1
|
El-Saka EM, El-Wishy ABA, Moawad AR, Ibrahim S, Ibrahim S, Shahat AM. Impact of Flavonoid-Enriched Antioxidant Nanoformulation Supplementation on In Vitro Maturation and Gene Expression of Buffalo Oocytes. Animals (Basel) 2025; 15:1147. [PMID: 40281981 PMCID: PMC12024126 DOI: 10.3390/ani15081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Oocytes are exposed to various stressors during in vitro maturation (IVM). Antioxidant supplementation during IVM can mitigate oxidative stress. We investigated the effects of supplementing IVM medium with novel flavonoid-enriched antioxidant nanoformulations, namely, EMD-300® and EMP3-H200®, on oocyte IVM and analyzed the expression of oxidative stress, apoptosis, and pluripotency genes in buffalo. Cumulus oocyte complexes (COCs) obtained from buffalo ovaries were matured in IVM medium supplemented with either EMD-300® or EMP3-H200® at 0.5% and 1.0% for 22 h. Following IVM, nuclear maturation, gene expression, and the levels of total antioxidant capacity (TAC) and malondialdehyde (MDA) were analyzed. Nuclear maturation was lower (p < 0.001) for the 1.0% EMD-300® group than other groups. The expressions of the GPX4, SOD, CAT, and ATF6 genes were lower (p < 0.05) in the 0.5% EMD-300® and EMP3-H200® groups than in the control. OCT4 gene expression was higher (p < 0.05) for the treated groups than control group. The level of TAC in spent IVM medium was higher for the 0.5% EMD-300® and EMP3-H200® groups than for the control. However, the MDA concentrations were lower. In conclusion, supplementing IVM medium with EMD-300® or EMP3-H200® at 0.5% improved nuclear maturation of buffalo oocytes better than 1.0%. Our findings suggest that these compounds had antioxidant effects, which assures their ability in protecting oocytes against oxidative stress.
Collapse
Affiliation(s)
- Eman M. El-Saka
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (E.M.E.-S.); (A.M.S.)
| | - Abou Bakr A. El-Wishy
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (E.M.E.-S.); (A.M.S.)
| | - Adel R. Moawad
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (E.M.E.-S.); (A.M.S.)
- Division of Animal Science, College of Agriculture, Family Sciences, and Technology, Fort Valley State University, Fort Valley, GA 31030, USA
| | - Sally Ibrahim
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Giza 12622, Egypt;
| | - Saber Ibrahim
- Packaging Materials Department, National Research Centre, Dokki, Giza 12622, Egypt;
- Nanomaterials Investigation Lab., Central Laboratory Network, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdallah M. Shahat
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (E.M.E.-S.); (A.M.S.)
- Division of Animal Science, College of Agriculture, Family Sciences, and Technology, Fort Valley State University, Fort Valley, GA 31030, USA
| |
Collapse
|
2
|
Hu C, Zhang R, Zhang W, Zheng Y, Cao J, Zhao Z. Body size influences the capacity to cope with extreme cold or hot temperatures in the striped hamster. J Therm Biol 2024; 126:104008. [PMID: 39637607 DOI: 10.1016/j.jtherbio.2024.104008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Body size of organisms is a key trait influencing nearly all aspects of their life history. Despite growing evidence of Bergmann's rule, there is considerably less known about the links between body size and the maximum capacity to thermoregulate of an animal in response to extreme cold or hot environment. Thermal characteristics such as resting metabolic rate (RMR) and non-shivering thermogenesis (NST), and the upper- and lower-critical temperatures of the thermal neutral zone (TNZ) were investigated in small and large body sized striped hamsters (Cricetulus barabensis). The maximum capacity to thermoregulate in response to extreme cold (-15 °C) or hot temperature (38 °C) was also examined, where both, different sized hamsters had similar RMR and NST regardless of temperature exposure. The large hamsters had 29.9% more body mass compared to small hamsters. The large hamsters showed a wider TNZ, with lower, lower-critical temperature, and showed considerable hyperthermia at the end of a 17-h hot exposure. In contrast, the small hamsters showed hypothermia following a 17-h cold exposure relative to large hamsters. In addition, the large hamsters showed 17.2% lower basal thermal conductance, and 14.9% lower maximum thermal conductance than the small hamsters after cold exposure, and 22.6% lower thermal conductance following heat exposure. Several molecular markers indicative of thermogenesis and oxidative stress did not differ significantly between the large and small hamsters. These findings suggest that individuals with larger body sizes have greater capacity to thermoregulate to cope with extreme cold, and a reduced capacity in response to extreme hot. In contrast, smaller individuals demonstrated the opposite trend. Body size may decide the capacity to thermoregulate to cope with extreme cold and heat, within which body heat dissipation is likely more important than heat production.
Collapse
Affiliation(s)
- Chenxiao Hu
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Ruihan Zhang
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Wenting Zhang
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Yuxin Zheng
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Zhijun Zhao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Lee YJ, Lee JW, Huang CW, Yang KT, Peng SY, Yu C, Lee YH, Lai IL, Shen PC. Identification of Molecular Profile of Ear Fibroblasts Derived from Spindle-Transferred Holstein Cattle with Ooplasts from Taiwan Yellow Cattle under Heat Stress. Animals (Basel) 2024; 14:1371. [PMID: 38731375 PMCID: PMC11083940 DOI: 10.3390/ani14091371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Global warming has a significant impact on the dairy farming industry, as heat stress causes reproductive endocrine imbalances and leads to substantial economic losses, particularly in tropical-subtropical regions. The Holstein breed, which is widely used for dairy production, is highly susceptible to heat stress, resulting in a dramatic reduction in milk production during hot seasons. However, previous studies have shown that cells of cows produced from reconstructed embryos containing cytoplasm (o) from Taiwan yellow cattle (Y) have improved thermotolerance despite their nuclei (n) being derived from heat-sensitive Holstein cattle (H). Using spindle transfer (ST) technology, we successfully produced ST-Yo-Hn cattle and proved that the thermotolerance of their ear fibroblasts is similar to that of Y and significantly better than that of H (p < 0.05). Despite these findings, the genes and molecules responsible for the different sensitivities of cells derived from ST-Yo-Hn and H cattle have not been extensively investigated. In the present study, ear fibroblasts from ST-Yo-Hn and H cattle were isolated, and differentially expressed protein and gene profiles were compared with or without heat stress (hs) (42 °C for 12 h). The results revealed that the relative protein expression levels of pro-apoptotic factors, including Caspase-3, -8, and -9, in the ear fibroblasts from the ST-Yo-Hn-hs group were significantly lower (p < 0.05) than those from the H-hs group. Conversely, the relative expression levels of anti-apoptotic factors, including GNA14 protein and the CRELD2 and PRKCQ genes, were significantly higher (p < 0.05) in the ear fibroblasts from the ST-Yo-Hn-hs group compared to those from the H-hs group. Analysis of oxidative phosphorylation-related factors revealed that the relative expression levels of the GPX1 gene and Complex-I, Complex-IV, CAT, and PGLS proteins were significantly higher (p < 0.05) in the ear fibroblasts from the ST-Yo-Hn-hs group compared to those from the H-hs group. Taken together, these findings suggest that ear fibroblasts from ST-Yo-Hn cattle have superior thermotolerance compared to those from H cattle due to their lower expression of pro-apoptotic factors and higher expression of oxidative phosphorylation and antioxidant factors. Moreover, this improved thermotolerance is attributed, at least partially, to the cytoplasm derived from more heat-tolerant Y cattle. Hence, using ST technology to produce more heat-tolerant H cattle containing Y cytoplasm could be a feasible approach to alleviate the negative impacts of heat stress on dairy cattle in tropical-subtropical regions.
