1
|
Goeckeritz CZ, Zheng X, Harkess A, Dresselhaus T. Widespread application of apomixis in agriculture requires further study of natural apomicts. iScience 2024; 27:110720. [PMID: 39280618 PMCID: PMC11399699 DOI: 10.1016/j.isci.2024.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Apomixis, or asexual reproduction through seeds, is frequent in nature but does not exist in any major crop species, yet the phenomenon has captivated researchers for decades given its potential for clonal seed production and plant breeding. A discussion on whether this field will benefit from the continued study of natural apomicts is warranted given the recent outstanding progress in engineering apomixis. Here, we summarize what is known about its genetic control and the status of applying synthetic apomixis in agriculture. We argue there is still much to be learned from natural apomicts, and learning from them is necessary to improve on current progress and guarantee the effective application of apomixis beyond the few genera it has shown promise in so far. Specifically, we stress the value of studying the repeated evolution of natural apomicts in a phylogenetic and comparative -omics context. Finally, we identify outstanding questions in the field and discuss how technological advancements can be used to help close these knowledge gaps. In particular, genomic resources are lacking for apomicts, and this must be remedied for widespread use of apomixis in agriculture.
Collapse
Affiliation(s)
| | - Xixi Zheng
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
2
|
Bicknell R, Gaillard M, Catanach A, McGee R, Erasmuson S, Fulton B, Winefield C. Genetic mapping of the LOSS OF PARTHENOGENESIS locus in Pilosella piloselloides and the evolution of apomixis in the Lactuceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1239191. [PMID: 37692427 PMCID: PMC10485273 DOI: 10.3389/fpls.2023.1239191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Pilosella piloselloides var. praealta (syn. P. praealta; Hieracium praealtum) is a versatile model used to study gametophytic apomixis. In this system apomixis is controlled by three loci: one that controls the avoidance of meiosis (LOA), one that controls the avoidance of fertilization (LOP) and a third that controls autonomous endosperm formation (AutE). Using a unique polyhaploid mapping approach the LOP locus was mapped to a 654 kb genomic interval syntenic to linkage group 8 of Lactuca sativa. Polyhaploids form through the gametophytic action of a dominant determinant at LOP, so the mapped region represents both a functional and a physical domain for LOP in P. piloselloides. Allele sequence divergence (ASD) analysis of the PARTHENOGENESIS (PAR) gene within the LOP locus revealed that dominant PAR alleles in Pilosella remain highly similar across the genus, whilst the recessive alleles are more divergent. A previous report noted that dominant PAR alleles in both Pilosella and Taraxacum are modified by the presence of a class II transposable element (TE) in the promoter of the gene. This observation was confirmed and further extended to the related genus Hieracium. Sufficient differences were noted in the structure and location of the TE elements to conclude that TE insertional events had occurred independently in the three genera. Measures of allele crossover amongst the polyhaploids revealed that P. piloselloides is an autopolyploid species with tetrasomic inheritance. It was also noted that the dominant determinant of LOP in P. piloselloides could transmit via a diploid gamete (pollen or egg) but not via a haploid gamete. Using this information, a model is presented of how gametophytic apomixis may have evolved in several members of the Lactuceae, a tribe of the Asteraceae.
Collapse
Affiliation(s)
- Ross Bicknell
- Department of Breeding and Genomics, The New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Marion Gaillard
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Andrew Catanach
- Department of Breeding and Genomics, The New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Robert McGee
- Department of Plant Science, McGill University, Lincoln, QC, Canada
| | - Sylvia Erasmuson
- Department of Breeding and Genomics, The New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Beatrice Fulton
- Department of Breeding and Genomics, The New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Christopher Winefield
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Canterbury, New Zealand
| |
Collapse
|
3
|
Rojek J, Ohad N. The phenomenon of autonomous endosperm in sexual and apomictic plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4324-4348. [PMID: 37155961 PMCID: PMC10433939 DOI: 10.1093/jxb/erad168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Endosperm is a key nutritive tissue that supports the developing embryo or seedling, and serves as a major nutritional source for human and livestock feed. In sexually-reproducing flowering plants, it generally develops after fertilization. However, autonomous endosperm (AE) formation (i.e. independent of fertilization) is also possible. Recent findings of AE loci/ genes and aberrant imprinting in native apomicts, together with a successful initiation of parthenogenesis in rice and lettuce, have enhanced our understanding of the mechanisms bridging sexual and apomictic seed formation. However, the mechanisms driving AE development are not well understood. This review presents novel aspects related to AE development in sexual and asexual plants underlying stress conditions as the primary trigger for AE. Both application of hormones to unfertilized ovules and mutations that impair epigenetic regulation lead to AE development in sexual Arabidopsis thaliana, which may point to a common pathway for both phenomena. Apomictic-like AE development under experimental conditions can take place due to auxin-dependent gene expression and/or DNA methylation.
Collapse
Affiliation(s)
- Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Nir Ohad
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Mahlandt A, Singh DK, Mercier R. Engineering apomixis in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:131. [PMID: 37199785 DOI: 10.1007/s00122-023-04357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Apomixis is an asexual mode of reproduction through seeds where progeny are clones of the mother plants. Naturally apomictic modes of reproduction are found in hundreds of plant genera distributed across more than 30 plant families, but are absent in major crop plants. Apomixis has the potential to be a breakthrough technology by allowing the propagation through seed of any genotype, including F1 hybrids. Here, we have summarized the recent progress toward synthetic apomixis, where combining targeted modifications of both the meiosis and fertilization processes leads to the production of clonal seeds at high frequencies. Despite some remaining challenges, the technology has approached a level of maturity that allows its consideration for application in the field.
Collapse
Affiliation(s)
- Alexander Mahlandt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Dipesh Kumar Singh
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany.
| |
Collapse
|
5
|
Niccolò T, Anderson AW, Emidio A. Apomixis: oh, what a tangled web we have! PLANTA 2023; 257:92. [PMID: 37000270 PMCID: PMC10066125 DOI: 10.1007/s00425-023-04124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Apomixis is a complex evolutionary trait with many possible origins. Here we discuss various clues and causes, ultimately proposing a model harmonizing the three working hypotheses on the topic. Asexual reproduction through seeds, i.e., apomixis, is the holy grail of plant biology. Its implementation in modern breeding could be a game-changer for agriculture. It has the potential to generate clonal crops and maintain valuable complex genotypes and their associated heterotic traits without inbreeding depression. The genetic basis and origins of apomixis are still unclear. There are three central hypothesis for the development of apomixis that could be: i) a deviation from the sexual developmental program caused by an asynchronous development, ii) environmentally triggered through epigenetic regulations (a polyphenism of sex), iii) relying on one or more genes/alleles. Because of the ever-increasing complexity of the topic, the path toward a detailed understanding of the mechanisms underlying apomixis remains unclear. Here, we discuss the most recent advances in the evolution perspective of this multifaceted trait. We incorporated our understanding of the effect of endogenous effectors, such as small RNAs, epigenetic regulation, hormonal pathways, protein turnover, and cell wall modification in response to an upside stress. This can be either endogenous (hybridization or polyploidization) or exogenous environmental stress, mainly due to oxidative stress and the corresponding ROS (Reacting Oxygen Species) effectors. Finally, we graphically represented this tangled web.
