Canarias, Alfonso XIII, 4, 35003 Las Palmas de Gran Canaria, Spain; FISABIO-UJI-Universitat de València, Epidemiology and Environmental Health Joint Research Unit, Avenida de Catalunya 21, 46020 Valencia, Spain
| | - Carmen Íñiguez Hernández
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; FISABIO-UJI-Universitat de València, Epidemiology and Environmental Health Joint Research Unit, Avenida de Catalunya 21, 46020 Valencia, Spain
| | - Ferran Ballester Díez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; FISABIO-UJI-Universitat de València, Epidemiology and Environmental Health Joint Research Unit, Avenida de Catalunya 21, 46020 Valencia, Spain; Department of Nursing, University of Valencia, C/ Jaume Roig, 46010 Valencia, Spain
| |
Collapse
|
32
|
Domínguez-Rodríguez A, Rodríguez S, Baez-Ferrer N, Avanzas P, Abreu-González P, Silva J, Morís C, Hernández-Vaquero D. Impact of Saharan dust on the incidence of acute coronary syndrome. ACTA ACUST UNITED AC 2020; 74:321-328. [PMID: 32127342 DOI: 10.1016/j.rec.2020.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/24/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION AND OBJECTIVES Asian desert dust has recently been recognized as a trigger for acute myocardial infarction. The inflow of dust from the Sahara into Spain impairs air quality due to an increase in particulate matter concentrations in the ambient air. The aim of the present study was to elucidate whether Saharan dust events are associated with the incidence of acute coronary syndrome (ACS) in patients living near North Africa, the major global dust source. METHODS We prospectively collected data on hospitalizations due to ACS in 2416 consecutive patients from a tertiary care hospital (Canary Islands, Spain) from December 2012 to December 2017. Concentrations of particulate matter with an aerodynamic diameter 10 microns or smaller (PM10) and reactive gases were measured in the European Air Quality Network implemented in the Canary Islands. We applied the time-stratified case crossover design using conditional Poisson regression models to estimate the impact of PM10 Saharan dust events on the incidence of ACS. RESULTS The occurrence of Saharan dust events observed 0 to 5 days before the onset of ACS was not significantly associated with the incidence of ACS. Incidence rate ratios (IRR) of PM10 levels 1, 2, 3, 4 and 5 days before ACS onset (for changes in 10μg/m3) were 1.27 (95%CI, 0.87-1.85), 0.92 (95%CI, 0.84-1.01), 0.74 (95%CI, 0.45-1.22), 0.98 (95%CI, 0.87-1.11), and 0.95 (95%CI, 0.84-1.06), respectively. CONCLUSIONS Exposure to Saharan desert dust is unlikely to be associated with the incidence of ACS.
Collapse
Affiliation(s)
- Alberto Domínguez-Rodríguez
- Servicio de Cardiología, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain; Facultad de Ciencias de la Salud, Universidad Europea de Canarias, La Orotava, Santa Cruz de Tenerife, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares (CIBERCV), Madrid, Spain.
| | - Sergio Rodríguez
- Estación Experimental de Zonas Áridas (EEZA), Consejo Superior de Investigaciones Científicas (CSIC), Almería, Spain; Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Néstor Baez-Ferrer
- Servicio de Cardiología, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Pablo Avanzas
- Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias, Spain; Departamento de Medicina, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Pedro Abreu-González
- Departamento de Fisiología, Facultad de Medicina, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jacobo Silva
- Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain; Departamento de Medicina, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - César Morís
- Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias, Spain; Departamento de Medicina, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Daniel Hernández-Vaquero
- Área del Corazón, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias, Spain
| |
Collapse
|
33
|
Ardon-Dryer K, Mock C, Reyes J, Lahav G. The effect of dust storm particles on single human lung cancer cells. ENVIRONMENTAL RESEARCH 2020; 181:108891. [PMID: 31740036 PMCID: PMC6982605 DOI: 10.1016/j.envres.2019.108891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 05/10/2023]
Abstract
Exposure to dust particles during dust storms can lead to respiratory problems, diseases, and even death. The effect of dust particles at the cellular level is poorly understood. In this study, we investigated the impact that dust storm particles (Montmorillonite) have on human lung epithelial cells (A549) at the single cell level. Using live-cell imaging, we continuously followed individual cells after exposure to a wide range of concentrations of dust particles. We monitored the growth trajectory of each cell including number and timing of divisions, interaction with the dust particles, as well as time and mechanism of cell death. We found that individual cells show different cellular fates (survival or death) even in response to the same dust concentration. Cells that died interacted with dust particles for longer times, and engulfed more dust particles, compared with surviving cells. While higher dust concentrations reduced viability in a dose-dependent manner, the effect on cell death was non-monotonic, with intermediate dust concentration leading to a larger fraction of dying cells compared to lower and higher concentrations. This non-monotonic relationship was explained by our findings that high dust concentrations inhibit cell proliferation. Using cellular morphological features, supported by immunoblots and proinflammatory cytokines, we determined that apoptosis is the dominant death mechanism at low dust concentrations, while higher dust concentrations activate necrosis. Similar single cell approaches can serve as a baseline for evaluating other aerosol types that will improve our understanding of the health-related consequences of exposure to dust storms.