Collapse
Affiliation(s)
- Yu-Ju Lee
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (Y.-J.L.); (I.-L.L.)
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (J.-W.L.); (C.-W.H.)
| | - Chao-Wei Huang
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (J.-W.L.); (C.-W.H.)
| | - Kuo-Tai Yang
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (K.-T.Y.); (S.-Y.P.); (C.Y.); (Y.-H.L.)
| | - Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (K.-T.Y.); (S.-Y.P.); (C.Y.); (Y.-H.L.)
| | - Chi Yu
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (K.-T.Y.); (S.-Y.P.); (C.Y.); (Y.-H.L.)
| | - Yen-Hua Lee
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (K.-T.Y.); (S.-Y.P.); (C.Y.); (Y.-H.L.)
| | - I-Ling Lai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (Y.-J.L.); (I.-L.L.)
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (K.-T.Y.); (S.-Y.P.); (C.Y.); (Y.-H.L.)
| |
Collapse
|
4
|
Kim BM, Jin XC, Lee JH, Peng DQ, Kim WS, Lee HG. Role of vitamin E on bovine skeletal-muscle-derived cells from Korean native cattle under heat treatment. J Anim Sci 2024; 102:skae292. [PMID: 39383093 PMCID: PMC11512075 DOI: 10.1093/jas/skae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 10/11/2024] Open
Abstract
Our study aimed to evaluate the dualistic effect of heat stress on muscle differentiation at different temperatures, and whether vitamin E, a powerful antioxidant, could offset any negative effects, using bovine skeletal-muscle-derived cells (BSMCs) with myogenic properties. The BSMCs were extracted from the skeletal muscle of 30-mo-old Korean native cattle and subjected to myogenic differentiation under 3 heat exposure conditions: 37 °C (control; CON), 39 °C (mild heat stress; MHS), and 41 °C (severe heat stress; SHS) for 24 h with or without vitamin E treatment (NE or VE). After 24 h treatments, the cells were returned to 37 °C incubators and differentiated until day 6. On day 1, because of the heat exposure, the gene expression of MYOG was the highest in MHS (P = 0.047), suggesting a promotive effect of mild heat stress on myogenic differentiation, while on day 6, compared with CON and MHS, MYOD (P = 0.013) and MYOG (P = 0.029) were the lowest in SHS. Vitamin E treatment also lowered MYOG (P = 0.097), regardless of heat exposure. On day 1, HSPB1 (P = 0.001) and HSP70 (P < 0.001) were the highest in SHS, and an interaction between heat exposure and vitamin E treatment was found on day 6 (P < 0.027). BCL-2 was also the highest on day 1 in SHS (P = 0.05), and an interaction of heat exposure and vitamin E treatment was found on day 1 on BAX expression (P = 0.038). For antioxidant genes, SOD1 (P = 0.002) and GPX1 (P < 0.001) were affected by heat exposure, with the highest levels being observed in SHS, and on day 6, GPX1 was still the highest in SHS (P = 0.027). The fusion index was also affected by heat exposure, showing a decrease in SHS and an increase in MHS compared with CON (P < 0.001). Significant effects were noted from heat exposure (P < 0.001), vitamin E treatment (P < 0.001), and the interaction of heat exposure and vitamin E treatment (P = 0.002) on the protein content. Taken together, our findings provide evidence that vitamin E could ameliorate the harmful effects of heat exposure by modulating heat shock proteins and apoptosis regulators, improving the protein synthesis of BSMCs during myogenic differentiation. These results suggest that vitamin E supplementation could potentially protect muscle development in beef cattle under summer heat stress.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Animal Science and Technology, Sanghuh College of Life Science, Konkuk University, Seoul, Korea
| | - Xue-Cheng Jin
- Department of Animal Science and Technology, Sanghuh College of Life Science, Konkuk University, Seoul, Korea
| | - Jun-Hee Lee
- Department of Animal Science and Technology, Sanghuh College of Life Science, Konkuk University, Seoul, Korea
| | - Dong-Qiao Peng
- College of Animal Sciences, Jilin University, Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in Northeastern Frigid Area, Changchun, China
| | - Won-Seob Kim
- Department of Animal Science and Technology, Sanghuh College of Life Science, Konkuk University, Seoul, Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Science, Konkuk University, Seoul, Korea
| |
Collapse
|
5
|
Faheem MS, Ghanem N, Samy R, Barkawi AH. Molecular, enzymatic responses and in vitro embryonic developmental competency of heat-shocked buffalo embryos co-cultured with granulosa cells monolayer. Theriogenology 2023; 211:203-211. [PMID: 37659251 DOI: 10.1016/j.theriogenology.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/04/2023]
Abstract
The present study was designed to establish a suitable alternative approach to mitigate the adverse effect of high culture temperature on in vitro embryo development and the related molecular response in buffalo. Pre-cultured granulosa cells (GCs) were used as a monolayer during in vitro embryo culture until day 8 (day of fertilization = D0). Post fertilization, presumptive embryos were randomly assigned into two culture conditions: embryos cultured in the presence of GCs monolayer under normal culture temperature (N: 38.5 °C; GEN group) or heat shock (H: 40.5 °C; GEH group) and their counterpart groups of embryos cultured without GCs (EN and EH groups). Additionally, two groups of GCs monolayer were cultured without embryos up to day 8 under 38.5 °C (GN) or 40.5 °C (GH) for further spent culture media enzymatic analyses. Heat shock was administered for the first 2 h of culture then continued at 38.5 °C until day 8. The results indicated that under heat treatment, GCs enhanced (P ≤ 0.05) embryo cleavage and development (day 8) rates, which were comparable to the embryos cultured at 38.5 °C. On the molecular level, blastocysts of the GEH group showed similar expressions of metabolism-regulating genes (CPT2 and SlC2A1/GLUT1) and an antioxidant gene (SOD2) when compared to the blastocysts of the EN group. The relative expression of HSP90 was significantly up-regulated under heat shock and/or co-culture conditions. However, HSF1 expression was increased (P ≤ 0.05) in the GEH group. No statistical differences were observed among the study groups for the pluripotency gene NANOG, and stress resistance transcript NFE2L2. Regarding the enzymatic profile, the concentrations of SOD, total protein, and MDA were decreased (P ≤ 0.05) in the GEH group compared to the cultured GCs without embryos (GH group). In conclusion, GCs as a monolayer have a beneficial impact on alleviating heat stress at the zygote stage through the regulatory mechanisms of metabolic activity, defense system, and heat shock response genes.