Collapse
Affiliation(s)
- Terzaroli Niccolò
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Aaron W Anderson
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Fulbright Scholar From Department of Plant Sciences, University of California, Davis, USA
| | - Albertini Emidio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Consorzio Interuniversitario per le Biotecnologie (CIB), Trieste, Italy
| |
Collapse
|
6
|
Calvo‐Baltanás V, De Jaeger‐Braet J, Cher WY, Schönbeck N, Chae E, Schnittger A, Wijnker E. Knock-down of gene expression throughout meiosis and pollen formation by virus-induced gene silencing in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:19-37. [PMID: 35340073 PMCID: PMC9543169 DOI: 10.1111/tpj.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Through the inactivation of genes that act during meiosis it is possible to direct the genetic make-up of plants in subsequent generations and optimize breeding schemes. Offspring may show higher recombination of parental alleles resulting from elevated crossover (CO) incidence, or by omission of meiotic divisions, offspring may become polyploid. However, stable mutations in genes essential for recombination, or for either one of the two meiotic divisions, can have pleiotropic effects on plant morphology and line stability, for instance by causing lower fertility. Therefore, it is often favorable to temporarily change gene expression during meiosis rather than relying on stable null mutants. It was previously shown that virus-induced gene silencing (VIGS) can be used to transiently reduce CO frequencies. We asked if VIGS could also be used to modify other processes throughout meiosis and during pollen formation in Arabidopsis thaliana. Here, we show that VIGS-mediated knock-down of FIGL1, RECQ4A/B, OSD1 and QRT2 can induce (i) an increase in chiasma numbers, (ii) unreduced gametes and (iii) pollen tetrads. We further show that VIGS can target both sexes and different genetic backgrounds and can simultaneously silence different gene copies. The successful knock-down of these genes in A. thaliana suggests that VIGS can be exploited to manipulate any process during or shortly after meiosis. Hence, the transient induction of changes in inheritance patterns can be used as a powerful tool for applied research and biotechnological applications.
Collapse
Affiliation(s)
- Vanesa Calvo‐Baltanás
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6700 AAthe Netherlands
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Joke De Jaeger‐Braet
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Wei Yuan Cher
- A*STAR, Institute of Molecular and Cell Biology (IMCB)61 Biopolis DriveProteos138673Singapore
| | - Nils Schönbeck
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
- UKEMartinistrasse 5220251HamburgGermany
| | - Eunyoung Chae
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Arp Schnittger
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Erik Wijnker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6700 AAthe Netherlands
| |
Collapse
|
7
|
Xu Y, Jia H, Tan C, Wu X, Deng X, Xu Q. Apomixis: genetic basis and controlling genes. HORTICULTURE RESEARCH 2022; 9:uhac150. [PMID: 36072837 PMCID: PMC9437720 DOI: 10.1093/hr/uhac150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 05/12/2023]
Abstract
Apomixis is the phenomenon of clonal reproduction by seed. As apomixis can produce clonal progeny with exactly the same genotype as the maternal plant, it has an important application in genotype fixation and accelerating agricultural breeding strategies. The introduction of apomixis to major crops would bring many benefits to agriculture, including permanent fixation of superior genotypes and simplifying the procedures of hybrid seed production, as well as purification and rejuvenation of crops propagated vegetatively. Although apomixis naturally occurs in more than 400 plant species, it is rare among the major crops. Currently, with better understanding of apomixis, some achievements have been made in synthetic apomixis. However, due to prevailing limitations, there is still a long way to go to achieve large-scale application of apomixis to crop breeding. Here, we compare the developmental features of apomixis and sexual plant reproduction and review the recent identification of apomixis genes, transposons, epigenetic regulation, and genetic events leading to apomixis. We also summarize the possible strategies and potential genes for engineering apomixis into crop plants.
Collapse
Affiliation(s)
- Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huihui Jia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunming Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaomeng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | |
Collapse
|
8
|
Janas AB, Szeląg Z, Musiał K. In search of female sterility causes in the tetraploid and pentaploid cytotype of Pilosella brzovecensis (Asteraceae). JOURNAL OF PLANT RESEARCH 2021; 134:803-810. [PMID: 33813645 PMCID: PMC8245384 DOI: 10.1007/s10265-021-01290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Within the agamic Pilosella complex, apomixis (asexual reproduction through seed) involves apospory, parthenogenesis, and autonomous endosperm development. Observations of reproductive biology in P. brzovecensis throughout four growing seasons in the garden have shown that both tetraploid and pentaploid plants of this species do not produce viable seeds and reproduce exclusively vegetatively by underground stolons. The reasons for the seed development failure were unknown, therefore our research focused on the analysis of reproductive events in the ovules of this taxon. We found that apospory was initiated in the ovules of both cytotypes. Multiple aposporous initial (AI) cells differentiated in close proximity to the megaspore mother cell (MMC) and suppressed megasporogenesis at the stage of early prophase I. However, none of the AI cells was able to further develop into a multi-nucleate aposporous embryo sac (AES) due to the inhibition of mitotic divisions. It was unusual that callose was accumulated in the walls of AI cells and its synthesis was most likely associated with a response to the dysfunction of these cells. Callose is regarded as the isolating factor and its surprising deposition in the ovules of P. brzovecensis may signal disruption of reproductive processes that cause premature termination of the aposporous development pathway and ultimately lead to ovule sterility. The results of our embryological analysis may be the basis for undertaking advanced molecular studies aimed at fully understanding of the causes of female sterility in P. brzovecensis.
Collapse
Affiliation(s)
- Agnieszka Barbara Janas
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland.
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Cracow, Poland.
| | - Zbigniew Szeląg
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Cracow, Poland
| | - Krystyna Musiał
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland
| |
Collapse
|
9
|
Carballo J, Zappacosta D, Marconi G, Gallardo J, Di Marsico M, Gallo CA, Caccamo M, Albertini E, Echenique V. Differential Methylation Patterns in Apomictic vs. Sexual Genotypes of the Diplosporous Grass Eragrostis curvula. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050946. [PMID: 34068493 PMCID: PMC8150776 DOI: 10.3390/plants10050946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 05/05/2023]
Abstract
DNA methylation is an epigenetic mechanism by which a methyl group is added to a cytosine or an adenine. When located in a gene/regulatory sequence it may repress or de-repress genes, depending on the context and species. Eragrostis curvula is an apomictic grass in which facultative genotypes increases the frequency of sexual pistils triggered by epigenetic mechanisms. The aim of the present study was to look for correlations between the reproductive mode and specific methylated genes or genomic regions. To do so, plants with contrasting reproductive modes were investigated through MCSeEd (Methylation Context Sensitive Enzyme ddRad) showing higher levels of DNA methylation in apomictic genotypes. Moreover, an increased proportion of differentially methylated positions over the regulatory regions were observed, suggesting its possible role in regulation of gene expression. Interestingly, the methylation pathway was also found to be self-regulated since two of the main genes (ROS1 and ROS4), involved in de-methylation, were found differentially methylated between genotypes with different reproductive behavior. Moreover, this work allowed us to detect several genes regulated by methylation that were previously found as differentially expressed in the comparisons between apomictic and sexual genotypes, linking DNA methylation to differences in reproductive mode.
Collapse
Affiliation(s)
- Jose Carballo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
| | - Diego Zappacosta
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
| | - Gianpiero Marconi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Jimena Gallardo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
| | - Marco Di Marsico
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Cristian A. Gallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
| | - Mario Caccamo
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK;
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
- Correspondence: (E.A.); (V.E.); Tel.: +39-075-585-6206 (E.A.); +54-291-486-1124 (V.E.)