Collapse
Affiliation(s)
- Karin Ardon-Dryer
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA; Department of Geosciences, Atmospheric Science Group, Texas Tech University, 3003 15th Street Department of Geosciences, Atmospheric Science Group, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Caroline Mock
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA
| | - Jose Reyes
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA
| | - Galit Lahav
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
34
|
Saharan Dust Events in the Dust Belt -Canary Islands- and the Observed Association with in-Hospital Mortality of Patients with Heart Failure. J Clin Med 2020; 9:jcm9020376. [PMID: 32019177 PMCID: PMC7073718 DOI: 10.3390/jcm9020376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/28/2022] Open
Abstract
Recent studies have found increases in the cardiovascular mortality rates during poor air quality events due to outbreaks of desert dust. In Tenerife, we collected (2014–2017) data in 829 patients admitted with a heart failure diagnosis in the Emergency Department of the University Hospital of the Canaries. In this region, concentrations of PM10 and PM2.5 are usually low (~20 and 10 µg/m3), but they increase to 360 and 115 μg/m3, respectively, during Saharan dust events. By using statistical tools (including multivariable logistic regressions), we compared in-hospital mortality of patients with heart failure and exposure to PM10 and PM2.5 during dust and no-dust events. We found that 86% of in-hospital heart failure mortality cases occurred during Saharan dust episodes that resulted in PM10 > 50 µg/m3 (interquartile range: 71–96 µg/m3). A multivariate analysis showed that, after adjusting for other covariates, exposure to Saharan dust events associated with PM10 > 50 µg/m3 was an independent predictor of heart failure in-hospital mortality (OR = 2.79, 95% CI (1.066–7.332), p = 0.03). In conclusion, this study demonstrates that exposure to high Saharan dust concentrations is independently associated with in-hospital mortality in patients with heart failure.
Collapse
|
35
|
Joubert BR, Mantooth SN, McAllister KA. Environmental Health Research in Africa: Important Progress and Promising Opportunities. Front Genet 2020; 10:1166. [PMID: 32010175 PMCID: PMC6977412 DOI: 10.3389/fgene.2019.01166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
The World Health Organization in 2016 estimated that over 20% of the global disease burden and deaths were attributed to modifiable environmental factors. However, data clearly characterizing the impact of environmental exposures and health endpoints in African populations is limited. To describe recent progress and identify important research gaps, we reviewed literature on environmental health research in African populations over the last decade, as well as research incorporating both genomic and environmental factors. We queried PubMed for peer-reviewed research articles, reviews, or books examining environmental exposures and health outcomes in human populations in Africa. Searches utilized medical subheading (MeSH) terms for environmental exposure categories listed in the March 2018 US National Report on Human Exposure to Environmental Chemicals, which includes chemicals with worldwide distributions. Our search strategy retrieved 540 relevant publications, with studies evaluating health impacts of ambient air pollution (n=105), indoor air pollution (n = 166), heavy metals (n = 130), pesticides (n = 95), dietary mold (n = 61), indoor mold (n = 9), per- and polyfluoroalkyl substances (PFASs, n = 0), electronic waste (n = 9), environmental phenols (n = 4), flame retardants (n = 8), and phthalates (n = 3), where publications could belong to more than one exposure category. Only 23 publications characterized both environmental and genomic risk factors. Cardiovascular and respiratory health endpoints impacted by air pollution were comparable to observations in other countries. Air pollution exposures unique to Africa and some other resource limited settings were dust and specific occupational exposures. Literature describing harmful health effects of metals, pesticides, and dietary mold represented a context unique to Africa. Studies of exposures to phthalates, PFASs, phenols, and flame retardants were very limited. These results underscore the need for further focus on current and emerging environmental and chemical health risks as well as better integration of genomic and environmental factors in African research studies. Environmental exposures with distinct routes of exposure, unique co-exposures and co-morbidities, combined with the extensive genomic diversity in Africa may lead to the identification of novel mechanisms underlying complex disease and promising potential for translation to global public health.
