1
|
Gu M, Pang Z. Luteolin inhibits inflammation and M1 macrophage polarization in the treatment of Pseudomonas aeruginosa-induced acute pneumonia through suppressing EGFR/PI3K/AKT/NF-κB and EGFR/ERK/AP-1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156663. [PMID: 40133026 DOI: 10.1016/j.phymed.2025.156663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND The opportunistic pathogen Pseudomonas aeruginosa primarily causes infections in immunocompromised individuals. Luteolin, a natural flavonoid, is widely present in plants, which exerts various pharmacological activities, including anti-inflammatory and antimicrobial activities. PURPOSE This study aimed to explore the therapeutic efficacy of luteolin and the underlying molecular mechanisms in treating the P. aeruginosa-induced acute pneumonia. METHODS Network pharmacology was utilized to identify the core targets of luteolin for treating acute P. aeruginosa pneumonia. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to dissect the potential effects of luteolin and the involved signaling pathways. Surface plasmon resonance (SPR) assay and molecular docking were employed for studying the binding affinities of luteolin with the key targets. Furthermore, we applied a mouse model of bacterial pneumonia for assessing the therapeutic effects of luteolin in vivo, and an in vitro infection model for specifically investigating the effects of luteolin on macrophages as well as the underlying mechanisms upon P. aeruginosa infection. RESULTS Network pharmacology identified TNF, IL-6, EGFR and AKT1 as the key targets of luteolin for treating acute P. aeruginosa pneumonia. Moreover, as revealed by GO and KEGG enrichment analysis, EGFR, MAPK and PI3K/AKT pathways were the potential pathways regulated the P. aeruginosa-induced inflammatory response. According to the in vivo results, luteolin effectively mitigated the P. aeruginosa-induced acute lung injury through reducing the pulmonary permeability, neutrophil infiltration, proinflammatory cytokine production (IL-1β, IL-6, TNF and MIP-2) and bacterial burden in lung tissues, which led to increased survival rate of mice. Furthermore, the luteolin-treated mice had diminished EGFR, PI3K, AKT, IκBα, NF-κB p65, ERK, c-Jun and c-Fos phosphorylation, down-regulated M1 macrophage marker levels (iNOS, CD86 and IL-1β) but up-regulated M2 macrophage marker levels (Ym1, CD206 and Arg1) in lung tissues. Consistently, the luteolin-pretreated macrophages exhibited reduced phosphorylation of these regulatory proteins, diminished proinflammatory cytokine production, and down-regulated expression of M1 macrophage markers, but up-regulated expression of IL-10 and M2 macrophage markers. CONCLUSION luteolin effectively suppressed the inflammatory responses and M1 macrophage polarization through inhibiting EGFR/PI3K/AKT/NF-κB and EGFR/ERK/AP-1 signaling pathways in the treatment of acute P. aeruginosa pneumonia. This study suggests that luteolin could be a promising candidate for development as a therapeutic agent for acute bacterial pneumonia.
Collapse
Affiliation(s)
- Mengdi Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Mu S, Yan D, Tang J, Zheng Z. Predicting Mortality in Sepsis-Associated Acute Respiratory Distress Syndrome: A Machine Learning Approach Using the MIMIC-III Database. J Intensive Care Med 2025; 40:294-302. [PMID: 39234770 DOI: 10.1177/08850666241281060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
BackgroundTo develop and validate a mortality prediction model for patients with sepsis-associated Acute Respiratory Distress Syndrome (ARDS).MethodsThis retrospective cohort study included 2466 patients diagnosed with sepsis and ARDS within 24 h of ICU admission. Demographic, clinical, and laboratory parameters were extracted from Medical Information Mart for Intensive Care III (MIMIC-III) database. Feature selection was performed using the Boruta algorithm, followed by the construction of seven ML models: logistic regression, Naive Bayes, k-nearest neighbor, support vector machine, decision tree, Random Forest, and extreme gradient boosting. Model performance was evaluated using the area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, positive predictive value, and negative predictive value.ResultsThe study identified 24 variables significantly associated with mortality. The optimal ML model, a Random Forest model, demonstrated an AUC of 0.8015 in the test set, with high accuracy and specificity. The model highlighted the importance of blood urea nitrogen, age, urine output, Simplified Acute Physiology Score II, and albumin levels in predicting mortality.ConclusionsThe model's superior predictive performance underscores the potential for integrating advanced analytics into clinical decision-making processes, potentially improving patient outcomes and resource allocation in critical care settings.