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
- Correspondence: (E.A.); (V.E.); Tel.: +39-075-585-6206 (E.A.); +54-291-486-1124 (V.E.)
| |
Collapse
|
10
|
Fei X, Lei Y, Qi Y, Wang S, Hu H, Wei A. Small RNA sequencing provides candidate miRNA-target pairs for revealing the mechanism of apomixis in Zanthoxylum bungeanum. BMC PLANT BIOLOGY 2021; 21:178. [PMID: 33849456 PMCID: PMC8042946 DOI: 10.1186/s12870-021-02935-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Apomixis is a form of asexual reproduction that produces offspring without the need for combining male and female gametes, and the offspring have the same genetic makeup as the mother. Therefore, apomixis technology has great application potential in plant breeding. To identify the apomixis types and critical period, embryonic development at different flower development stages of Zanthoxylum bungeanum was observed by cytology. RESULTS The results show that the S3 stage is the critical period of apomixis, during which the nucellar cells develop into an adventitious primordial embryo. Cytological observations showed that the type of apomixis in Z. bungeanum is sporophytic apomixis. Furthermore, miRNA sequencing, miRNA-target gene interaction, dual luciferase reporter assay, and RT-qPCR verification were used to reveal the dynamic regulation of miRNA-target pairs in Z. bungeanum apomixis. The miRNA sequencing identified 96 mature miRNAs, of which 40 were known and 56 were novel. Additionally, 29 differentially expressed miRNAs were screened according to the miRNAs expression levels at the different developmental stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses showed that the target genes of the differentially expressed miRNAs were mainly enriched in plant hormone signal transduction, RNA biosynthetic process, and response to hormone pathways. CONCLUSIONS During the critical period of apomictic embryonic development, miR172c significantly reduces the expression levels of TOE3 and APETALA 2 (AP2) genes, thereby upregulating the expression of the AGAMOUS gene. A molecular regulation model of miRNA-target pairs was constructed based on their interactions and expression patterns to further understand the role of miRNA-target pairs in apomixis. Our data suggest that miR172c may regulates AGAMOUS expression by inhibiting TOE3 in the critical period of apomixis.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yu Lei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Shujie Wang
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| |
Collapse
|
11
|
Henderson SW, Henderson ST, Goetz M, Koltunow AMG. Efficient CRISPR/Cas9-Mediated Knockout of an Endogenous PHYTOENE DESATURASE Gene in T1 Progeny of Apomictic Hieracium Enables New Strategies for Apomixis Gene Identification. Genes (Basel) 2020; 11:E1064. [PMID: 32927657 PMCID: PMC7563859 DOI: 10.3390/genes11091064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Most Hieracium subgenus Pilosella species are self-incompatible. Some undergo facultative apomixis where most seeds form asexually with a maternal genotype. Most embryo sacs develop by mitosis, without meiosis and seeds form without fertilization. Apomixis is controlled by dominant loci where recombination is suppressed. Loci deletion by γ-irradiation results in reversion to sexual reproduction. Targeted mutagenesis of genes at identified loci would facilitate causal gene identification. In this study, the efficacy of CRISPR/Cas9 editing was examined in apomictic Hieracium by targeting mutations in the endogenous PHYTOENE DESATURASE (PDS) gene using Agrobacterium-mediated leaf disk transformation. In three experiments, the expected albino dwarf-lethal phenotype, characteristic of PDS knockout, was evident in 11% of T0 plants, 31.4% were sectorial albino chimeras, and the remainder were green. The chimeric plants flowered. Germinated T1 seeds derived from apomictic reproduction in two chimeric plants were phenotyped and sequenced to identify PDS gene edits. Up to 86% of seeds produced albino seedlings with complete PDS knockout. This was attributed to continuing Cas9-mediated editing in chimeric plants during apomictic seed formation preventing Cas9 segregation from the PDS target. This successful demonstration of efficient CRISPR/Cas9 gene editing in apomictic Hieracium, enabled development of the discussed strategies for future identification of causal apomixis genes.
Collapse
Affiliation(s)
- Sam W. Henderson
- Correspondence: (S.W.H.); (A.M.G.K.); Tel.: +61-407-323-260 (A.M.G.K.)
| | | | | | | |
Collapse
|
12
|
Barcaccia G, Palumbo F, Sgorbati S, Albertini E, Pupilli F. A Reappraisal of the Evolutionary and Developmental Pathway of Apomixis and Its Genetic Control in Angiosperms. Genes (Basel) 2020; 11:E859. [PMID: 32731368 PMCID: PMC7466056 DOI: 10.3390/genes11080859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Apomixis sensu stricto (agamospermy) is asexual reproduction by seed. In angiosperms it represents an easy byway of life cycle renewal through gamete-like cells that give rise to maternal embryos without ploidy reduction (meiosis) and ploidy restitution (syngamy). The origin of apomixis still represents an unsolved problem, as it may be either evolved from sex or the other way around. This review deals with a reappraisal of the origin of apomixis in order to deepen knowledge on such asexual mode of reproduction which seems mainly lacking in the most basal angiosperm orders (i.e., Amborellales, Nymphaeales and Austrobaileyales, also known as ANA-grade), while it clearly occurs in different forms and variants in many unrelated families of monocots and eudicots. Overall findings strengthen the hypothesis that apomixis as a whole may have evolved multiple times in angiosperm evolution following different developmental pathways deviating to different extents from sexuality. Recent developments on the genetic control of apomixis in model species are also presented and adequately discussed in order to shed additional light on the antagonist theories of gain- and loss-of-function over sexuality.
Collapse
Affiliation(s)
- Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals Environment, University of Padova, Campus of Agripolis, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals Environment, University of Padova, Campus of Agripolis, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Sergio Sgorbati
- Department of Environmental and Territory Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy;
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy;
| | - Fulvio Pupilli
- Research Division of Perugia, Institute of Biosciences and Bioresources, National Research Council (CNR), Via Madonna Alta 130, 06128 Perugia, Italy;
| |
Collapse
|
13
|
Fei X, Shi J, Liu Y, Niu J, Wei A. The steps from sexual reproduction to apomixis. PLANTA 2019; 249:1715-1730. [PMID: 30963237 DOI: 10.1007/s00425-019-03113-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
In this paper, an interaction model of apomixis-related genes was constructed to analyze the emergence of apomictic types. It is speculated that apomixis technology will be first implemented in gramineous plants. Apomixis (asexual seed formation) is a phenomenon in which a plant bypasses the most fundamental aspects of sexual reproduction-meiosis and fertilization-to form a viable seed. Plants can form seeds without fertilization, and the seed genotype is consistent with the female parent. The development of apomictic technology would be revolutionary for agriculture and for food production as it would reduce costs and breeding times and also avoid many complications typical of sexual reproduction (e.g. incompatibility barriers) and of vegetative propagation (e.g. viral transfer). The application of apomictic reproductive technology has the potential to revolutionize crop breeding. This article reviews recent advances in apomixis in cytology and molecular biology. The general idea of identifying apomixis was proposed and the process of the emergence of non-fusion types was discussed. To better understand the apomixis mechanism, an apomixis regulatory model was established. At the same time, the realization of apomixis technology is proposed, which provides reference for the research and application of apomixis.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingwei Shi
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinshuang Niu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
14
|
Mignerot L, Avia K, Luthringer R, Lipinska AP, Peters AF, Cock JM, Coelho SM. A key role for sex chromosomes in the regulation of parthenogenesis in the brown alga Ectocarpus. PLoS Genet 2019; 15:e1008211. [PMID: 31194744 PMCID: PMC6592573 DOI: 10.1371/journal.pgen.1008211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/25/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of these shifts remain largely elusive. Here, we used classic quantitative trait analysis, combined with genomic and transcriptomic information to dissect the genetic basis of asexual, parthenogenetic reproduction in the brown alga Ectocarpus. We found that parthenogenesis is controlled by the sex locus, together with two additional autosomal loci, highlighting the key role of the sex chromosome as a major regulator of asexual reproduction. We identify several negative effects of parthenogenesis on male fitness, and different fitness effects of parthenogenetic capacity depending on the life cycle generation. Although allele frequencies in natural populations are currently unknown, we discuss the possibility that parthenogenesis may be under both sex-specific selection and generation/ploidally-antagonistic selection, and/or that the action of fluctuating selection on this trait may contribute to the maintenance of polymorphisms in populations. Importantly, our data provide the first empirical illustration, to our knowledge, of a trade-off between the haploid and diploid stages of the life cycle, where distinct parthenogenesis alleles have opposing effects on sexual and asexual reproduction and may help maintain genetic variation. These types of fitness trade-offs have profound evolutionary implications in natural populations and may structure life history evolution in organisms with haploid-diploid life cycles.