Collapse
Affiliation(s)
- Marwa S Faheem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Cairo University Research Park (CURP), Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Nasser Ghanem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Romysa Samy
- Cairo University Research Park (CURP), Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ashraf Hesham Barkawi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Dubai Police Academy, Dubai, United Arab Emirates
| |
Collapse
|
6
|
Tripathi SK, Nandi S, Gupta PSP, Mondal S. Antioxidants supplementation improves the quality of in vitro produced ovine embryos with amendments in key development gene expressions. Theriogenology 2023; 201:41-52. [PMID: 36827868 DOI: 10.1016/j.theriogenology.2022.11.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The present study assessed the effects of supplementation of different antioxidants on oocyte maturation, embryo production, reactive oxygen species (ROS) production and expression of key developmental genes. In this study, using ovine as an animal model, we tested the hypothesis that antioxidant supplementation enhanced the developmental competence of oocytes. Ovine oocytes aspirated from local abattoir-derived ovaries were subjected to IVM with different concentrations of antioxidants [(Melatonin, Ascorbic acid (Vit C), alpha-tocopherol (Vit E), Sodium selenite (SS)]. Oocytes matured without any antioxidant supplementation were used as controls. The oocytes were assessed for maturation rates and ROS levels. Further, embryo production rates in terms of cleavage, blastocysts and total cell numbers were evaluated after performing in vitro fertilization. Real-Time PCR analysis was used to evaluate the expression of stress related gene (SOD-1), growth related (GDF-9, BMP-15), and apoptosis-related genes (BCL-2 and BAX). We observed that maturation rates were significantly higher in alpha-tocopherol (100 μM; 92.4%) groups followed by melatonin (30 μM; 89.1%) group. However, blastocyst rates in ascorbic acid (100 μM; 19.5%), melatonin (30 μM; 18.4%), alpha-tocopherol (100 μM; 18.2%), and sodium selenite (20 μM; 16.9%) groups were significantly higher (P 0.05) than that observed in the control groups. Total cell numbers in blastocysts in the melatonin, ascorbic acid and alpha-tocopherol groups were significantly higher than those observed in sodium selenite and control groups. ROS production was reduced in groups treated with melatonin (30 μM), vitamin C (100 μM), sodium selenite (20 μM) and α-tocopherol (200 μM) compared with that observed in the control group. Supplementation of antioxidants caused the alterations in mRNA expression of growth, stress, and apoptosis related gene expression in matured oocytes. The results recommend that antioxidants alpha-tocopherol (200 μM), sodium selenite (40 μM), melatonin (30 μM) and ascorbic acid (100 μM) during IVM reduced the oxidative stress by decreasing ROS levels in oocytes, thus improving embryo quantity and quality.
Collapse
Affiliation(s)
- S K Tripathi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| | - S Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India.
| | - P S P Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| | - S Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| |
Collapse
|
7
|
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci 2022; 9:vetsci9080439. [PMID: 36006354 PMCID: PMC9415395 DOI: 10.3390/vetsci9080439] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro embryo production (IVEP) technique is widely used in the field of reproductive biology. In vitro maturation (IVM) is the first and most critical step of IVEP, during which, the oocyte is matured in an artificial maturation medium under strict laboratory conditions. Despite all of the progress in the field of IVEP, the quality of in vitro matured oocytes remains inferior to that of those matured in vivo. The accumulation of substantial amounts of reactive oxygen species (ROS) within oocytes during IVM has been regarded as one of the main factors altering oocyte quality. One of the most promising approaches to overcome ROS accumulation within oocytes is the supplementation of oocyte IVM medium with antioxidants. In this article, we discuss recent advancements depicting the adverse effects of ROS on mammalian oocytes. We also discuss the potential use of antioxidants and their effect on both oocyte quality and IVM rate.
Collapse
Affiliation(s)
- Shimaa I. Rakha
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. Elmetwally
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hossam El-Sheikh Ali
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Balboula
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Abdelmonem Montaser Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samy M. Zaabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
8
|
Gupta P, Johnson P, Kaushik K, Krishna K, Nandi S, Mondal S, Nikhil Kumar Tej J, Somoskoi B, Cseh S. Effect of retinol as antioxidant on the post-thaw viability and the expression of apoptosis and developmental competence-related genes of vitrified preantral follicles in buffalo (Bubalus bubalis). Reprod Domest Anim 2021; 56:1446-1455. [PMID: 34449946 DOI: 10.1111/rda.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Abstract
The present study evaluated the effect of supplementation of retinol in the vitrification solution on the viability, apoptosis and development-related gene expression in vitrified buffalo preantral follicles. Preantral follicles isolated from cortical slices of ovaries were randomly assigned into three groups: Group1-Control fresh preantral follicles; Group 2-Vitrification treatment (Vitrification solution 1 (VS1) -TCM-199 + 25 mM HEPES + Foetal bovine serum (FBS) 10%, Ethylene glycol (EG): 10%, Dimethyl sulphoxide (DMSO): 10%, Sucrose-0.3 M for 4 min; VS2- TCM-199 + 25 mM HEPES + FBS10%, EG:25%, DMSO: 25%, Sucrose:0.3 M for 45 s); Group3-vitrification treatment +5 μM of Retinol. Preantral follicles were placed in corresponding vitrification medium and plunged into liquid nitrogen (-196°C). After a week, the follicles were thawed and analysed for follicular viability and gene expression. There was no significant difference in the viability rates among the Group 1(Fresh preantral follicles) (91.46 ± 2.39%), Group 2 (89.59 ± 2.46%) and Group 3 (87.19 ± 4.05%). There was a significantly (p < .05) higher mRNA expression of BCL2L1, GDF-9 and BMP-15 in the vitrification + retinol group compared with the control group. There was a significantly (p < .05) higher expression of Caspase-3 and Annexin-5 in the vitrification group and Vitrification + retinol group compared with control group of follicles. It is concluded that the supplementation of 5 μM of Retinol in Vitrification solution was an efficient vitrification procedure for the vitrification of buffalo preantral follicles.