Collapse
Affiliation(s)
- Shengtian Mu
- Department of Intensive Care Unit, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Dongli Yan
- Department of Intensive Care Unit, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jie Tang
- Department of Intensive Care Unit, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Zhen Zheng
- Department of Intensive Care Unit, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
3
|
Liu C, Zhang S, Zhang W, Wang J. Detection of serum FOXM1 and IGF2 in patients with ARDS and their correlation with disease and prognosis. Open Med (Wars) 2024; 19:20241093. [PMID: 39711843 PMCID: PMC11662948 DOI: 10.1515/med-2024-1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 12/24/2024] Open
Abstract
Objective To investigate the relationship between the expression levels of serum forkhead box protein M1(FOXM1) and insulin-like growth factor 2 (IGF2) mRNA in patients with acute respiratory distress syndrome (ARDS) condition and prognosis. Methods Ninety patients with ARDS admitted to our hospital were regarded as the ARDS group, according to the prognosis, they were grouped into death group (n = 64) and survival group (n = 126); the control group consisted of 190 healthy individuals. Results Compared with the control group, the level of serum FOXM1 mRNA in ARDS group was obviously lower, and the level of IGF2 mRNA was higher. The serum IGF2 mRNA, serum creatinine, inhaled oxygen concentration (FiO2), and mechanical ventilation time in the death group were higher than those in the control group, and the arterial oxygen partial pressure (PaO2), FOXM1 mRNA, and oxygenation index (PaO2/FiO2) were lower than those in control group. Logistic regression analysis indicated that FOXM1, IGF2, and PaO2/FiO2 were significant factors influencing the prognosis and mortality in ARDS patients. Correlation analysis showed that there was a negative correlation between serum FOXM1 and IGF2 mRNA levels in patients with ARDS. Conclusion Serum FOXM1 and IGF2 mRNA in patients with ARDS are correlated with the severity and prognosis of ARDS.
Collapse
Affiliation(s)
- Chao Liu
- Department of Intensive Care Unit, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, China
| | - Shengrui Zhang
- Department of Intensive Care Unit, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, China
| | - Weiwei Zhang
- Department of Intensive Care Unit, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, China
| | - Jinfeng Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
4
|
Zhang L, Zhu W, Zhang C. Exploring the Effect and Mechanism of DaYuan Yin Against Acute Lung Injury by Network Pharmacology, Molecular Docking, and Experimental Validation. Drug Des Devel Ther 2024; 18:5541-5561. [PMID: 39650849 PMCID: PMC11625185 DOI: 10.2147/dddt.s491521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024] Open
Abstract
Background DaYuan Yin (DYY), a traditional Chinese medicine for lung diseases, requires further study to understand how it improves acute lung injury (ALI). This study seeks to elucidate the material basis and molecular mechanisms underlying the treatment of ALI with DYY through network pharmacology, molecular docking, and experimental validation. Methods DYY's active components and targets were identified using TCMSP and UHPLC-MS/MS, and a herb-component-target network was created with Cytoscape 3.7.2. ALI target genes were sourced from GeneCards, DisGeNET, and DrugBank. A PPI network was built, with core targets analyzed through GO and KEGG enrichment via Metscape. The therapeutic effects and mechanisms of DYY on LPS-induced ALI in rats were explored, and molecular docking evaluated the interactions between Nrf2, HO-1, TLR4, and the components. Results The study identified 95 active compounds, 234 therapeutic targets, and 2529 ALI-related genes, with 111 shared targets between DYY and ALI. KEGG analysis indicates that the PI3K-AKT, MAPK, and oxidative stress pathways are associated with DYY's anti-ALI effects. Network pharmacology and UHPLC-MS/MS analysis revealed active ingredients like quercetin, Magnolol, and Wogonin. Compared with the model group, DYY reduced the lung dry-wet ratio (W/D) of ALI rats from (5.31 ± 0.51) to (4.47 ± 0.73)(P < 0.05). Meanwhile, the contents of IL-6 and TNF-α in bronchoalveolar lavage fluid (BALF) and MDA, NO and ROS in lung tissue were also significantly decreased. Notably, DYY enhances UCP2 mRNA expression, boosts Nrf2 and HO-1 expression, and inhibits TLR4-mediated pro-inflammatory mediators. Molecular docking analysis showed that the main components of DYY had strong binding ability with HO-1. Conclusion DYY can alleviate inflammation, oxidative stress, and ALI-related changes by targeting the Nrf2/HO-1 mediated TLR4 pathway, providing insights for developing effective ALI treatments.