Collapse
Affiliation(s)
- Laure Mignerot
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Komlan Avia
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Remy Luthringer
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka P. Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | | | - J. Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Susana M. Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
15
|
Hojsgaard D, Hörandl E. The Rise of Apomixis in Natural Plant Populations. FRONTIERS IN PLANT SCIENCE 2019; 10:358. [PMID: 31001296 PMCID: PMC6454013 DOI: 10.3389/fpls.2019.00358] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 05/04/2023]
Abstract
Apomixis, the asexual reproduction via seed, has many potential applications for plant breeding by maintaining desirable genotypes over generations. Since most major crops do not express natural apomixis, it is useful to understand the origin and maintenance of apomixis in natural plant systems. Here, we review the state of knowledge on origin, establishment and maintenance of natural apomixis. Many studies suggest that hybridization, either on diploid or polyploid cytotypes, is a major trigger for the formation of unreduced female gametophytes, which represents the first step toward apomixis, and must be combined to parthenogenesis, the development of an unfertilized egg cell. Nevertheless, fertilization of endosperm is still needed for most apomictic plants. Coupling of these three steps appears to be a major constraint for shifts to natural apomixis. Adventitious embryony is another developmental pathway toward apomixis. Establishment of a newly arisen apomictic lineage is often fostered by side-effects of polyploidy. Polyploidy creates an immediate reproductive barrier against the diploid parental and progenitor populations; it can cause a breakdown of genetic self-incompatibility (SI) systems which is needed to establish self-fertility of pseudogamous apomictic lineages; and finally, polyploidy could indirectly help to establish an apomictic cytotype in a novel ecological niche by increasing adaptive potentials of the plants. This step may be followed by a phase of diversification and range expansion, mostly described as geographical parthenogenesis. The utilization of apomixis in crops must consider the potential risks of pollen transfer and introgression into sexual crop fields, which might be overcome by using pollen-sterile or cleistogamous variants. Another risk is the escape into natural vegetation and potential invasiveness of apomictic plants which needs careful management and consideration of ecological conditions.
Collapse
|
16
|
León-Martínez G, Vielle-Calzada JP. Apomixis in flowering plants: Developmental and evolutionary considerations. Curr Top Dev Biol 2019; 131:565-604. [DOI: 10.1016/bs.ctdb.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Vijverberg K, Ozias-Akins P, Schranz ME. Identifying and Engineering Genes for Parthenogenesis in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:128. [PMID: 30838007 PMCID: PMC6389702 DOI: 10.3389/fpls.2019.00128] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/24/2019] [Indexed: 05/16/2023]
Abstract
Parthenogenesis is the spontaneous development of an embryo from an unfertilized egg cell. It naturally occurs in a variety of plant and animal species. In plants, parthenogenesis usually is found in combination with apomeiosis (the omission of meiosis) and pseudogamous or autonomous (with or without central cell fertilization) endosperm formation, together known as apomixis (clonal seed production). The initiation of embryogenesis in vivo and in vitro has high potential in plant breeding methods, particularly for the instant production of homozygous lines from haploid gametes [doubled haploids (DHs)], the maintenance of vigorous F1-hybrids through clonal seed production after combining it with apomeiosis, reverse breeding approaches, and for linking diploid and polyploid gene pools. Because of this large interest, efforts to identify gene(s) for parthenogenesis from natural apomicts have been undertaken by using map-based cloning strategies and comparative gene expression studies. In addition, engineering parthenogenesis in sexual model species has been investigated via mutagenesis and gain-of-function strategies. These efforts have started to pay off, particularly by the isolation of the PsASGR-BabyBoom-Like from apomictic Pennisetum, a gene proven to be transferable to and functional in sexual pearl millet, rice, and maize. This review aims to summarize the current knowledge on parthenogenesis, the possible gene candidates also outside the grasses, and the use of these genes in plant breeding protocols. It shows that parthenogenesis is able to inherit and function independently from apomeiosis and endosperm formation, is expressed and active in the egg cell, and can induce embryogenesis in polyploid, diploid as well as haploid egg cells in plants. It also shows the importance of genes involved in the suppression of transcription and modifications thereof at one hand, and in embryogenesis for which transcription is allowed or artificially overexpressed on the other, in parthenogenetic reproduction. Finally, it emphasizes the importance of functional endosperm to allow for successful embryo growth and viable seed production.
Collapse
Affiliation(s)
- Kitty Vijverberg
- Biosystematics Group, Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Kitty Vijverberg,
| | - Peggy Ozias-Akins
- Department of Horticulture, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton Campus, Tifton, GA, United States
| | - M. Eric Schranz
- Biosystematics Group, Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Bräuning S, Catanach A, Lord JM, Bicknell R, Macknight RC. Comparative transcriptome analysis of the wild-type model apomict Hieracium praealtum and its loss of parthenogenesis (lop) mutant. BMC PLANT BIOLOGY 2018; 18:206. [PMID: 30249189 PMCID: PMC6154955 DOI: 10.1186/s12870-018-1423-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Asexual seed formation (apomixis) has been observed in diverse plant families but is rare in crop plants. The generation of apomictic crops would revolutionize agriculture, as clonal seed production provides a low cost and efficient way to produce hybrid seed. Hieracium (Asteraceae) is a model system for studying the molecular components of gametophytic apomixis (asexual seed reproduction). RESULTS In this study, a reference transcriptome was produced from apomictic Hieracium undergoing the key apomictic events of apomeiosis, parthenogenesis and autonomous endosperm development. In addition, transcriptome sequences from pre-pollination and post-pollination stages were generated from a loss of parthenogenesis (lop) mutant accession that exhibits loss of parthenogenesis and autonomous endosperm development. The transcriptome is composed of 147,632 contigs, 50% of which were annotated with orthologous genes and their probable function. The transcriptome was used to identify transcripts differentially expressed during apomictic and pollination dependent (lop) seed development. Gene Ontology enrichment analysis of differentially expressed transcripts showed that an important difference between apomictic and pollination dependent seed development was the expression of genes relating to epigenetic gene regulation. Genes that mark key developmental stages, i.e. aposporous embryo sac development and seed development, were also identified through their enhanced expression at those stages. CONCLUSION The production of a comprehensive floral reference transcriptome for Hieracium provides a valuable resource for research into the molecular basis of apomixis and the identification of the genes underlying the LOP locus.