Collapse
Affiliation(s)
- Psp Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - P Johnson
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - K Kaushik
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - K Krishna
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - S Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - S Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - J Nikhil Kumar Tej
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - B Somoskoi
- Department and Clinic of Obstetrics & Reproduction, University of Veterinary Medicine, Budapest, Hungary
| | - S Cseh
- Department and Clinic of Obstetrics & Reproduction, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
9
|
Li M, Hassan FU, Tang Z, Guo Y, Liang X, Peng L, Xie H, Yang C. Physiological, oxidative and metabolic responses of lactating water buffaloes to tropical climate of South China. Vet Med Sci 2021; 7:1696-1706. [PMID: 34273254 PMCID: PMC8464237 DOI: 10.1002/vms3.570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Heat stress in tropics is generally associated with significant economic losses resulting from reduced performance, morbidity, and mortality of livestock. To avoid serious consequences of heat stress, it is imperative to better understand the physiological responses and biochemical changes under the state of altered body homeostasis during different seasons of the year. OBJECTIVES This study aimed to evaluate the seasonal dynamics of physiological, oxidative and metabolic responses of lactating Nili-Ravi buffaloes to the tropical climate of South China. METHODS Physiological responses including rectal temperature (RT), body surface temperature (BST) and respiratory rate (RR) along with serum biochemical and antioxidant parameters of 20 lactating Nili-Ravi buffaloes were evaluated during different seasons of the year. RESULTS Higher temperature-humidity Index (THI) during the summer season (>80) resulted in a significant increases in RR and BST as compared to the winter season. Higher oxidative stress was observed in the summer season as revealed by significantly higher MDA while lower serum antioxidant enzyme (TAC, GSH-Px, SOD and CAT) contents. Moreover, serum cortisol was also significantly higher in summer and autumn. The levels of growth hormone and ACTH were also significantly (P < 0.05) lower in summer and autumn as compared to other seasons. The negative association of THI with physiological and antioxidant parameters was observed while it was positively associated with serum MDA and cortisol levels. CONCLUSIONS Our study revealed moderate heat stress in lactating buffaloes in the summer season which calls for attention to avoid economic losses and animal welfare issues.
Collapse
Affiliation(s)
- Mengwei Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Faiz-Ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zhenhua Tang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yanxia Guo
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xin Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Lijuan Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Huade Xie
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
10
|
Dholpuria S, Kumar S, Kumar M, Sarwalia P, Kumar R, Datta TK. A novel lincRNA identified in buffalo oocytes with protein binding characteristics could hold the key for oocyte competence. Mol Biol Rep 2021; 48:3925-3934. [PMID: 34014469 DOI: 10.1007/s11033-021-06388-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/29/2021] [Indexed: 12/23/2022]
Abstract
Studying the maternal oocyte-specific genes, in farm animals is a significant step towards delineating the underlying mechanisms that regulate oocyte quality, early embryonic development and survival. With the creation of buffalo oocyte-specific subtracted cDNA library, it has raised new questions which need to be answered. The present study has characterized one of the ESTs selected from the library and highlighted its importance in the oocyte quality. The selected EST was made full length by RLM-RACE and four transcript variants were identified. Bioinformatics analysis indicated the novelty of full-length transcript along with conserved intergenic nature. The largest transcript was identified as long intergenic noncoding RNA based upon coding potential calculator output. The expression analysis at different hours of oocyte maturation showed a significant variation in developmentally competent oocytes to that of incompetent ones. Along with this, the transcript was also found to have protein binding ability which was confirmed by RNA electrophoretic mobility shift assay. The protein used in the experiment was isolated from oocyte and cumulus cells via sonication. A novel lincRNA has been reported here that might have an important role in maturation of oocytes, inferred from its relative gene expression study and protein binding characteristics.
Collapse
Affiliation(s)
- Sunny Dholpuria
- Department of Life Science, Sharda University, Greater Noida, India.
| | - Sandeep Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Manish Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Rakesh Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
11
|
Huang K, Li C, Gao F, Fan Y, Zeng F, Meng L, Li L, Zhang S, Wei H. Epigallocatechin-3-Gallate Promotes the in vitro Maturation and Embryo Development Following IVF of Porcine Oocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1013-1020. [PMID: 33707939 PMCID: PMC7940989 DOI: 10.2147/dddt.s295936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022]
Abstract
Purpose Epigallocatechin-3-gallate (EGCG) is a major ingredient of catechin polyphenols and exerts protective effects because of its strong antioxidant properties. As far as we know, there is still a lack of systematic research on the effects of EGCG on the in vitro maturation (IVM) and in vitro fertilization (IVF) of porcine oocytes. The present study aimed to determine the effects of EGCG on the IVM and IVF of porcine oocytes. Methods Porcine oocytes were treated with different concentrations of EGCG (5, 10 and 20 µM), and the cumulus cell expansion, oocyte maturation rate, reactive oxygen species (ROS), glutathione (GSH) and malondialdehyde (MDA) levels, total antioxidant capacity were determined. The mRNA expression levels of oxidative stress- and apoptosis-associated genes were determined by quantitative real-time PCR. The cleavage rate and blastocyst rate of oocytes after 10 μM EGCG treatment during IVM and IVF were also evaluated. Results EGCG at 5, 10 and 20 μM significantly promoted cumulus cell expansion, and EGCG at 10 μM increased the oocyte maturation rate. EGCG (10 μM) treatment reduced the ROS and MDA levels, while increased the antioxidant capacity and GSH concentrations in the mature oocytes. The qRT-PCR results showed that EGCG treatment up-regulated the mRNA expression of catalase, glutathione peroxidase and superoxide dismutase in the mature oocytes. In addition, EGCG treatment also decreased the mRNA expression levels of Bax and caspase-3 and increased the Bcl-2 mRNA expression level in the mature oocytes. In addition, the cleavage rate and blastocyst rate of oocytes treated with 10 μM EGCG during IVM and IVF were significantly higher than those of the control group. Conclusion Our results suggest that EGCG promotes the in vitro maturation and embryo development following IVF of porcine oocytes. The protective effects of EGCG on the oocytes may be associated with its antioxidant and anti-apoptosis properties.