Collapse
Affiliation(s)
- Lei Zhang
- Pharmacy Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, People’s Republic of China
| | - Wei Zhu
- Pharmacy Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, People’s Republic of China
| | - Cong Zhang
- Pharmacy Department, Kunshan Rehabilitation Hospital, Kunshan, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Millar JE, Reddy K, Bos LDJ. Future Directions in Therapies for Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:943-951. [PMID: 39443010 DOI: 10.1016/j.ccm.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is caused by a complex interplay among hyperinflammation, endothelial dysfunction, and alveolar epithelial injury. Targeted treatments toward the underlying pathways have been unsuccessful in unselected patient populations. The first reliable biological subphenotypes reflective of these biological disease states have been identified in the past decade. Subphenotype targeted intervention studies are needed to advance the pharmacologic treatment of ARDS.
Collapse
Affiliation(s)
- Jonathan E Millar
- Baillie-Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, The Roslin Institute, Easter Bush Campus, Midlothian, Edinburgh EH25 9RG, UK; Department of Critical Care, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kiran Reddy
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, University Road, Belfast BT7 1NN, UK
| | - Lieuwe D J Bos
- Intensive Care Department, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
6
|
Mikolka P, Kosutova P, Kolomaznik M, Nemcova N, Hanusrichterova J, Curstedt T, Johansson J, Calkovska A. The Synthetic Surfactant CHF5633 Restores Lung Function and Lung Architecture in Severe Acute Respiratory Distress Syndrome in Adult Rabbits. Lung 2024; 202:299-315. [PMID: 38684519 PMCID: PMC11143048 DOI: 10.1007/s00408-024-00689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults. In ARDS extensive inflammation and leakage of fluid into the alveoli lead to dysregulation of pulmonary surfactant metabolism and function. Altered surfactant synthesis, secretion, and breakdown contribute to the clinical features of decreased lung compliance and alveolar collapse. Lung function in ARDS could potentially be restored with surfactant replacement therapy, and synthetic surfactants with modified peptide analogues may better withstand inactivation in ARDS alveoli than natural surfactants. METHODS This study aimed to investigate the activity in vitro and the bolus effect (200 mg phospholipids/kg) of synthetic surfactant CHF5633 with analogues of SP-B and SP-C, or natural surfactant Poractant alfa (Curosurf®, both preparations Chiesi Farmaceutici S.p.A.) in a severe ARDS model (the ratio of partial pressure arterial oxygen and fraction of inspired oxygen, P/F ratio ≤ 13.3 kPa) induced by hydrochloric acid instillation followed by injurious ventilation in adult New Zealand rabbits. The animals were ventilated for 4 h after surfactant treatment and the respiratory parameters, histological appearance of lung parenchyma and levels of inflammation, oxidative stress, surfactant dysfunction, and endothelial damage were evaluated. RESULTS Both surfactant preparations yielded comparable improvements in lung function parameters, reductions in lung injury score, pro-inflammatory cytokines levels, and lung edema formation compared to untreated controls. CONCLUSIONS This study indicates that surfactant replacement therapy with CHF5633 improves lung function and lung architecture, and attenuates inflammation in severe ARDS in adult rabbits similarly to Poractant alfa. Clinical trials have so far not yielded conclusive results, but exogenous surfactant may be a valid supportive treatment for patients with ARDS given its anti-inflammatory and lung-protective effects.
Collapse
Affiliation(s)
- Pavol Mikolka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Petra Kosutova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Maros Kolomaznik
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Nikolett Nemcova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juliana Hanusrichterova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
7
|
Park H, Lee CH. The Impact of Pulmonary Disorders on Neurological Health (Lung-Brain Axis). Immune Netw 2024; 24:e20. [PMID: 38974208 PMCID: PMC11224666 DOI: 10.4110/in.2024.24.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
The brain and lungs, vital organs in the body, play essential roles in maintaining overall well-being and survival. These organs interact through complex and sophisticated bi-directional pathways known as the 'lung-brain axis', facilitated by their close proximity and neural connections. Numerous studies have underscored the mediation of the lung-brain axis by inflammatory responses and hypoxia-induced damage, which are pivotal to the progression of both pulmonary and neurological diseases. This review aims to delve into how pulmonary diseases, including acute/chronic airway diseases and pulmonary conditions, can instigate neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. Additionally, we highlight the emerging research on the lung microbiome which, drawing parallels between the gut and lungs in terms of microbiome contents, may play a significant role in modulating brain health. Ultimately, this review paves the way for exciting avenues of future research and therapeutics in addressing respiratory and neurological diseases.