Collapse
Affiliation(s)
- Sophia Bräuning
- Department of Biochemistry, University of Otago, 710 Cumberland St, Dunedin, 9016 New Zealand
- Department of Botany, University of Otago, 464 Great King St, Dunedin, 9016 New Zealand
| | - Andrew Catanach
- New Zealand Institute for Plant and Food Research, Gerald St, Lincoln, 7608 New Zealand
| | - Janice M. Lord
- Department of Botany, University of Otago, 464 Great King St, Dunedin, 9016 New Zealand
| | - Ross Bicknell
- New Zealand Institute for Plant and Food Research, Gerald St, Lincoln, 7608 New Zealand
| | - Richard C. Macknight
- Department of Biochemistry, University of Otago, 710 Cumberland St, Dunedin, 9016 New Zealand
| |
Collapse
|
19
|
Barke BH, Daubert M, Hörandl E. Establishment of Apomixis in Diploid F 2 Hybrids and Inheritance of Apospory From F 1 to F 2 Hybrids of the Ranunculus auricomus Complex. FRONTIERS IN PLANT SCIENCE 2018; 9:1111. [PMID: 30123228 PMCID: PMC6085428 DOI: 10.3389/fpls.2018.01111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/10/2018] [Indexed: 05/18/2023]
Abstract
Hybridization and polyploidization play important roles in plant evolution but it is still not fully clarified how these evolutionary forces contribute to the establishment of apomicts. Apomixis, the asexual reproduction via seed formation, comprises several essential alterations in development compared to the sexual pathway. Furthermore, most natural apomicts were found to be polyploids and/or hybrids. The Ranunculus auricomus complex comprises diploid sexual and polyploid apomictic species and represents an excellent model system to gain knowledge on origin and evolution of apomixis in natural plant populations. In this study, the second generation of synthetically produced homoploid (2x) and heteroploid (3x) hybrids derived from sexual R. auricomus species was analyzed for aposporous initial cell formation by DIC microscopy. Complete manifestation of apomixis was determined by measuring single mature seeds by flow cytometric seed screen. Microscopic analysis of the female gametophyte formation indicated spontaneous occurrence of aposporous initial cells and several developmental irregularities. The frequency of apospory was found to depend on dosage effects since a significant increase in apospory was observed, when both F1 parents, rather than just one, were aposporous. Other than in the F1 generation, diploid Ranunculus F2 hybrids formed BIII seeds and fully apomictic seeds. The results indicate that hybridization rather than polyploidization seems to be the functional activator of apomictic reproduction in the synthetic Ranunculus hybrids. In turn, at least two hybrid generations are required to establish apomictic seed formation.
Collapse
Affiliation(s)
- Birthe H. Barke
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
20
|
Abstract
Los paisajes culturales se han construido a lo largo de siglos o milenios como consecuencia de la adaptación de diferentes culturas a la heterogeneidad de los sistemas naturales. Son el resultado de una serie de iniciativas, generalmente colectivas, que dan lugar a la superposición de diferentes elementos que corresponden a distintos momentos históricos. En ambientes de montaña los factores más influyentes en la construcción de paisajes culturales son el escalonamiento altitudinal de los pisos geoecológicos, la diversidad topográfica y topoclimática, el crecimiento demográfico, los acontecimientos históricos (incluyendo la superposición de culturas) y la influencia de los mercados. El éxito de las sociedades montanas dependió de su conocimiento del medio y, especialmente, de la importancia de la gravedad en un ambiente de alta energía, con el fin de controlar la escorrentía y la erosión del suelo. Por eso, las áreas de montaña necesitan una organización social y territorial compleja, para hacer frente a la adversidad provocada por la rudeza del clima y la explotación de laderas pendientes. Naturalmente, este esfuerzo implica un gran gasto de energía en la conservación del paisaje, que puede desmoronarse de manera irreversible por muchas razones, entre ellas la despoblación y el abandono de tierras de cultivo, que conducen a lo que podemos llamar una deconstrucción del paisaje. Esta última representa la pérdida de un patrimonio cultural que, estudiado a fondo, nos enseña mucho acerca de la forma óptima de aprovechar los recursos naturales y también de los errores que se han cometido en el pasado. A pesar de los cambios recientes, quedan aún muchos restos de los paisajes culturales pirenaicos: campos cercados que representan una creciente individualización en la gestión del territorio, laderas aterrazadas, panares en el límite superior del piso montano, y los extensos pastos subalpinos, que representan la eliminación de un espacio forestal para favorecer los movimientos trashumantes.
Collapse
|
21
|
Abstract
This review by Figueiredo and Köhler describes the molecular mechanisms driving seed development. They review the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development. The evolution of seeds defines a remarkable landmark in the history of land plants. A developing seed contains three genetically distinct structures: the embryo, the nourishing tissue, and the seed coat. While fertilization is necessary to initiate seed development in most plant species, apomicts have evolved mechanisms allowing seed formation independently of fertilization. Despite their socio–economical relevance, the molecular mechanisms driving seed development have only recently begun to be understood. Here we review the current knowledge on the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development.
Collapse
Affiliation(s)
- Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| |
Collapse
|
22
|
|
23
|
Ortiz JPA, Revale S, Siena LA, Podio M, Delgado L, Stein J, Leblanc O, Pessino SC. A reference floral transcriptome of sexual and apomictic Paspalum notatum. BMC Genomics 2017; 18:318. [PMID: 28431521 PMCID: PMC5399859 DOI: 10.1186/s12864-017-3700-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Paspalum notatum Flügge is a subtropical grass native to South America, which includes sexual diploid and apomictic polyploid biotypes. In the past decade, a number of apomixis-associated genes were discovered in this species through genetic mapping and differential expression surveys. However, the scarce information on Paspalum sequences available in public databanks limited annotations and functional predictions for these candidates. RESULTS We used a long-read 454/Roche FLX+ sequencing strategy to produce robust reference transcriptome datasets from florets of sexual and apomictic Paspalum notatum genotypes and delivered a list of transcripts showing differential representation in both reproductive types. Raw data originated from floral samples collected from premeiosis to anthesis was assembled in three libraries: i) sexual (SEX), ii) apomictic (APO) and iii) global (SEX + APO). A group of physically-supported Paspalum mRNA and EST sequences matched with high level of confidence to both sexual and apomictic libraries. A preliminary trial allowed discovery of the whole set of putative alleles/paralogs corresponding to 23 previously identified apomixis-associated candidate genes. Moreover, a list of 3,732 transcripts and several co-expression and protein -protein interaction networks associated with apomixis were identified. CONCLUSIONS The use of the 454/Roche FLX+ transcriptome database will allow the detailed characterization of floral alleles/paralogs of apomixis candidate genes identified in prior and future work. Moreover, it was used to reveal additional candidate genes differentially represented in apomictic and sexual flowers. Gene ontology (GO) analyses of this set of transcripts indicated that the main molecular pathways altered in the apomictic genotype correspond to specific biological processes, like biotic and abiotic stress responses, growth, development, cell death and senescence. This data collection will be of interest to the plant reproduction research community and, particularly, to Paspalum breeding projects.