Collapse
Affiliation(s)
- Kangfa Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Chengde Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Fenglei Gao
- Department of Tropical Agriculture and Forestry, College of Guangdong Agriculture Industry Business Polytechnic, Guangzhou, Guangdong, 510507, People's Republic of China
| | - Yushan Fan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Fanwen Zeng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Li Meng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Li Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Shouquan Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hengxi Wei
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
12
|
Lycopene Improves In Vitro Development of Porcine Embryos by Reducing Oxidative Stress and Apoptosis. Antioxidants (Basel) 2021; 10:antiox10020230. [PMID: 33546473 PMCID: PMC7913612 DOI: 10.3390/antiox10020230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
In vitro culture (IVC) for porcine embryo development is inferior compared to in vivo development because oxidative stress can be induced by the production of excessive reactive oxygen species (ROS) under high oxygen tension in the in vitro environment. To overcome this problem, we investigated the effect of lycopene, an antioxidant carotenoid, on developmental competence and the mechanisms involved in mitochondria-dependent apoptosis pathways in porcine embryos. In vitro fertilized (IVF) embryos were cultured in IVC medium supplemented with 0, 0.02, 0.05, 0.1, or 0.2 μM lycopene. The results indicate that 0.1 μM lycopene significantly increased the rate of blastocyst formation and the total cell numbers, including trophectoderm cell numbers, on Day In terms of mitochondria-dependent apoptosis, IVF embryos treated with 0.1 μM lycopene exhibited significantly decreased levels of ROS, increased mitochondrial membrane potential, and decreased expression of cytochrome c on Days 2 and Furthermore, 0.1 μM lycopene significantly decreased the number and percentage of caspase 3-positive and apoptotic cells in Day-6 blastocysts. In addition, Day-2 embryos and Day-6 blastocysts treated with 0.1 μM lycopene showed significantly reduced mRNA expression related to antioxidant enzymes (SOD1, SOD2, CATALASE) and apoptosis (BAX/BCL2L1 ratio). These results indicate that lycopene supplementation during the entire period of IVC enhanced embryonic development in pigs by regulating oxidative stress and mitochondria-dependent apoptosis.
Collapse
|
13
|
Abdelnour SA, Yang CY, Swelum AA, Abd El-Hack ME, Khafaga AF, Abdo M, Shang JH, Lu YQ. Molecular, functional, and cellular alterations of oocytes and cumulus cells induced by heat stress and shock in animals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38472-38490. [PMID: 32767010 DOI: 10.1007/s11356-020-10302-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Global warming is considered as the main environmental stress affecting ecosystems as well as physiological and biochemical characteristics, and survivability of living organisms. High temperature induces various stresses and causes reduction of fertility through reducing the oocyte developmental competence and alteration in surrounding cells' functions. This causes major economic loss to livestock creating a selective pressure on animals to the advantage of better adapted genotypes and to the detriment of others. In this review, a search in Science Direct, Google Scholar, PubMed, Web of Science, Scopus, and SID databases until 2020 was conducted. Keywords which include heat stress, shock, high temperature, oocyte, cumulus, and animals were investigated. Studies have exhibited that heat stress can disturb the development and function of oocyte and cumulus cells (CCs) concerning reproductive efficiency. Heat stress has deleterious consequences on oocyte maturation and development via reduced number of polar body extrusion, adenosine monophosphate, and guanosine monophosphate synthesis. Heat stress caused the alteration of cytoplasmic and nuclear features as well as trans-zonal projections and gap junctions. In addition, heat stress is accompanied with reduced mitochondrial activity (copy mDNA number, distribution, and membrane potential) in cumulus-oocyte complexes. This review targets the description of results in the most recent studies that aimed to call attention to the influences of heat stress on molecular, functional, and cellular changes in oocytes and CCs in animals to design evidence on the acting mechanisms as the core of this problem from a comparative review.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Chun-Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Egypt
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China.
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
14
|
Zhao Z, Yang L, Zhang D, Zheng Z, Li N, Li Q, Cui M. Elevation of MPF and MAPK gene expression, GSH content and mitochondrial distribution quality induced by melatonin promotes porcine oocyte maturation and development in vitro. PeerJ 2020; 8:e9913. [PMID: 33083108 PMCID: PMC7543723 DOI: 10.7717/peerj.9913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/18/2020] [Indexed: 02/01/2023] Open
Abstract
The MPF and MAPK genes play crucial roles during oocyte maturation processes. However, the pattern of MPF and MAPK gene expression induced by melatonin (MT) and its correlation to oocyte maturation quality during the process of porcine oocyte maturation in vitro remains unexplored. To unravel it, in this study, we cultured the porcine oocytes in maturation medium supplemented with 0, 10−6, 10−9, and 10−12 mol/L melatonin. Later, we analyzed the MPF and MAPK gene expression levels by RT-PCR and determined the maturation index (survival and maturation rate of oocytes). The GSH content in the single oocyte, and cytoplasmic mitochondrial maturation distribution after porcine oocyte maturation in vitro was also evaluated. We also assessed the effects of these changes on parthenogenetic embryonic developmental potential. The oocytes cultured with 10−9mol/L melatonin concentration showed higher oocyte maturation rate, and MPF and MAPK genes expression levels along with better mitochondrial distribution than the 0, 10−6, and 10−12 mol/L melatonin concentrations (p < 0.05). No significant difference was observed in the survival rates when the oocytes were cultured with different melatonin concentrations. The expression of the MPF gene in the oocytes cultured with 10−6 mol/L melatonin was higher than with 10−12 and 0 mol/L melatonin, and the expression of the MAPK gene in 10−6 and 10−12 group was higher than the control (p < 0.05). As far as the embryonic developmental potential is concerned, the cleavage and blastocyst rate of oocytes cultured with 10−6 and 10−9 mol/L melatonin was significantly higher than the 10−12 mol/L melatonin and control. In conclusion, 10−9–10−6 mol/L melatonin significantly induced the MPF and MAPK gene expression; besides, it could also be correlated with GSH content of single oocyte, mitochondrial maturation distribution, and the first polar body expulsion. These changes were also found to be associated with parthenogenetic embryo developmental potential in vitro.