Collapse
Affiliation(s)
- Hongryeol Park
- Department of Tissue Morphogenesis, Max-Planck Institute for Molecular Biomedicine, Muenster 48149, Germany
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
8
|
Chen M, Zhang J, Huang H, Wang Z, Gao Y, Liu J. miRNA-206-3p alleviates LPS-induced acute lung injury via inhibiting inflammation and pyroptosis through modulating TLR4/NF-κB/NLRP3 pathway. Sci Rep 2024; 14:11860. [PMID: 38789583 PMCID: PMC11126654 DOI: 10.1038/s41598-024-62733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Acute lung injury (ALI) is life-threatening. MicroRNAs (miRNAs) are often abnormally expressed in inflammatory diseases and are closely associated with ALI. This study investigates whether miRNA-206-3p attenuates pyroptosis in ALI and elucidates the underlying molecular mechanisms. ALI mouse and cell models were established through lipopolysaccharide (LPS) treatment for 24 h. Subsequently, the models were evaluated based on ultrasonography, the lung tissue wet/dry (W/D) ratio, pathological section assessment, electron microscopy, and western blotting. Pyroptosis in RAW264.7 cells was then assessed via electron microscopy, immunofluorescence, and western blotting. Additionally, the regulatory relationship between miRNA-206-3p and the Toll-like receptor (TLR)4/nuclear factor (NF)-κB/Nod-like receptor protein-3 (NLRP3) pathway was verified. Finally, luciferase reporter gene and RNA pull-down assays were used to verify the targeting relationship between miRNA-206-3p and TLR4. miRNA206-3p levels are significantly decreased in the LPS-induced ALI model. Overexpression of miRNA-206-3p improves ALI, manifested as improved lung ultrasound, improved pathological changes of lung tissue, reduced W/D ratio of lung tissue, release of inflammatory factors in lung tissue, and reduced pyroptosis. Furthermore, overexpression of miRNA-206-3p contributed to reversing the ALI-promoting effect of LPS by hindering TLR4, myeloid differentiation primary response 88 (MyD88), NF-κB, and NLRP3 expression. In fact, miRNA-206-3p binds directly to TLR4. In conclusion, miRNA-206-3p alleviates LPS-induced ALI by inhibiting inflammation and pyroptosis via TLR4/NF-κB/NLRP3 pathway modulation.
Collapse
Affiliation(s)
- Mengchi Chen
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Jingfeng Zhang
- Health Management Center of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, Guangdong, China
| | - Hongyuan Huang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Zichen Wang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yong Gao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Jianghua Liu
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China.
- School of Nursing, Guangxi Medical University, Nanning, 530000, Guangxi, China.