Collapse
Affiliation(s)
- Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Santiago Revale
- Instituto de Agrobiotecnología de Rosario (INDEAR), Ocampo 210 bis, Provincia de Santa Fe, Rosario, 2000, Argentina.,Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Luciana Delgado
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Juliana Stein
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Olivier Leblanc
- UMR 232, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, 34394, France
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina.
| |
Collapse
|
24
|
Henderson ST, Johnson SD, Eichmann J, Koltunow AMG. Genetic analyses of the inheritance and expressivity of autonomous endosperm formation in Hieracium with different modes of embryo sac and seed formation. ANNALS OF BOTANY 2017; 119:1001-1010. [PMID: 28130222 PMCID: PMC5604576 DOI: 10.1093/aob/mcw262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/18/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Apomixis, or asexual seed formation, in polyploid Hieracium subgenus Pilosella species results in clonal progeny with a maternal genotype. An aposporous embryo sac forms mitotically from a somatic cell, without prior meiosis, while embryo and endosperm formation is fertilization independent (autonomous). The latter two developmental components are tightly linked in Hieracium . Recently, two plants, AutE196 and AutE24, were identified from two different crosses. Both form embryo sacs via the sexual route by undergoing meiosis, and embryo development requires fertilization; however, 18 % of embryo sacs can undergo autonomous endosperm (AutE) formation. This study investigated the qualitative and quantitative inheritance of the AutE trait and factors influencing phenotype expressivity. An additional focus was to identify the linkage group bearing the AutE locus in AutE196. METHODS Crosses and cytology were used to examine the inheritance of AutE from AutE24 and AutE196, and to reintroduce apomictic components into AutE plants, thereby changing the ploidy of developing embryo sacs and increasing the dosage of AutE loci. Markers from a Hieracium apomict linkage map were examined within a backcrossed AutE196 mapping population to identify the linkage group containing the AutE196 locus. KEY RESULTS Qualitative autonomous endosperm in the AutE24 line was conferred by a single dominant locus, and the trait was transmitted through male and female gametes in AutE196 and AutE24. Expressivity of the trait did not significantly increase when AutE loci from AutE196 and AutE24 were both present in the progeny, within embryo sacs formed via apospory, or sexually derived embryo sacs with increased ploidy. It remains unclear if these are identical loci. CONCLUSIONS The qualitative trait of autonomous endosperm formation is conferred by single dominant loci in AutE196 and AutE24. High expressivity of autonomous endosperm formation observed in apomicts requires additional genetic factors. Potential candidates may be signals arising from fertilization-independent embryo formation.
Collapse
|
25
|
Abstract
Apomixis, commonly defined as asexual reproduction through seed, is a reproductive trait that occurs in only a few minor crops, but would be highly valuable in major crops. Apomixis results in seed-derived progenies that are genetically identical to their maternal parent. The advantage of apomixis would lie in seed propagation of elite food, feed, and biofuel crops that are heterozygous such as hybrid corn and switchgrass or self-pollinating crops for which no commercial-scale hybrid production system is available. While hybrid plants often outperform parental lines in growth and higher yields, production of hybrid seed is accomplished through carefully controlled, labor intensive crosses. Both small farmers in developing countries who produce their own seed and commercial companies that market hybrid seed could benefit from the establishment of engineered apomixis in plants. In this chapter, we review what has been learned from studying natural apomicts and mutations in sexual plants leading to apomixis-like development, plus discuss how the components of apomixis could be successfully engineered in plants.
Collapse
Affiliation(s)
- Joann A Conner
- Horticulture Department, NESPAL/University of Georgia-Tifton Campus, 2356 Rainwater Road, Tifton, GA, 31794, USA.
| | - Peggy Ozias-Akins
- Horticulture Department, NESPAL/University of Georgia-Tifton Campus, 2356 Rainwater Road, Tifton, GA, 31794, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia-Tifton Campus, Tifton, GA, USA
| |
Collapse
|
26
|
Bicknell R, Catanach A, Hand M, Koltunow A. Seeds of doubt: Mendel's choice of Hieracium to study inheritance, a case of right plant, wrong trait. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2253-2266. [PMID: 27695890 PMCID: PMC5121183 DOI: 10.1007/s00122-016-2788-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/12/2016] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE In this review, we explore Gregor Mendel's hybridization experiments with Hieracium , update current knowledge on apomictic reproduction and describe approaches now being used to develop true-breeding hybrid crops. From our perspective, it is easy to conclude that Gregor Mendel's work on pea was insightful, but his peers clearly did not regard it as being either very convincing or of much importance. One apparent criticism was that his findings only applied to pea. We know from a letter he wrote to Carl von Nägeli, a leading botanist, that he believed he needed to "verify, with other plants, the results obtained with Pisum". For this purpose, Mendel adopted Hieracium subgenus Pilosella, a phenotypically diverse taxon under botanical study at the time. What Mendel could not have known, however, is that the majority of these plants are not sexual plants like pea, but instead are facultatively apomictic. In these forms, the majority of seed arises asexually, and such progeny are, therefore, clones of the maternal parent. Mendel obtained very few hybrids in his Hieracium crosses, yet we calculate that he probably emasculated in excess of 5000 Hieracium florets to even obtain the numbers he did. Despite that effort, he was perplexed by the results, and they ultimately led him to conclude that "the hybrids of Hieracium show a behaviour exactly opposite to those of Pisum". Apomixis is now a topic of intense research interest, and in an ironic twist of history, Hieracium subgenus Pilosella has been developed as a molecular model to study this trait. In this paper, we explore further Mendel's hybridization experiments with Hieracium, update current knowledge on apomictic reproduction and describe approaches now being used to develop true-breeding hybrid crops.
Collapse
Affiliation(s)
- Ross Bicknell
- Plant and Food Research, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Andrew Catanach
- Plant and Food Research, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Melanie Hand
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Anna Koltunow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Private Bag 2, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
27
|
Hand ML, de Vries S, Koltunow AMG. A Comparison of In Vitro and In Vivo Asexual Embryogenesis. Methods Mol Biol 2016; 1359:3-23. [PMID: 26619856 DOI: 10.1007/978-1-4939-3061-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In plants, embryogenesis generally occurs through the sexual process of double fertilization, which involves a haploid sperm cell fusing with a haploid egg cell to ultimately give rise to a diploid embryo. Embryogenesis can also occur asexually in the absence of fertilization, both in vitro and in vivo. Somatic or gametic cells are able to differentiate into embryos in vitro following the application of plant growth regulators or stress treatments. Asexual embryogenesis also occurs naturally in some plant species in vivo, from either ovule cells as part of a process defined as apomixis, or from somatic leaf tissue in other species. In both in vitro and in vivo asexual embryogenesis, the embryo precursor cells must attain an embryogenic fate without the act of fertilization. This review compares the processes of in vitro and in vivo asexual embryogenesis including what is known regarding the genetic and epigenetic regulation of each process, and considers how the precursor cells are able to change fate and adopt an embryogenic pathway.