Collapse
Affiliation(s)
- Bonnie R Joubert
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | | | - Kimberly A McAllister
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
36
|
Shahsavani A, Tobías A, Querol X, Stafoggia M, Abdolshahnejad M, Mayvaneh F, Guo Y, Hadei M, Saeed Hashemi S, Khosravi A, Namvar Z, Yarahmadi M, Emam B. Short-term effects of particulate matter during desert and non-desert dust days on mortality in Iran. ENVIRONMENT INTERNATIONAL 2020; 134:105299. [PMID: 31751828 DOI: 10.1016/j.envint.2019.105299] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Increased atmospheric particulate matter (PM) concentrations are commonly observed during desert dust days in Iran, but there is still no evidence of their effects on human health. We aimed to evaluate the association between daily mortality and exposure to PM10 and PM2.5 during dust and non-dust days in Tehran and Ahvaz, two major Middle Eastern cities with different sources, intensity, and frequency of desert dust days. METHODS We identified desert dust days based on exceeding a daily PM10 concentration threshold of 150 µg/m3 between 2014 and 2017, checking for low PM2.5/PM10 ratio typical of dust days. We used a time-stratified case-crossover design to estimate the short-term effects of PM10 and PM2.5 concentrations on daily mortality during dust and non-dust days. Data was analyzed using conditional Poisson regression models. RESULTS Higher concentrations of PM and frequency of desert dust days were observed in Ahvaz rather than Tehran. In Ahvaz, the effect of PM10 at lag 0 was much higher during dust days, an increment of 10 μg/m3 was associated with 3.28% (95%CI = [2.42, 4.15]) increase of daily mortality, than non-dust days, 1.03% (95%CI = [-0.02, 2.08]), while in Tehran, was slightly higher during non-dust days, 0.72% (95%CI = [0.23, 1.23]), than in dust days, 0.49% (95%CI = [-0.22, 1.20]). No statistically significant associations were observed between PM2.5 and daily mortality in Ahvaz, while in Teheran the effect of PM2.5 increased significantly during non-dust days at lag 2, 1.89% (95%CI = [0.83, 1.2.95] and lag 3, 1.88% (95%CI = [0.83, 1.2.95]). CONCLUSION The study provides evidence that exposure to PM during Middle East dust days is an important risk factor to human health in arid regions and areas affected by desert dust events.
Collapse
Affiliation(s)
- Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Rome, Italy
| | | | - Fatemeh Mayvaneh
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Yuming Guo
- Department of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Saeed Hashemi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Namvar
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Baharan Emam
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Abstract
Air pollution has many adverse effects on health and is associated with an increased risk of mortality. Desert dust outbreaks contribute directly to air pollution by increasing particulate matter concentrations. We investigated the influence of desert dust outbreaks on air quality in Santa Cruz de Tenerife, a city located in the dust export pathway off the west coast of North Africa, using air-quality observations from a six-year period (2012–2017). During winter intense dust outbreaks PM 10 mean (24-h) concentrations increased from 14 μ g m − 3 to 98 μ g m − 3 , on average, and PM 2 . 5 mean (24-h) concentrations increased from 6 μ g m − 3 to 32 μ g m − 3 . Increases were less during summer outbreaks, with a tripling of PM 10 and PM 2 . 5 daily mean concentrations. We found that desert dust outbreaks reduced the height of the marine boundary layer in our study area by >45%, on average, in summer and by ∼25%, on average, in winter. This thinning of the marine boundary layer was associated with an increase of local anthropogenic pollution during dust outbreaks. NO 2 and NO mean concentrations more than doubled and even larger relative increases in black carbon were observed during the more intense summer dust outbreaks; increases also occurred during the winter outbreaks but were less than in summer. This has public health implications; local anthropogenic emissions need to be reduced even further in areas that are impacted by desert dust outbreaks to reduce adverse health effects.