| |
Collapse
|
9
|
Valda Toro PL, Willmore A, Wu NE, Delucchi KL, Jauregui A, Sinha P, Liu KD, Hendrickson CM, Sarma A, Neyton LPA, Leligdowicz A, Langelier CR, Zhuo H, Jones C, Kangelaris KN, Gomez AD, Matthay MA, Calfee CS. Rapidly improving ARDS differs clinically and biologically from persistent ARDS. Crit Care 2024; 28:132. [PMID: 38649920 PMCID: PMC11034037 DOI: 10.1186/s13054-024-04883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Rapidly improving acute respiratory distress syndrome (RIARDS) is an increasingly appreciated subgroup of ARDS in which hypoxemia improves within 24 h after initiation of mechanical ventilation. Detailed clinical and biological features of RIARDS have not been clearly defined, and it is unknown whether RIARDS is associated with the hypoinflammatory or hyperinflammatory phenotype of ARDS. The purpose of this study was to define the clinical and biological features of RIARDS and its association with inflammatory subphenotypes. METHODS We analyzed data from 215 patients who met Berlin criteria for ARDS (endotracheally intubated) and were enrolled in a prospective observational cohort conducted at two sites, one tertiary care center and one urban safety net hospital. RIARDS was defined according to previous studies as improvement of hypoxemia defined as (i) PaO2:FiO2 > 300 or (ii) SpO2: FiO2 > 315 on the day following diagnosis of ARDS (day 2) or (iii) unassisted breathing by day 2 and for the next 48 h (defined as absence of endotracheal intubation on day 2 through day 4). Plasma biomarkers were measured on samples collected on the day of study enrollment, and ARDS phenotypes were allocated as previously described. RESULTS RIARDS accounted for 21% of all ARDS participants. Patients with RIARDS had better clinical outcomes compared to those with persistent ARDS, with lower hospital mortality (13% vs. 57%; p value < 0.001) and more ICU-free days (median 24 vs. 0; p value < 0.001). Plasma levels of interleukin-6, interleukin-8, and plasminogen activator inhibitor-1 were significantly lower among patients with RIARDS. The hypoinflammatory phenotype of ARDS was more common among patients with RIARDS (78% vs. 51% in persistent ARDS; p value = 0.001). CONCLUSIONS This study identifies a high prevalence of RIARDS in a multicenter observational cohort and confirms the more benign clinical course of these patients. We report the novel finding that RIARDS is characterized by lower concentrations of plasma biomarkers of inflammation compared to persistent ARDS, and that hypoinflammatory ARDS is more prevalent among patients with RIARDS. Identification and exclusion of RIARDS could potentially improve prognostic and predictive enrichment in clinical trials.
Collapse
Affiliation(s)
- Patricia L Valda Toro
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Internal Medicine, University of California San Francisco, San Francisco, USA.
| | - Andrew Willmore
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nelson E Wu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin L Delucchi
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Alejandra Jauregui
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Pratik Sinha
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kathleen D Liu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA
| | - Carolyn M Hendrickson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA
| | - Aartik Sarma
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lucile P A Neyton
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Hanjing Zhuo
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chayse Jones
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kirsten N Kangelaris
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Antonio D Gomez
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A Matthay
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Recchia Luciani G, Barilli A, Visigalli R, Sala R, Dall’Asta V, Rotoli BM. IRF1 Mediates Growth Arrest and the Induction of a Secretory Phenotype in Alveolar Epithelial Cells in Response to Inflammatory Cytokines IFNγ/TNFα. Int J Mol Sci 2024; 25:3463. [PMID: 38542436 PMCID: PMC10970306 DOI: 10.3390/ijms25063463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
In COVID-19, cytokine release syndrome can cause severe lung tissue damage leading to acute respiratory distress syndrome (ARDS). Here, we address the effects of IFNγ, TNFα, IL-1β and IL-6 on the growth arrest of alveolar A549 cells, focusing on the role of the IFN regulatory factor 1 (IRF1) transcription factor. The efficacy of JAK1/2 inhibitor baricitinib has also been tested. A549 WT and IRF1 KO cells were exposed to cytokines for up to 72 h. Cell proliferation and death were evaluated with the resazurin assay, analysis of cell cycle and cycle-regulator proteins, LDH release and Annexin-V positivity; the induction of senescence and senescence-associated secretory phenotype (SASP) was evaluated through β-galactosidase staining and the quantitation of secreted inflammatory mediators. While IL-1 and IL-6 proved ineffective, IFNγ plus TNFα caused a proliferative arrest in A549 WT cells with alterations in cell morphology, along with the acquisition of a secretory phenotype. These effects were STAT and IRF1-dependent since they were prevented by baricitinib and much less evident in IRF1 KO than in WT cells. In alveolar cells, STATs/IRF1 axis is required for cytokine-induced proliferative arrest and the induction of a secretory phenotype. Hence, baricitininb is a promising therapeutic strategy for the attenuation of senescence-associated inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (R.S.); (B.M.R.)