Collapse
Affiliation(s)
- Melanie L Hand
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture, Waite Campus, Urrbrae, South Australia
| | - Sacco de Vries
- Department of Biochemistry, University of Wageningen, Wageningen, 6703 HA, The Netherlands
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture, Waite Campus, Urrbrae, South Australia.
| |
Collapse
|
28
|
Hands P, Rabiger DS, Koltunow A. Mechanisms of endosperm initiation. PLANT REPRODUCTION 2016; 29:215-25. [PMID: 27450467 PMCID: PMC4978757 DOI: 10.1007/s00497-016-0290-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/14/2016] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Overview of developmental events and signalling during central cell maturation and early endosperm development with a focus on mechanisms of sexual and autonomous endosperm initiation. Endosperm is important for seed viability and global food supply. The mechanisms regulating the developmental transition between Female Gametophyte (FG) maturation and early endosperm development in angiosperms are difficult to study as they occur buried deep within the ovule. Knowledge of the molecular events underlying this developmental window of events has significantly increased with the combined use of mutants, cell specific markers, and plant hormone sensing reporters. Here, we review recent discoveries concerning the developmental events and signalling of FG maturation, fertilization, and endosperm development. We focus on the regulation of the initiation of endosperm development with and without fertilization in Arabidopsis and the apomict Hieracium, comparing this to what is known in monocots where distinct differences in developmental patterning may underlie alternative mechanisms of suppression and initiation. The Polycomb Repressive Complex 2 (PRC2), plant hormones, and transcription factors are iteratively involved in early fertilization-induced endosperm formation in Arabidopsis. Auxin increases and PRC2 complex inactivation can also induce fertilization-independent endosperm proliferation in Arabidopsis. Function of the PRC2 complex member FERTILIZATION-INDEPENDENT ENDOSPERM and two loci AutE and LOP are required for autonomous endosperm development in apomictic Hieracium. A comparative understanding of cues required for early endosperm development will facilitate genetic engineering approaches for the development of resilient seed crops, especially if an option for fertilization-independent endosperm formation was possible to combat stress-induced crop failure.
Collapse
Affiliation(s)
- Philip Hands
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - David S Rabiger
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Anna Koltunow
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
29
|
Płachno BJ, Świątek P, Kozieradzka-Kiszkurno M, Majeský Ľ, Marciniuk J, Stolarczyk P. Are obligatory apomicts invested in the pollen tube transmitting tissue? Comparison of the micropyle ultrastructure between sexual and apomictic dandelions (Asteraceae, Lactuceae). PROTOPLASMA 2015; 252:1325-33. [PMID: 25652809 PMCID: PMC4561075 DOI: 10.1007/s00709-015-0765-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/20/2015] [Indexed: 05/07/2023]
Abstract
With the exception of the sunflower, little information concerning the micropyle ultrastructure of the family Asteraceae is available. The aim of our study was to compare the micropyle structure in amphimictic and apomictic dandelions. Ultrastructural studies using buds and flowers during anthesis have been done on the micropyle of the sexual and apomictic Taraxacum. In all of the species that were examined, the micropylar canal was completely filled with ovule transmitting tissue and the matrix that was produced by these cells. The ovule transmitting tissue was connected to the ovarian transmitting tissue. The micropyle was asymmetrical because the integument epidermis that forms the transmitting tissue was only on the funicular side. There was a cuticle between the obturator cells and epidermal cells on the other side of integument. The micropylar transmitting tissue cells and theirs matrix reached the synergid apex. The cytoplasm of the transmitting tissue cells was especially rich in rough endoplasmic reticulum (ER), dictyosomes, and mitochondria. No major differences were detected between the micropyle structure of the amphimictic and apomictic species; thus, a structural reduction of obturator does not exist. The ovule transmitting tissue is still active in apomictic dandelions despite the presence of the embryo and endosperm. Differences and similarities between the micropyle structure in the Asteraceae that have been studied to date are discussed.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University in Kraków, Kraków, 9 Gronostajowa St., 30-387, Kraków, Poland,
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Apomixis (asexual seed formation) is the result of a plant gaining the ability to bypass the most fundamental aspects of sexual reproduction: meiosis and fertilization. Without the need for male fertilization, the resulting seed germinates a plant that develops as a maternal clone. This dramatic shift in reproductive process has been documented in many flowering plant species, although no major seed crops have been shown to be capable of apomixis. The ability to generate maternal clones and therefore rapidly fix desirable genotypes in crop species could accelerate agricultural breeding strategies. The potential of apomixis as a next-generation breeding technology has contributed to increasing interest in the mechanisms controlling apomixis. In this review, we discuss the progress made toward understanding the genetic and molecular control of apomixis. Research is currently focused on two fronts. One aims to identify and characterize genes causing apomixis in apomictic species that have been developed as model species. The other aims to engineer or switch the sexual seed formation pathway in non-apomictic species, to one that mimics apomixis. Here we describe the major apomictic mechanisms and update knowledge concerning the loci that control them, in addition to presenting candidate genes that may be used as tools for switching the sexual pathway to an apomictic mode of reproduction in crops.
Collapse
|
31
|
Shirasawa K, Hand ML, Henderson ST, Okada T, Johnson SD, Taylor JM, Spriggs A, Siddons H, Hirakawa H, Isobe S, Tabata S, Koltunow AMG. A reference genetic linkage map of apomictic Hieracium species based on expressed markers derived from developing ovule transcripts. ANNALS OF BOTANY 2015; 115:567-80. [PMID: 25538115 PMCID: PMC4343286 DOI: 10.1093/aob/mcu249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Apomixis in plants generates clonal progeny with a maternal genotype through asexual seed formation. Hieracium subgenus Pilosella (Asteraceae) contains polyploid, highly heterozygous apomictic and sexual species. Within apomictic Hieracium, dominant genetic loci independently regulate the qualitative developmental components of apomixis. In H. praealtum, LOSS OF APOMEIOSIS (LOA) enables formation of embryo sacs without meiosis and LOSS OF PARTHENOGENESIS (LOP) enables fertilization-independent seed formation. A locus required for fertilization-independent endosperm formation (AutE) has been identified in H. piloselloides. Additional quantitative loci appear to influence the penetrance of the qualitative loci, although the controlling genes remain unknown. This study aimed to develop the first genetic linkage maps for sexual and apomictic Hieracium species using simple sequence repeat (SSR) markers derived from expressed transcripts within the developing ovaries. METHODS RNA from microdissected Hieracium ovule cell types and ovaries was sequenced and SSRs were identified. Two different F1 mapping populations were created to overcome difficulties associated with genome complexity and asexual reproduction. SSR markers were analysed within each mapping population to generate draft linkage maps for apomictic and sexual Hieracium species. KEY RESULTS A collection of 14 684 Hieracium expressed SSR markers were developed and linkage maps were constructed for Hieracium species using a subset of the SSR markers. Both the LOA and LOP loci were successfully assigned to linkage groups; however, AutE could not be mapped using the current populations. Comparisons with lettuce (Lactuca sativa) revealed partial macrosynteny between the two Asteraceae species. CONCLUSIONS A collection of SSR markers and draft linkage maps were developed for two apomictic and one sexual Hieracium species. These maps will support cloning of controlling genes at LOA and LOP loci in Hieracium and should also assist with identification of quantitative loci that affect the expressivity of apomixis. Future work will focus on mapping AutE using alternative populations.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Melanie L Hand
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Steven T Henderson
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Takashi Okada
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Susan D Johnson
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Jennifer M Taylor
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Andrew Spriggs
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Hayley Siddons
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Anna M G Koltunow
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| |
Collapse
|
32
|
Vašut RJ, Vijverberg K, van Dijk PJ, de Jong H. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region. Genome 2015; 57:609-20. [PMID: 25760668 DOI: 10.1139/gen-2014-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is discussed.