Collapse
Affiliation(s)
- Zimo Zhao
- Institute of Animal Science and Veterinary of Tianjin, TianJin, China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, HanDan, China
| | - Ling Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, HanDan, China
| | - Dan Zhang
- Tianjin Animal Disease Prevention and Control Center, TianJin, China
| | - Zi Zheng
- Institute of Animal Science and Veterinary of Tianjin, TianJin, China
| | - Ning Li
- Institute of Animal Science and Veterinary of Tianjin, TianJin, China
| | - Qianjun Li
- Institute of Animal Science and Veterinary of Tianjin, TianJin, China
| | - Maosheng Cui
- Institute of Animal Science and Veterinary of Tianjin, TianJin, China
| |
Collapse
|
15
|
Hu X, Cheng L, Wang X, Luo G, Zhao T, Tian J, An L. N-acetyl-l-cysteine protects porcine oocytes undergoing meiotic resumption from heat stress. Reprod Toxicol 2019; 91:27-34. [PMID: 31698002 DOI: 10.1016/j.reprotox.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022]
Abstract
Heat stress (HS) is a notable risk factor for female reproductive performance. In particular, impaired oocyte maturation was thought to contribute largely to the HS-induced reproductive dysfunctions. In this study, we confirmed that oocytes undergoing GVBD were much susceptible to HS, and thus compromising subsequent embryonic development. Using N-acetyl-l-cysteine (NAC), we found supplementation of a relatively high dose NAC during in vitro maturation, can protect oocytes from HS-induced complications, and thus rescuing impaired embryonic development. Further analysis indicated that mechanisms responsible for protecting GVBD oocytes from HS by NAC may include: (1) reversing disorganized spindle assembly and inhibited extracellular signal-regulated kinase (ERK) signaling; (2) correcting erroneous H3K27me3 modification and dysregulated expression of imprinted genes; (3) alleviating increased intraoocyte reactive oxygen species accumulation and apoptosis initiation. Our study, focusing on the oocyte meiotic maturation, may provide a safe and promising strategy for protecting reproductive sows under environmental hyperthermal conditions.
Collapse
Affiliation(s)
- Xiao Hu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Linghua Cheng
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Xiaodong Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Gang Luo
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Tianqing Zhao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China.
| |
Collapse
|
16
|
Schisa JA. Germ Cell Responses to Stress: The Role of RNP Granules. Front Cell Dev Biol 2019; 7:220. [PMID: 31632971 PMCID: PMC6780003 DOI: 10.3389/fcell.2019.00220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/18/2019] [Indexed: 11/13/2022] Open
Abstract
The ability to respond to stress is critical to survival for animals. While stress responses have been studied at both organismal and cellular levels, less attention has been given to the effect of stress on the germ line. Effective germ line adaptations to stress are essential to the propagation of a species. Recent studies suggest that germ cells share some cellular responses to stress with somatic cells, including the assembly of RNP granules, but may also have unique requirements. One fundamental difference between oocytes and sperm, as well as most somatic cells, is the long lifespan of oocytes. Since women are born with all of their eggs, oocytes must maintain their cellular quality over decades prior to fertilization. This prolonged meiotic arrest is one type of stress that eventually contributes to decreased fertility in older women. Germ cell responses to nutritional stress and heat stress have also been well-characterized using model systems. Here we review our current understanding of how germ cells respond to stress, with an emphasis on the dynamic assembly of RNP granules that may be adaptive. We compare and contrast stress responses of male gametes with those of female gametes, and discuss how the dynamic cellular remodeling of the germ line can impact the regulation of gene expression. We also discuss the implications of recent in vitro studies of ribonucleoprotein granule assembly on our understanding of germ line responses to stress, and the gaps that remain in our understanding of the function of RNP granules during stress.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
17
|
Zhang Y, Guo J, Nie XW, Li ZY, Wang YM, Liang S, Li S. Rosmarinic acid treatment during porcine oocyte maturation attenuates oxidative stress and improves subsequent embryo development in vitro. PeerJ 2019; 7:e6930. [PMID: 31249731 PMCID: PMC6587974 DOI: 10.7717/peerj.6930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In vitro maturation (IVM) of oocytes has been widely used in the field of assisted reproductive technology. However, oocytes can be injured by oxidative stress during the process of IVM. METHODS The present study was designed to evaluate the influences of rosmarinic acid (RA) on the IVM of porcine oocytes and the subsequent development of early-stage embryos as well as its underlying mechanisms. Various concentrations of RA (5 µM, 10 µM, and 25 µM) were treated with porcine oocyte maturation medium during the period of IVM. RESULTS AND DISCUSSION The results showed that 5 µM RA treatment during the period of porcine oocyte IVM improves blastocyst quality and hatching ability after parthenogenetic activation. Furthermore, the presence of RA during the period of IVM dramatically improved the total number of cells after somatic cell nuclear transfer compared to the number of cells in the control group. Notably, RA treatment during the period of porcine oocyte IVM decreased intracellular reactive oxygen species generation not only in oocytes but also in cumulus cells. Further analysis showed that the intracellular free thiols levels in the oocytes were enhanced by treatment with RA during the period of porcine oocyte IVM compared to the free thiols levels in the control groups. These results indicate that RA improves the developmental competence of porcine oocytes during the IVM period by attenuating oxidative stress.
Collapse
Affiliation(s)
- Yan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Jing Guo
- Chongqing Reproductive and Genetics Institute, Chongqing, China
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
| | - Xiao Wei Nie
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zi Yue Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yu Meng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shuang Liang
- Department of Animal Science, College of Animal Sciences, Jilin University, Changchun, China
| | - Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Gad A, Abu Hamed S, Khalifa M, Amin A, El-Sayed A, Swiefy SA, El-Assal S. Retinoic acid improves maturation rate and upregulates the expression of antioxidant-related genes in in vitro matured buffalo ( Bubalus bubalis) oocytes. Int J Vet Sci Med 2018; 6:279-285. [PMID: 30564610 PMCID: PMC6286416 DOI: 10.1016/j.ijvsm.2018.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023] Open
Abstract
Retinoic acid, vitamin A metabolite, plays a role in oocyte development and maturation in different ways including gene expression alteration and/or prohibiting oxidative stress. The objective of this study was to examine the effect of 9-cis-retinoic acid (9-cisRA) on the quality and maturation rate of buffalo oocytes. Cumulus-oocyte complexes (COCs, n = 460) were collected from ovaries of slaughtered buffalos. Varying concentrations of 9-cisRA (0, 5, 50, and 200 nM) were added to the maturation medium, and the following parameters were analyzed: (i) maturation and cleavage rates, (ii) mitochondrial activity and reactive oxygen species (ROS) levels, (iii) expression level of antioxidant-related genes (PRDX1, SOD1, CAT, HOMX1, and GPX4) using RT-qPCR. Maturation rate was significantly improved in 5 nM 9-cisRA oocyte group (95.8%, P < .05) compared to control and other treatment groups (86.7% in control group). The same oocyte group exhibited significantly higher mitochondrial membrane potential activity and lower ROS accumulation level compared to other treatment groups. Antioxidant-related genes were up-regulated in oocytes matured with 5 or 50 nM 9-cisRA compared to control and 200 nM 9-cisRA groups. In contrast, 200 nM of 9-cisRA showed a clear down-regulation for antioxidant-related genes except for PRDX1. In conclusion, supplementation of 9-cisRA with a lower concentration (5 nM) to the buffalo oocytes maturation media promotes maturation rate through a protection mechanism that maintains adequate levels of antioxidant-related transcripts and improves mitochondrial activity. However, 9-cisRA has no significant effect on the cleavage rate of the treated oocytes.