| | | |
Collapse
|
11
|
Han L, Wang S, Ma J, Zhao Z. Expression and significance of serum KL-6 in patients with acute respiratory distress syndrome. J Thorac Dis 2023; 15:6988-6995. [PMID: 38249915 PMCID: PMC10797398 DOI: 10.21037/jtd-23-1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Background Acute respiratory distress syndrome (ARDS) is a common and serious complication that occurs in the ICU. the determination of early ARDS indicators, along with timely treatment, can potentially diminish medical costs and reduce ARDS-related mortality. In this report, we evaluated the clinical significance of circulating Krebs von den Lungen-6 (KL-6) content among patients with intra- and extrapulmonary ARDS to investigate the clinical significance of serum KL-6. Methods Patients who met the ARDS Berlin criteria and were hospitalized in the intensive care unit of the China-Japan Union Hospital of Jilin University between September 2021 and September 2022 were recruited for analysis. ARDS patients were divided into an intrapulmonary ARDS group (n=23) and an extrapulmonary ARDS group (n=27) based on their primary diagnosis. Baseline demographic data, including age and sex, and clinical data, including underlying diseases and mortality, of the two groups were collected and analyzed. Peripheral venous blood was collected on Day 0 (baseline), Day 1, Day 3, and Day 7. The kinetic levels of serum KL-6 were compared between patients who survived and those who died within one week of ARDS diagnosis. The prognosis, survival times, and status of patients within 28 days after diagnosis were evaluated. Results In the intrapulmonary ARDS group, patients who died had significantly higher serum KL-6 levels in the seven days following diagnosis than those who survived. In contrast, in the extrapulmonary group, the difference in KL-6 values between patients who survived and died was only significant on the first day after diagnosis. The peak levels of serum KL-6 in the death group were significantly higher than those in the survival group for both intra- and extrapulmonary ARDS (P=0.0253). The optimal cutoff value of the serum KL-6 level was 1,452.3 U/mL in intrapulmonary ARDS patients and 828.2 U/mL in extrapulmonary patients. Serum KL-6 levels higher than the cutoff levels were confirmed to be a significant prognostic predictor of poor survival within 28 days of diagnosis in patients with intra- and extrapulmonary ARDS. Conclusions The serum KL-6 level is potentially a good indicator for predicting the prognosis of patients with ARDS.
Collapse
Affiliation(s)
- Luqing Han
- Department of Intensive Care Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuai Wang
- Department of Intensive Care Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jialin Ma
- Department of Intensive Care Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongyan Zhao
- Department of Intensive Care Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
He D, Yu Q, Zeng X, Feng J, Yang R, Wan H, Zhong Y, Yang Y, Zhao R, Lu J, Zhang J. Single-Cell RNA Sequencing and Transcriptome Analysis Revealed the Immune Microenvironment and Gene Markers of Acute Respiratory Distress Syndrome. J Inflamm Res 2023; 16:3205-3217. [PMID: 37547124 PMCID: PMC10404049 DOI: 10.2147/jir.s419576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is caused by severe pulmonary inflammation and the leading cause of death in the intensive care unit. Methods We used single-cell RNA sequencing to compare peripheral blood mononuclear cells from sepsis-induced ARDS (SEP-ARDS) and pneumonic ARDS (PNE-ARDS) patient. Then, we used the GSE152978 and GSE152979 datasets to identify molecular dysregulation mechanisms at the transcriptional level in ARDS. Results Markedly increased CD14 cells were the predominant immune cell type observed in SEP-ARDS and PNE-ARDS patients. Cytotoxic cells and natural killer (NK) T cells were exclusively identified in patients with PNE-ARDS. An enrichment analysis of differentially expressed genes (DEGs) suggested that Th1 cell differentiation and Th2 cell differentiation were enriched in cytotoxic cells, and that the IL-17 signaling pathway, NOD receptor signaling pathway, and complement and coagulation cascades were enriched in CD14 cells. Furthermore, according to GSE152978 and GSE152979, 1939 DEGs were identified in patients with ARDS and controls; they were mainly enriched in the Kyoto Encyclopedia of Genes and Genomes pathways. RBP7 had the highest area under the curve values among the 12 hub genes and was mainly expressed in CD14 cells. Additionally, hub genes were negatively correlated with NK cells and positively correlated with neutrophils, cytotoxic cells, B cells, and macrophages. Conclusion A severe imbalance in the proportion of immune cells and immune dysfunction were observed in SEP-ARDS and PNE-ARDS patients. RBP7 may be immunologically associated with CD14 cells and serve as a potential marker of ARDS.