Collapse
Affiliation(s)
- Radim J Vašut
- Laboratory of Genetics, Wageningen University and Research Centre, P.O. Box 309, NL-6700 AH Wageningen, the Netherlands
| | | | | | | |
Collapse
|
33
|
Hand ML, Vít P, Krahulcová A, Johnson SD, Oelkers K, Siddons H, Chrtek J, Fehrer J, Koltunow AMG. Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations. Heredity (Edinb) 2015; 114:17-26. [PMID: 25026970 PMCID: PMC4815591 DOI: 10.1038/hdy.2014.61] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 11/09/2022] Open
Abstract
The Hieracium and Pilosella (Lactuceae, Asteraceae) genera of closely related hawkweeds contain species with two different modes of gametophytic apomixis (asexual seed formation). Both genera contain polyploid species, and in wild populations, sexual and apomictic species co-exist. Apomixis is known to co-exist with sexuality in apomictic Pilosella individuals, however, apomictic Hieracium have been regarded as obligate apomicts. Here, a developmental analysis of apomixis within 16 Hieracium species revealed meiosis and megaspore tetrad formation in 1 to 7% of ovules, for the first time indicating residual sexuality in this genus. Molecular markers linked to the two independent, dominant loci LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) controlling apomixis in Pilosella piloselloides subsp. praealta were screened across 20 phenotyped Hieracium individuals from natural populations, and 65 phenotyped Pilosella individuals from natural and experimental cross populations, to examine their conservation, inheritance and association with reproductive modes. All of the tested LOA and LOP-linked markers were absent in the 20 Hieracium samples irrespective of their reproductive mode. Within Pilosella, LOA and LOP-linked markers were essentially absent within the sexual plants, although they were not conserved in all apomictic individuals. Both loci appeared to be inherited independently, and evidence for additional genetic factors influencing quantitative expression of LOA and LOP was obtained. Collectively, these data suggest independent evolution of apomixis in Hieracium and Pilosella and are discussed with respect to current knowledge of the evolution of apomixis.
Collapse
Affiliation(s)
- M L Hand
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Waite Campus, Glen Osmond, SA, Australia
| | - P Vít
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, Průhonice, Czech Republic
| | - A Krahulcová
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, Průhonice, Czech Republic
| | - S D Johnson
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Waite Campus, Glen Osmond, SA, Australia
| | - K Oelkers
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Waite Campus, Glen Osmond, SA, Australia
| | - H Siddons
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Waite Campus, Glen Osmond, SA, Australia
| | - J Chrtek
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, Czech Republic
| | - J Fehrer
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, Průhonice, Czech Republic
| | - A M G Koltunow
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Waite Campus, Glen Osmond, SA, Australia
| |
Collapse
|
34
|
Hojsgaard D, Klatt S, Baier R, Carman JG, Hörandl E. Taxonomy and Biogeography of Apomixis in Angiosperms and Associated Biodiversity Characteristics. CRITICAL REVIEWS IN PLANT SCIENCES 2014; 33:414-427. [PMID: 27019547 PMCID: PMC4786830 DOI: 10.1080/07352689.2014.898488] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Apomixis in angiosperms is asexual reproduction from seed. Its importance to angiospermous evolution and biodiversity has been difficult to assess mainly because of insufficient taxonomic documentation. Thus, we assembled literature reporting apomixis occurrences among angiosperms and transferred the information to an internet database (http://www.apomixis.uni-goettingen.de). We then searched for correlations between apomixis occurrences and well-established measures of taxonomic diversity and biogeography. Apomixis was found to be taxonomically widespread with no clear tendency to specific groups and to occur with sexuality at all taxonomic levels. Adventitious embryony was the most frequent form (148 genera) followed by apospory (110) and diplospory (68). All three forms are phylogenetically scattered, but this scattering is strongly associated with measures of biodiversity. Across apomictic-containing orders and families, numbers of apomict-containing genera were positively correlated with total numbers of genera. In general, apomict-containing orders, families, and subfamilies of Asteraceae, Poaceae, and Orchidaceae were larger, i.e., they possessed more families or genera, than non-apomict-containing orders, families or subfamilies. Furthermore, many apomict-containing genera were found to be highly cosmopolitan. In this respect, 62% occupy multiple geographic zones. Numbers of genera containing sporophytic or gametophytic apomicts decreased from the tropics to the arctic, a trend that parallels general biodiversity. While angiosperms appear to be predisposed to shift from sex to apomixis, there is also evidence of reversions to sexuality. Such reversions may result from genetic or epigenetic destabilization events accompanying hybridization, polyploidy, or other cytogenetic alterations. Because of increased within-plant genetic and genomic heterogeneity, range expansions and diversifications at the species and genus levels may occur more rapidly upon reversion to sexuality. The significantly-enriched representations of apomicts among highly diverse and geographically-extensive taxa, from genera to orders, support this conclusion.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Georg August University Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Göttingen, Germany
| | - Simone Klatt
- Georg August University Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Göttingen, Germany
| | - Roland Baier
- Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), Arbeitsgruppe Anwendungs- und Informationssysteme, Göttingen, Germany
| | - John G. Carman
- Plants, Soils and Climate Department, Utah State University, Logan, UT, USA
| | - Elvira Hörandl
- Georg August University Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Göttingen, Germany
| |
Collapse
|
35
|
Kotani Y, Henderson ST, Suzuki G, Johnson SD, Okada T, Siddons H, Mukai Y, Koltunow AMG. The LOSS OF APOMEIOSIS (LOA) locus in Hieracium praealtum can function independently of the associated large-scale repetitive chromosomal structure. THE NEW PHYTOLOGIST 2014; 201:973-981. [PMID: 24400904 DOI: 10.1111/nph.12574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/26/2013] [Indexed: 05/14/2023]
Abstract
Apomixis or asexual seed formation in Hieracium praealtum (Asteraceae) is controlled by two independent dominant loci. One of these, the LOSS OF APOMEIOSIS (LOA) locus, controls apomixis initiation, mitotic embryo sac formation (apospory) and suppression of the sexual pathway. The LOA locus is found near the end of a hemizygous chromosome surrounded by extensive repeats extending along the chromosome arm. Similar apomixis-carrying chromosome structures have been found in some apomictic grasses, suggesting that the extensive repetitive sequences may be functionally relevant to apomixis. Fluorescence in situ hybridization (FISH) was used to examine chromosomes of apomeiosis deletion mutants and rare recombinants in the critical LOA region arising from a cross between sexual Hieracium pilosella and apomictic H. praealtum. The combined analyses of aposporous and nonaposporous recombinant progeny and chromosomal karyotypes were used to determine that the functional LOA locus can be genetically separated from the very extensive repeat regions found on the LOA-carrying chromosome. The large-scale repetitive sequences associated with the LOA locus in H. praealtum are not essential for apospory or suppression of sexual megasporogenesis (female meiosis).
Collapse
Affiliation(s)
- Yoshiko Kotani
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Steven T Henderson
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Go Suzuki
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Susan D Johnson
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Takashi Okada
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Hayley Siddons
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Yasuhiko Mukai
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| |
Collapse
|
36
|
Weijers D. Note from editor-in-chief. PLANT REPRODUCTION 2013; 26:63. [PMID: 23640271 DOI: 10.1007/s00497-013-0216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|