Collapse
Affiliation(s)
- Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Said Abu Hamed
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed Khalifa
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Ahmed Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ashraf El-Sayed
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Swiefy A. Swiefy
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Salah El-Assal
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
19
|
TRIPATHI SK, NANDI S, GUPTA PSP, MONDAL S. Beneficial effect of lysyl oxidase on in vitro development of cultured ovine normal and metabolic stressed cumulus oocytes complexes. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i9.83548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Developmental and molecular responses of buffalo (Bubalus bubalis) cumulus–oocyte complex maturedin vitrounder heat shock conditions. ZYGOTE 2018; 26:177-190. [DOI: 10.1017/s0967199418000072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SummaryTo investigate the effects of physiologically relevant heat shock during oocyte maturation, buffalo cumulus–oocyte complexes (COCs) were cultured at 38.5°C (control) or were exposed to 39.5°C (T1) or 40.5°C (T2) for the first 6 h ofin vitromaturation (IVM), followed by 38.5°C through the next 18 h/IVM and early embryonic development up to the blastocyst stage. Gene expression analysis was performed on selected target genes (HSF-1,HSF-2,HSP-70,HSP-90,BAX,p53,SOD1,COX1,MAPK14) in denuded oocytes and their isolated cumulus cells resulting from control COCs as well as from COCs exposed to a temperature of 39.5°C (T1). The results indicated that heat shock significantly (P< 0.01) decreased the maturation rate in T1 and T2 cells compared with the control. Afterin vitrofertilization (IVF), cleavage rate was lower (P< 0.01) for oocytes exposed to heat stress, and the percentage of oocytes arrested at the 2- or 4-cell stage was higher (P< 0.01) than that of the control. The percentage of oocytes that developed to the 8-cell, 16-cell or blastocyst stage was lower (P< 0.01) in both T1 and T2 groups compared with the control group. mRNA expression levels for the studied genes were decreased (P< 0.05) in treated oocytes (T1) except forHSP-90andHSF-1, which were increased. In cumulus cells isolated from COCs (T1), the expression for the target genes was upregulated except forBAX, which was downregulated. The results of this study demonstrated that exposure of buffalo oocytes to elevated temperatures for 6 h severely compromised their developmental competence and gene expression.
Collapse
|
21
|
SINGH SOHANVIR, SOREN SIMSON, SHASHANK CG, KUMAR SUNIL, LAKHANI PREETI, GREWAL SONIKA, KUMAR PRAMOD. Global warming: Impact, adaptation and amelioration strategies for bovine under tropical climatic conditions. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i1.79372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Livestock are exposed to different climatic extreme events such as high air temperature, humidity, flood, drought, desert, heat wave, feed, fodder and water scarcity etc. which now seems to be very common in the tropical and subtropical climatic conditions. The climate change scenario is assumed to be a major threat to animal production systems under tropical climate. The demand of food or the food security issue compel us to undertake holistic approach to sustainable livestock production system that may be one of the remedies for fulfilling the demand of fast growing population. The objective of this review is to focus on the major effect on dairy production system and different strategies to overcome the adverse effect of heat stress under tropical climatic conditions. The identificationof unique adaptive traits between and within breeds and their propagation seem to be essential in near future in respect of climate change scenario. The management and feeding strategies proved to be beneficial for relieving adverse effects of heat stress for maintaining the productivity of dairy animals. Nevertheless, decision makers, extension services and research institutions have to support and encourage livestock activities to enhance the animal productivity under changed climate scenario.
Collapse
|
22
|
Saadeldin IM, Swelum AAA, Elsafadi M, Mahmood A, Alfayez M, Alowaimer AN. Differences between the tolerance of camel oocytes and cumulus cells to acute and chronic hyperthermia. J Therm Biol 2018; 74:47-54. [DOI: 10.1016/j.jtherbio.2018.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/10/2023]
|
23
|
Nandi S, Tripathi SK, Gupta PSP, Mondal S. Nutritional and metabolic stressors on ovine oocyte development and granulosa cell functions in vitro. Cell Stress Chaperones 2018; 23:357-371. [PMID: 28986745 PMCID: PMC5904079 DOI: 10.1007/s12192-017-0846-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/21/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022] Open
Abstract
The present study was undertaken to study the effect of ammonia, urea, non-esterified fatty acid (NEFA), and β-hydroxybutyric acid (β-OHB) on oocyte development and granulosa cell (GC) growth parameter of ovine (Ovis aries). Ovine oocytes were matured in vitro in the presence of different concentration of ammonia, urea, NEFA, and β-OHB for 24 h, in vitro inseminated and evaluated for cleavage and blastocyst yield. Same concentrations of ammonia, urea, NEFA, and β-OHB were examined on growth parameters and hormone secretion activity of granulosa cells in vitro. Real-time reverse transcription polymerase chain reaction was used to evaluate the expression of steroidogenic genes (steroidogenic cytochrome P-450 (CYP11A1, CYP19A1)), cell proliferation-related genes (GDF9, FSHr), and apoptosis-related genes (BCL-2 and BAX). The maturation, cleavage, and blastocyst production rates were significantly lowered in media containing either 200 μM ammonia or 5 mM urea or high combo NEFA or 1 μM β-OHB. Exposure of granulosa cell to 400 μM ammonia or 1 μM β-OHB or very high combo or 6 mM urea significantly decreased all the parameters examined compared to lower levels of all nutritional and metabolic stressors. Elevated concentration of metabolic stressors induced GC apoptosis through the BAX/BCL-2 pathway and reduced the steroidogenic gene messenger RNA (mRNA) expression and cell proliferation gene mRNA expression. These results suggested that the decreased function of GCs may cause ovarian dysfunction and offered an improved understanding of the molecular mechanism responsible for the low fertility in metabolic stressed condition.