Collapse
Affiliation(s)
- Dan He
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Qiao Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Xiaona Zeng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Ruiqi Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Huan Wan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Ying Zhong
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Yanli Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Ruzhi Zhao
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, People’s Republic of China
| | - Jianfeng Zhang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, People’s Republic of China
| |
Collapse
|
13
|
Majeed AY, Zulkafli NES, Ad'hiah AH. Serum profiles of pro-inflammatory and anti-inflammatory cytokines in non-hospitalized patients with mild/moderate COVID-19 infection. Immunol Lett 2023; 260:24-34. [PMID: 37339685 PMCID: PMC10276899 DOI: 10.1016/j.imlet.2023.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
This study attempted to explore pro-inflammatory and anti-inflammatory responses in patients with mild/moderate coronavirus disease 19 (COVID-19). Eight pro-inflammatory (IL-1α, IL-1β, IL-12, IL-17A, IL-17E, IL-31, IFN-γ and TNF-α) and three anti-inflammatory (IL-1Ra, IL-10 and IL-13) cytokines, as well as two chemokines (CXCL9 and CXCL10), were analyzed in the serum from ninety COVID-19 patients and healthy controls. Cytokine/chemokine levels were measured using enzyme-linked immunosorbent assay kits. Results revealed that IL-1α, IL-1β, IL-10, IL-12, IL-13, IL-17A, IL-31, IFN-γ, TNF-α and CXCL10 were significantly higher in patients than in controls, while IL-1Ra levels were significantly lower in patients. IL-17E and CXCL9 levels showed no significant differences between patients and controls. Seven cytokines/chemokines recorded an area under the curve greater than 0.8: IL-12 (0.945), IL-17A (0.926), CXCL10 (0.909), IFN-γ (0.904), IL-1α (0.869), TNF-α (0.825) and IL-10 (0.821). As indicated by the odds ratio, elevated levels of nine cytokines/chemokines were associated with an increased risk of COVID-19: IL-1α (19.04), IL-10 (5.01), IL-12 (43.66), IL-13 (4.25), IL-17A (16.62), IL-31 (7.38), IFN-γ (13.55), TNF-α (12.00) and CXCL10 (11.18). Only one positive (IL-17E with TNF-α) and six negative (IL-1β, IL-17A and IL-17E with CXCL9, IL-10 with IL-17A, and IL-1β and IL-17A with CXCL10) correlations were found between these cytokines/chemokines. In conclusion, pro-inflammatory (IL-1α, IL-1β, IL-12, IL-13, IL-17A, IL-31, IFN-γ, TNF-α and CXCL10) and anti-inflammatory (IL-10 and IL-13) cytokines/chemokines were up-regulated in the serum of patients with mild/moderate COVID-19. Their potential as biomarkers for diagnosis and prognosis is suggested and the association with COVID-19 risk is indicated to give more insight on COVID-19 immunological responses among non-hospitalized patients.
Collapse
Affiliation(s)
- Abdulraheem Y Majeed
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia; AL-Anbar Directorate of Health, Iraqi Ministry of Health, Iraq
| | - Nor Effa S Zulkafli
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, 10070, Al-Karrada, Baghdad, Iraq.
| |
Collapse
|
14
|
Lin H, Liu Q, Zhao L, Liu Z, Cui H, Li P, Fan H, Guo L. Circulating Pulmonary-Originated Epithelial Biomarkers for Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24076090. [PMID: 37047065 PMCID: PMC10093822 DOI: 10.3390/ijms24076090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Previous studies have found several biomarkers for acute respiratory distress syndrome (ARDS), but the accuracy of most biomarkers is still in doubt due to the occurrence of other comorbidities. In this systematic review and meta-analysis, we aimed to explore ideal ARDS biomarkers which can reflect pathophysiology features precisely and better identify at-risk patients and predict mortality. Web of Science, PubMed, Embase, OVID, and the Cochrane Library were systematically searched for studies assessing the reliability of pulmonary-originated epithelial proteins in ARDS. A total of 32 studies appeared eligible for meta-analysis, including 2654 ARDS/ALI patients in this study. In the at-risk patients' identification group, the highest pooled effect size was observed in Krebs von den Lungren-6 (KL-6) (SMD: 1.17 [95% CI: 0.55, 1.79]), followed by club cell proteins 16 (CC16) (SMD: 0.74 [95% CI: 0.01, 1.46]), and surfactant proteins-D (SP-D) (SMD: 0.71 [95% CI: 0.57, 0.84]). For the mortality prediction group, CC16 exhibited the largest effect size with SMD of 0.92 (95% CI: 0.42, 1.43). Meanwhile, the summary receiver operating characteristic (SROC) of CC16 for ARDS diagnosis reached an AUC of 0.80 (95% CI: 0.76, 0.83). In conclusion, this study provides a ranking system for pulmonary-originated epithelial biomarkers according to their association with distinguishing at-risk patients and predicting mortality. In addition, the study provides evidence for the advantage of biomarkers over traditional diagnostic criteria. The performance of biomarkers may help to clinically improve the ARDS diagnosis and mortality prediction.