Collapse
|
38
|
Impact of Desert Dust on Air Quality: What is the Meaningfulness of Daily PM Standards in Regions Close to the Sources? The Example of Southern Tunisia. ATMOSPHERE 2019. [DOI: 10.3390/atmos10080452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Desert dust is now recognized as a major health hazard. However, there still exists a lack of measurements of desert dust atmospheric loads in regions located in the vicinity of the major desert areas, where a growing part of the world population is living. Dust emission is a sporadic and intense phenomenon so that the classical air quality standards should not be appropriate to reflect the real population exposure to desert dust. In order to give some insight to answer this question, PM10 concentrations were continuously measured at a five-minute time step in southern Tunisia from February 2014 to February 2019. The daily and annual PM10 concentrations were first discussed according to the Tunisian air quality standards: In this relatively remote area, close to dust source, these standards were respected at the annual, but no longer at the daily scale. Measurements performed at a high temporal resolution (five minutes) allowed to discriminate the different situations that led to exceed Tunisian daily standards in southern Tunisia. In particular, intense (five-minute PM10 concentrations up to more than 1500 µg m−3) and short-lived (a few hours) dust outbreaks were regularly observed. This result raises the question of the necessity of defining specific air quality standards at the sub-daily scale in countries affected by intense desert dust outbreaks.
Collapse
|
39
|
Salam A, Kamran S, Bibi R, Korashy HM, Parray A, Mannai AA, Ansari AA, Kanikicharla KK, Gashi AZ, Shuaib A. Meteorological Factors and Seasonal Stroke Rates: A Four-year Comprehensive Study. J Stroke Cerebrovasc Dis 2019; 28:2324-2331. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/05/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022] Open
|
40
|
Tobias A, Karanasiou A, Amato F, Roqué M, Querol X. Health effects of desert dust and sand storms: a systematic review and meta-analysis protocol. BMJ Open 2019; 9:e029876. [PMID: 31366661 PMCID: PMC6677997 DOI: 10.1136/bmjopen-2019-029876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Desert dust concentrations raise concerns about adverse effects on human health. During the last decade, special attention has been given to mineral dust particles from desert dust and sand storms. However, evidence from previous reviews reported inconclusive results on their health effects and the biological mechanism remains unclear. We aim to systematically synthesise evidence on the health effects of desert dust and sand storms accounting for the relevant desert dust patterns from source areas and emissions, transport and composition. METHODS AN ANALYSIS We will conduct a systematic review that investigated the health effects of desert dust and sand storms in any population. The search will be performed for any eligible studies from previous reviews and selected electronic databases until 2018. Study selection and reporting will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data from individual studies will be extracted using a standardised data extraction form. Quality of the studies will be assessed using a risk of bias tool for environmental exposures developed by experts convened by the WHO. A meta-analysis will be performed by calculating the appropriate effect measures of association for binary and continuous outcomes from individual studies. Subgroup analyses will be performed by geographical areas to account for desert dust patterns. ETHICS AND DISSEMINATION No primary data will be collected. For this reason, no formal ethical approval is required. This systematic review will help to fill the research gaps in the knowledge of desert dust on human health. The results will be disseminated through a WHO peer-reviewed publication and a conference presentation. PROSPERO REGISTRATION NUMBER CRD42018091809.
Collapse
Affiliation(s)
- Aurelio Tobias
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Angeliki Karanasiou
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Fulvio Amato
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Marta Roqué
- Iberoamerican Cochrane Centre, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
41
|
Abstract
Sand and dust storms (SDS) are wind erosion events typically associated with dryland regions, although they can occur in most environments and their impacts are frequently experienced outside drylands because desert dust haze often is transported great distances. SDS represent hazards to society in numerous ways, yet they do not feature prominently in the disasters literature. This paper considers SDS in a hazard context by examining their ramifications in economic, physical, and social terms, with a focus on agriculture, health, transport, utilities, households, and the commercial and manufacturing sector. There are few assessments of the economic consequences of SDS and those studies that have been conducted lack consistency in data collection methods and analysis. SDS do not result in the significant damage to infrastructure usually associated with many disasters, but the cumulative effects on society can be significant because SDS occur more commonly than most other types of natural hazard.