Collapse
Affiliation(s)
- S Nandi
- ICAR - National Institute of Animal Nutrition and Physiology, Bangalore, 560030, India.
| | - S K Tripathi
- ICAR - National Institute of Animal Nutrition and Physiology, Bangalore, 560030, India
| | - P S P Gupta
- ICAR - National Institute of Animal Nutrition and Physiology, Bangalore, 560030, India
| | - S Mondal
- ICAR - National Institute of Animal Nutrition and Physiology, Bangalore, 560030, India
| |
Collapse
|
24
|
Arias-Álvarez M, García-García RM, López-Tello J, Rebollar PG, Gutiérrez-Adán A, Lorenzo PL. α-Tocopherol modifies the expression of genes related to oxidative stress and apoptosis during in vitro maturation and enhances the developmental competence of rabbit oocytes. Reprod Fertil Dev 2018; 30:1728-1738. [DOI: 10.1071/rd17525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/30/2018] [Indexed: 01/09/2023] Open
Abstract
The developmental competence of in vitro maturation (IVM) oocytes can be enhanced by antioxidant agents. The present study investigated, for the first time in the rabbit model, the effect of adding α-tocopherol (0, 100, 200 and 400 µM) during IVM on putative transcripts involved in antioxidant defence (superoxide dismutase 2, mitochondrial (SOD2), glutathione peroxidase 1 (GPX1), catalase (CAT)), cell cycle regulation and apoptosis cascade (apoptosis tumour protein 53 (TP53), caspase 3, apoptosis-related cysteine protease (CASP3)), cell cycle progression (cellular cycle V-Akt murine thymoma viral oncogene homologue 1 (AKT1)), cumulus expansion (gap junction protein, alpha 1, 43 kDa (GJA1) and prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclo-oxygenase) (PTGS2)) and metabolism (glucose-6-phosphate dehydrogenase (G6PD)). Meiotic progression, mitochondrial reallocation, cumulus cell apoptosis and the developmental competence of oocytes after IVF were also assessed. Expression of SOD2, CAT, TP53, CASP3 and GJA1 was downregulated in cumulus–oocyte complexes (COCs) after IVM with 100 μM α-tocopherol compared with the group without the antioxidant. The apoptotic rate and the percentage of a non-migrated mitochondrial pattern were lower in COCs cultured with 100 μM α-tocopherol, consistent with better-quality oocytes. In fact, early embryo development was improved when 100 μM α-tocopherol was included in the IVM medium, but remained low compared with in vivo-matured oocytes. In conclusion, the addition of 100 μM α-tocopherol to the maturation medium is a suitable approach to manage oxidative stress and apoptosis, as well as for increasing the in vitro developmental competence of rabbit oocytes.
Collapse
|
25
|
Kesorn P, Shen PC, Wu HY, Ju JC, Liu SS, Wu HH, Lee JW, Peng SY. Effects of cytoplasts from Taiwan native yellow cattle on the cellular antioxidant ability of cloned Holstein cattle and their offspring. Theriogenology 2017; 103:76-82. [PMID: 28779612 DOI: 10.1016/j.theriogenology.2017.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/28/2017] [Accepted: 07/25/2017] [Indexed: 11/26/2022]
Abstract
We previously demonstrated that the cellular thermotolerance of cloned cattle produced by combination of ooplasm (o) derived from Taiwan native yellow cattle (Y) and the donor (d) nucleus derived from Holstein (H) cattle (Yo-Hd) transmits to their offspring (Yo-Hd-F1). In the present study, the responses of mitochondria in these cloned cattle and their offspring after heat shock were investigated to elucidate influence of cytoplasmic input (i.e., ooplasm) during the course of heat stress. After heat shock, oxidative phosphorylation proteins (Complex III and IV) of ear fibroblast cells with Y-originated cytoplasm (including Y, Yo-Hd, and Yo-Hd-F1 cattle) were significantly greater (P < 0.05) than those of ear fibroblast cells with H-originated cytoplasm (including H, Ho-Hd, and Ho-Hd-F1 cattle). However, the expressions of Complex I and Complex II protein in heat shocked cells derived from Yo-Hd-F1 cattle were significantly (P < 0.05) higher than those of cell derived from cattle with the H-cytoplasm. The catalase (CAT) expression in heat shocked ear fibroblast cells derived from Yo-Hd and Yo-Hd-F1 cattle were significantly (P < 0.05) higher than that of cells derived from Ho-Hd-F1 cattle. However, the level of glutathione peroxidase (GPx) expression was higher (P < 0.05) in ear fibroblast cells with Y-originated cytoplasm compared to cells with H-originated cytoplasm. In conclusion, the expression of proteins involved in mitochondrial oxidative phosphorylation and antioxidant enzymes after heat shock was increased in ear fibroblast cells from cattle with Y-originated cytoplasm, which can be transmitted to their offspring.
Collapse
Affiliation(s)
- Piyawit Kesorn
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
| | - Hung-Yi Wu
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
| | - Jyh-Cherng Ju
- Graduate Institute of Biomedical Sciences, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan; Core Laboratory for Stem Cells, Medical Research Department, China Medical University Hospital, Taichung 40447, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan; Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shyh-Shyan Liu
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
| | - Hsi-Hsun Wu
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan.
| | - Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan.
| |
Collapse
|
26
|
Li YJ, Han Z, Ge L, Zhou CJ, Zhao YF, Wang DH, Ren J, Niu XX, Liang CG. C-phycocyanin protects against low fertility by inhibiting reactive oxygen species in aging mice. Oncotarget 2017; 7:17393-409. [PMID: 27008700 PMCID: PMC4951220 DOI: 10.18632/oncotarget.8165] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
Women over 35 have higher rates of infertility, largely due to deterioration of oocyte quality characterized by fragmentation, abnormal meiotic spindle-chromosome complexes, and oxidative stress. C-phycocyanin (PC) is a biliprotein enriched in Spirulina platensis that is known to possess antioxidant, anti-inflammatory, and radical-scavenging properties. D-galactose-induced aging acceleration in mice has been extensively used to study aging mechanisms and for pharmaceutical screening. In this study, adult female B6D2F/1 mice injected with D-galactose were used as a model to test the age-reversing effects of PC on degenerated reproductive ability. Our results show that PC can prevent oocyte fragmentation and aneuploidy by maintaining cytoskeletal integrity. Moreover, PC can reverse the expression of antioxidant genes, increase superoxide dismutase (SOD) activity and decrease methane dicarboxylic aldehyde (MDA) content, and normalize mitochondria distribution. PC exerts its benefit by inhibiting reactive oxygen species (ROS) production, which decreases apoptosis. Finally, we observe a significant increase in litter size after PC administration to D-galactose-induced aging mice. Our study demonstrates for the first time that D-galactose-induced impaired female reproductive capability can be partially rescued by the antioxidant effects of PC.
Collapse
Affiliation(s)
- Yan-Jiao Li
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Zhe Han
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Lei Ge
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Jie Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Yue-Fang Zhao
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Dong-Hui Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Jing Ren
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Xin-Xin Niu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| |
Collapse
|