Collapse
Affiliation(s)
- Huishu Lin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300381, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Huanhuan Cui
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
15
|
Chen XY, Chen KY, Feng PH, Lee KY, Fang YT, Chen YY, Lo YC, Bhavsar PK, Chung KF, Chuang HC. YAP-regulated type II alveolar epithelial cell differentiation mediated by human umbilical cord-derived mesenchymal stem cells in acute respiratory distress syndrome. Biomed Pharmacother 2023; 159:114302. [PMID: 36701989 DOI: 10.1016/j.biopha.2023.114302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) contributes to higher mortality worldwide. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have immunomodulatory and regenerative potential. However, the effects of hUC-MSCs as an ARDS treatment remain unclear. We investigated the role of hUC-MSCs in the differentiation of type II alveolar epithelial cells (AECII) by regulating Yes-associated protein (YAP) in ARDS. Male C57BL/6JNarl mice were intratracheally (i.t.) administered lipopolysaccharide (LPS) to induce an ARDS model, followed by a single intravenous (i.v.) dose of hUC-MSCs. hUC-MSCs improved pulmonary function, decreased inflammation on day 3, and mitigated lung injury by reducing the lung injury score and increasing lung aeration (%) in mice on day 7 (p < 0.05). hUC-MSCs inactivated YAP on AECII and facilitated cell differentiation by decreasing Pro-surfactant protein C (Pro-SPC) and galectin 3 (LGALS3) while increasing podoplanin (T1α) in lungs of mice (p < 0.05). In AECII MLE-12 cells, both coculture with hUC-MSCs after LPS exposure and the YAP inhibitor, verteporfin, reduced Pro-SPC and LGALS3, whereas the YAP inhibitor increased T1α expression (p < 0.05). In conclusion, hUC-MSCs ameliorated lung injury of ARDS and regulated YAP to facilitate AECII differentiation.
Collapse
Affiliation(s)
- Xiao-Yue Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Ting Fang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Hsiao-Chi Chuang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; National Heart and Lung Institute, Imperial College London, London, UK; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Ripple MJ, Mohammad AF, Stephenson ST, Fitzpatrick AM, Grunwell JR. Expression Patterns of Airway Fluid Cytokines From Intubated Children With Pediatric Acute Respiratory Distress Syndrome. Crit Care Explor 2022; 4:e0819. [PMID: 36567781 PMCID: PMC9760621 DOI: 10.1097/cce.0000000000000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a heterogeneous illness affecting 6% of mechanically ventilated children and with an overall mortality of 17%. Studies in PARDS have mainly focused on plasma biomarkers which may not reflect airway biomarkers. We lack adequate understanding of the inflammatory mediators and underlying immune responses in the airways of PARDS patients. Our objective was to compare the levels of cytokines in the airway fluid of intubated children with severe versus nonsevere acute respiratory distress syndrome. DESIGN Prospective observational cohort study. SETTING Single 36-bed quaternary care academic safety-net hospital PICU. PATIENTS Children intubated for acute respiratory failure between January 2018 and November 2021 stratified by Pediatric Acute Lung Injury Consensus Conference-1 criteria for PARDS. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We measured levels of 23 cytokines, chemokines, and protein biomarkers in the tracheal aspirate from 82 intubated children, between 14 days and 17 years old, at risk for or with PARDS. Levels of interleukin-4, -5, -7, -8, -12(p-70), -17a, -21, and fractalkine were higher in patients with severe versus nonsevere PARDS. There were no associations between airway and plasma cytokines. CONCLUSIONS Proinflammatory cytokines are elevated in the airway fluid from intubated children with severe PARDS and reflect diverse patterns of airway inflammation.
Collapse
Affiliation(s)
- Michael J Ripple
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| | - Ahmad F Mohammad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Susan T Stephenson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Division of Pulmonary Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|