Collapse
Affiliation(s)
- Nick Middleton
- Supernumerary Fellow and Lecturer in Geography, St Anne's College, University of Oxford, United Kingdom
| | - Peter Tozer
- Associate Professor in Farm Management, School of Agriculture and Environment, Massey University, New Zealand
| | - Brenton Tozer
- Graduate Student, School of Geography, Environment and Earth Sciences, Victoria University of Wellington, New Zealand
| |
Collapse
|
42
|
Nirel R, Adar SD, Dayan U, Vakulenko-Lagun B, Golovner M, Levy I, Alon Z, Peretz A. Fine and Coarse Particulate Matter Exposures and Associations with Acute Cardiac Events among Participants in a Telemedicine Service: A Case-Crossover Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:97003. [PMID: 30203992 PMCID: PMC6375393 DOI: 10.1289/ehp2596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Subclinical cardiovascular changes have been associated with ambient particulate matter (PM) exposures within hours. Although the U.S. Environmental Protection Agency continues to look for additional evidence of effects associated with sub-daily PM exposure, this information is still limited because most studies of clinical events have lacked data on the onset time of symptoms to assess rapid increased risk. OBJECTIVE Our objective was to investigate associations between sub-daily exposures to PM and acute cardiac events using telemedicine data. METHODS We conducted a case-crossover study among telemedicine participants [Formula: see text] of age who called a service center for cardiac-related symptoms and were transferred to a hospital in Tel Aviv and Haifa, Israel (2002-2013). Ambient [Formula: see text] and [Formula: see text] measured by monitors located in each city during the hours before the patient called with symptoms were compared with matched control periods. We investigated the sensitivity of these associations to more accurate symptom onset time and greater certainty of diagnosis. RESULTS We captured 12,661 calls from 7,617 subscribers experiencing ischemic (19%), arrhythmic (31%), or nonspecific (49%) cardiac events. PM concentrations were associated with small increases in the odds of cardiac events. For example, odds ratios for any cardiac event in association with a [Formula: see text] increase in 6-h and 24-h average [Formula: see text] were 1.008 [95% confidence interval (CI): 0.998, 1.018] and 1.006 (95% CI: 0.995, 1.018), respectively, and for [Formula: see text] were 1.003 (95% CI: 1.001, 1.006) and 1.003 (95% CI: 1.000, 1.007), respectively. Associations were stronger when using exposures matched to the call time rather than calendar date and for events with higher certainty of the diagnosis. CONCLUSIONS Our analysis of telemedicine data suggests that risks of cardiac events in telemedicine participants [Formula: see text] of age may increase within hours of PM exposures. https://doi.org/10.1289/EHP2596.
Collapse
Affiliation(s)
- Ronit Nirel
- 1 Department of Statistics, Hebrew University of Jerusalem , Jerusalem, Israel
| | - Sara D Adar
- 2 Department of Epidemiology, University of Michigan , Ann Arbor, Michigan, USA
| | - Uri Dayan
- 3 Department of Geography, Hebrew University of Jerusalem , Jerusalem, Israel
| | | | | | - Ilan Levy
- 5 Center of Excellence in Exposure Science and Environmental Health, Technion , Haifa, Israel
| | - Zvi Alon
- 1 Department of Statistics, Hebrew University of Jerusalem , Jerusalem, Israel
| | - Alon Peretz
- 6 Occupational Medicine Clinic, Rabin Medical Center , Petah Tiqua, Israel
| |
Collapse
|
43
|
Hime NJ, Marks GB, Cowie CT. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1206. [PMID: 29890638 PMCID: PMC6024892 DOI: 10.3390/ijerph15061206] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/27/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM) air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.
Collapse
Affiliation(s)
- Neil J Hime
- Woolcock Institute of Medical Research, University of Sydney, 431 Glebe Point Road, Glebe, Sydney, NSW 2037, Australia.
- The Sydney School of Public Health, University of Sydney Medical School, Sydney, NSW 2006, Australia.
| | - Guy B Marks
- Woolcock Institute of Medical Research, University of Sydney, 431 Glebe Point Road, Glebe, Sydney, NSW 2037, Australia.
- South West Sydney Clinical School, University of New South Wales, Goulburn Street, Liverpool, Sydney, NSW 2170, Australia.
- Ingham Institute of Applied Medical Research, 1 Campbell Street, Liverpool, Sydney, NSW 2170, Australia.
| | - Christine T Cowie
- Woolcock Institute of Medical Research, University of Sydney, 431 Glebe Point Road, Glebe, Sydney, NSW 2037, Australia.
- South West Sydney Clinical School, University of New South Wales, Goulburn Street, Liverpool, Sydney, NSW 2170, Australia.
- Ingham Institute of Applied Medical Research, 1 Campbell Street, Liverpool, Sydney, NSW 2170, Australia.
| |
Collapse
|
44
|
Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ, Fushimi A, Enami S, Arangio AM, Fröhlich-Nowoisky J, Fujitani Y, Furuyama A, Lakey PSJ, Lelieveld J, Lucas K, Morino Y, Pöschl U, Takahama S, Takami A, Tong H, Weber B, Yoshino A, Sato K. Aerosol Health Effects from Molecular to Global Scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13545-13567. [PMID: 29111690 DOI: 10.1021/acs.est.7b04417] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.
Collapse
Affiliation(s)
- Manabu Shiraiwa
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Kayo Ueda
- Kyoto University , Kyoto 606-8501, Japan
| | | | - Gerhard Lammel
- Research Centre for Toxic Compounds in the Environment, Masaryk University , 625 00 Brno, Czech Republic
| | - Christopher J Kampf
- Institute for Organic Chemistry, Johannes Gutenberg University , 55122 Mainz, Germany
| | - Akihiro Fushimi
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Andrea M Arangio
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | | | - Yuji Fujitani
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Akiko Furuyama
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Pascale S J Lakey
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | | | | | - Yu Morino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | - Satoshi Takahama
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | - Akinori Takami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | | | - Ayako Yoshino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Kei Sato
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| |
Collapse
|
45
|
Pardo M, Katra I, Schaeur JJ, Rudich Y. Mitochondria-mediated oxidative stress induced by desert dust in rat alveolar macrophages. GEOHEALTH 2017; 1:4-16. [PMID: 32158977 PMCID: PMC7007135 DOI: 10.1002/2016gh000017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/25/2016] [Accepted: 01/18/2017] [Indexed: 05/10/2023]
Abstract
Exposure to ambient particulate matter (PM), including PM from resuspension of soils and dusts, increases the risk for respiratory diseases. However, the exact mechanism of PM-mediated damage to the lungs remains unclear. Due to recent increases in the frequency of dust storms in many areas, we examined the cytotoxic effects of soil-dust samples collected in an arid zone in Israel on rat lung macrophages. The desert soil contains soil crusts and low levels of toxic metal content. Exposure of cells to water extracts from the dust samples caused significant reduction in the concentration of live cells and overall cell viability. The dust samples induced cell death through apoptosis, mitochondrial dysfunction, and increased mitochondrial lipid peroxidation. The dust samples generated more reactive oxygen species (ROS) compared to control-treated samples and National Institute of Standards and Technology San Joaquin Valley standard reference material. To assess whether the oxidative imbalance induced by dust extract also interferes with the antioxidant defense, we evaluated phase II detoxifying and antioxidant enzymes, which are Nrf2 classical targets. The Nrf2 transcription factor is a master regulator of cellular adaptation to stress. The dust extracts produced a significant increase in phase II detoxifying genes. This work suggests that the health-related injury observed in rat lung cells exposed to dust extracts is associated with ROS generation, mitochondrial dysfunction, mitochondrial lipid peroxidation, and cellular antioxidant imbalance. Damage to lung mitochondria may be an important mechanism by which dust-containing bacterial material induces lung injury upon inhalation.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Itzhak Katra
- Department of Geography and Environmental DevelopmentBen‐Gurion University of the NegevBeershebaIsrael
| | - James J. Schaeur
- Environmental Chemistry and Technology ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yinon Rudich
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
46
|
A Systematic Review of Global Desert Dust and Associated Human Health Effects. ATMOSPHERE 2016. [DOI: 10.3390/atmos7120158] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Diokhane AM, Jenkins GS, Manga N, Drame MS, Mbodji B. Linkages between observed, modeled Saharan dust loading and meningitis in Senegal during 2012 and 2013. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:557-75. [PMID: 26296434 DOI: 10.1007/s00484-015-1051-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/08/2015] [Accepted: 08/09/2015] [Indexed: 05/24/2023]
Abstract
The Sahara desert transports large quantities of dust over the Sahelian region during the Northern Hemisphere winter and spring seasons (December-April). In episodic events, high dust concentrations are found at the surface, negatively impacting respiratory health. Bacterial meningitis in particular is known to affect populations that live in the Sahelian zones, which is otherwise known as the meningitis belt. During the winter and spring of 2012, suspected meningitis cases (SMCs) were with three times higher than in 2013. We show higher surface particular matter concentrations at Dakar, Senegal and elevated atmospheric dust loading in Senegal for the period of 1 January-31 May during 2012 relative to 2013. We analyze simulated particulate matter over Senegal from the Weather Research and Forecasting (WRF) model during 2012 and 2013. The results show higher simulated dust concentrations during the winter season of 2012 for Senegal. The WRF model correctly captures the large dust events from 1 January-31 March but has shown less skill during April and May for simulated dust concentrations. The results also show that the boundary conditions are the key feature for correctly simulating large dust events and initial conditions are less important.
Collapse
Affiliation(s)
- Aminata Mbow Diokhane
- Centre de Gestion de la Qualité de l'Air (CGQA), from the Direction de l'Environnement et des Etablissements Classés (DEEC), Dakar, Senegal
| | - Gregory S Jenkins
- Department of Physics and Astronomy, Howard University, Washington, DC, USA.
| | - Noel Manga
- Unité de formation et de recherche en Sciences de la santé (UFR-2S), Université Assane Seck Ziguinchor (UASZ), Ziguinchor, Senegal
| | - Mamadou S Drame
- Laboratory for Atmospheric-Oceanic Physics-Simeon Fongang (LPAO-SF), Cheikh Anta Diop University, Dakar, Senegal
| | - Boubacar Mbodji
- Centre de Gestion de la Qualité de l'Air (CGQA), from the Direction de l'Environnement et des Etablissements Classés (DEEC), Dakar, Senegal
| |
Collapse
|
48
|
Tang M, Cziczo DJ, Grassian VH. Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation. Chem Rev 2016; 116:4205-59. [DOI: 10.1021/acs.chemrev.5b00529] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingjin Tang
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Daniel J. Cziczo
- Department
of Earth, Atmospheric and Planetary Sciences and Civil and Environmental
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vicki H. Grassian
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Departments
of Chemistry and Biochemistry, Nanoengineering and Scripps Institution
of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
49
|
Lin YK, Chen CF, Yeh HC, Wang YC. Emergency room visits associated with particulate concentration and Asian dust storms in metropolitan Taipei. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:189-96. [PMID: 26531803 DOI: 10.1038/jes.2015.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 09/25/2015] [Indexed: 05/22/2023]
Abstract
This study evaluated risks of emergency room visits (ERV) for all causes, circulatory diseases, and respiratory diseases associated with concentrations of particulate matter (PM10 and PM2.5) and Asian dust storms (ADS) from 2000 to 2008 in metropolitan Taipei. Cumulative 4-day (lag 0-3) relative risks (RR) and confidence intervals (CI) of cause-specific ERV associated with daily concentrations of PM10 or PM2.5 and ADS based on study period (ADS frequently inflicted period: 2000-2004 and less-inflicted period: 2005-2008) were estimated using a distributed lag non-linear model with Poisson distribution. Risks associated with ADS-inflicted season (winter and spring), strength (ratio of stations with Pollutant Standard Index above 100 is < 0.5 or ≥ 0.5), and duration (ADS lasting for 1-3 days or ≥ 4 days) were especially evaluated. In non-linear models, an increase in PM10 from 10 μg/m(3) to 50 μg/m(3) was associated with increased risk of ERV for all causes and respiratory disease with cumulative 4- day RR of 1.18 (95% CI: 1.13, 1.24) and 1.37 (95% CI: 1.23, 1.54), respectively. From 2005 to 2008, the cumulative 4-day RR for an ERV related to an increase in PM2.5 from 5 μg/m(3) to 30 μg/m(3) is 1.21 (95% CI: 1.03, 1.41) for respiratory diseases, and 1.15 (95% CI: 1.08, 1.22) for all causes. In comparison with normal days, elevated ERV of all causes and respiratory diseases was also associated with winter ADS (with corresponding RRs of 1.10 (95% CI: 1.07, 1.13) and 1.14 (95% CI: 1.08, 1.21)) and shorter and less area-affected ADS (with corresponding RRs of 1.07 (95% CI: 1.01, 1.10) and 1.09 (95% CI: 1.03, 1.14)) from 2000 to 2004. Results of this study demonstrate that population health risk varies not only with PM concentration, but also with the ADS characteristics.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Department of Health and Welfare, University of Taipei College of City Management, Taipei, Taiwan
| | - Chi-Feng Chen
- Department of Natural Resources, Chinese Culture University, Yang-Ming-Shan, Taipei, Taiwan
| | - Hui-Chung Yeh
- Department of Natural Resources, Chinese Culture University, Yang-Ming-Shan, Taipei, Taiwan
| | - Yu-Chun Wang
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, Zhongli, Taiwan
- Research Center for Environmental Risk Management, Chung Yuan Christian University, Zhongli, Taiwan
| |
Collapse
|
50
|
He M, Ichinose T, Song Y, Yoshida Y, Bekki K, Arashidani K, Yoshida S, Nishikawa M, Takano H, Shibamoto T, Sun G. Desert dust induces TLR signaling to trigger Th2-dominant lung allergic inflammation via a MyD88-dependent signaling pathway. Toxicol Appl Pharmacol 2016; 296:61-72. [PMID: 26882889 DOI: 10.1016/j.taap.2016.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/19/2016] [Accepted: 02/11/2016] [Indexed: 02/06/2023]
Abstract
Asian sand dust (ASD) is known to exacerbate asthma, although its mechanism is not yet well understood. In this study, when the effects on inflammatory response by LPS present in ASD was investigated by measuring the gene expression of cytokines and chemokines in RAW264.7 cells treated with ASD and/or polymyxin B (PMB), the ASD effects were attenuated by PMB, but not completely. When an in vitro study was performed using bone marrow-derived macrophages (BMDMs) from WT, TLR2(-/-), TLR4(-/-), and MyD88(-/-) BALB/c mice and BMDMs from WT, TLR2(-/-), TLR4(-/-), TLR2/4(-/-), TLR7/9(-/-), and MyD88(-/-) C57BL/6J mice, cytokine (IL-6, IL-12) production in BMDMs was higher in ASD-stimulated TLR2(-/-) cells than in TLR4(-/-) cells, whereas it was lower or undetectable in TLR2/4(-/-) and MyD88(-/-) cells. These results suggest that ASD causes cytokine production predominantly in a TLR4/MyD88-dependent pathway. When WT and TLRs 2(-/-), 4(-/-), and MyD88(-/-) BALB/c mice were intratracheally challenged with OVA and/or ASD, ASD caused exacerbation of lung eosinophilia along with Th2 cytokine and eosinophil-relevant chemokine production. Serum OVA-specific IgE and IgG1 similar to WT was observed in TLRs 2(-/-), 4(-/-) mice, but not in MyD88(-/-) mice. The Th2 responses in TLR2(-/-) mice were attenuated remarkably by PMB. These results indicate that ASD exacerbates lung eosinophilia in a MyD88-dependent pathway. TLRs 2 and 4 signaling may be important in the increase in lung eosinophilia. Also, the TLR4 ligand LPS and TLR2 ligand like β-glucan may be strong candidates for exacerbation of lung eosinophilia.
Collapse
Affiliation(s)
- Miao He
- Environment and Non-communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201, Japan.
| | - Yuan Song
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan
| | - Kanae Bekki
- Department of Environmental Health, National Institute of Public Health, Saitama 351-0197, Japan
| | - Keiichi Arashidani
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan
| | - Seiichi Yoshida
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201, Japan
| | - Masataka Nishikawa
- Environmental Chemistry Division, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Takayuki Shibamoto
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Guifan Sun
- Environment and Non-communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110122, China
| |
Collapse
|