1
|
Pan Y, Li Y, Fan H, Cui H, Chen Z, Wang Y, Jiang M, Wang G. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of hepatocellular carcinoma (HCC). Biomed Pharmacother 2024; 177:117089. [PMID: 38972148 DOI: 10.1016/j.biopha.2024.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) holds a prominent position among global cancer types. Classically, HCC manifests in individuals with a genetic predisposition when they encounter risk elements, particularly in the context of liver cirrhosis. Peroxisome proliferator-activated receptors (PPARs), which are transcription factors activated by fatty acids, belong to the nuclear hormone receptor superfamily and play a pivotal role in the regulation of energy homeostasis. At present, three distinct subtypes of PPARs have been recognized: PPARα, PPARγ, and PPARβ/δ. They regulate the transcription of genes responsible for cellular development, energy metabolism, inflammation, and differentiation. In recent years, with the rising incidence of HCC, there has been an increasing focus on the mechanisms and roles of PPARs in HCC. PPARα primarily mediates the occurrence and development of HCC by regulating glucose and lipid metabolism, inflammatory responses, and oxidative stress. PPARβ/δ is closely related to the self-renewal ability of liver cancer stem cells (LCSCs) and the formation of the tumor microenvironment. PPARγ not only influences tumor growth by regulating the glucose and lipid metabolism of HCC, but its agonists also have significant clinical significance for the treatment of HCC. Therefore, this review offers an exhaustive examination of the role of the three PPAR subtypes in HCC progression, focusing on their mediation of critical cellular processes such as glucose and lipid metabolism, inflammation, oxidative stress, and other pivotal signaling pathways. At the end of the review, we discuss the merits and drawbacks of existing PPAR-targeted therapeutic strategies and suggest a few alternative combinatorial therapeutic approaches that diverge from conventional methods.
Collapse
Affiliation(s)
- Yujie Pan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hongyu Fan
- Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246 Baojian Road, Harbin 150086, China
| | - Huijuan Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhiyue Chen
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunzhu Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Mengyu Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Shojaeian A, Nakhaie M, Amjad ZS, Boroujeni AK, Shokri S, Mahmoudvand S. Leveraging metformin to combat hepatocellular carcinoma: its therapeutic promise against hepatitis viral infections. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2023.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is categorized among the most common primary malignant liver cancer and a primary global cause of death from cancer. HCC tends to affect males 2-4 times more than females in many nations. The main factors that raise the incidence of HCC are chronic liver diseases, hepatotropic viruses like hepatitis B (HBV) and C (HCV), non-alcoholic fatty liver disease, exposure to toxins like aflatoxin, and non-alcoholic steatohepatitis (NASH). Among these, hepatitis B and C are the most prevalent causes of chronic hepatitis globally. Metformin, which is made from a naturally occurring compound called galegine, derived from the plant Galega officinalis (G. officinalis ), has been found to exhibit antitumor effects in a wide range of malignancies, including HCC. In fact, compared to patients on sulphonylureas or insulin, studies have demonstrated that metformin treatment significantly lowers the risk of HCC in patients with chronic liver disease. This article will first describe the molecular mechanism of hepatitis B and C viruses in the development of HCC. Then, we will provide detailed explanations about metformin, followed by a discussion of the association between metformin and hepatocellular carcinoma caused by the viruses mentioned above.
Collapse
|
3
|
Tian Z, Xu C, Yang P, Lin Z, Wu W, Zhang W, Ding J, Ding R, Zhang X, Dou K. Molecular pathogenesis: Connections between viral hepatitis-induced and non-alcoholic steatohepatitis-induced hepatocellular carcinoma. Front Immunol 2022; 13:984728. [PMID: 36189208 PMCID: PMC9520190 DOI: 10.3389/fimmu.2022.984728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma(HCC) is the sixth most common cancer in the world and is usually caused by viral hepatitis (HBV and HCV), alcoholic, and non-alcoholic fatty liver disease(NAFLD). Viral hepatitis accounts for 80% of HCC cases worldwide. In addition, With the increasing incidence of metabolic diseases, NAFLD is now the most common liver disease and a major risk factor for HCC in most developed countries. This review mainly described the specificity and similarity between the pathogenesis of viral hepatitis(HBV and HCV)-induced HCC and NAFLD-induced HCC. In general, viral hepatitis promotes HCC development mainly through specific encoded viral proteins. HBV can also exert its tumor-promoting mechanism by integrating into the host chromosome, while HCV cannot. Viral hepatitis-related HCC and NASH-related HCC differ in terms of genetic factors, and epigenetic modifications (DNA methylation, histone modifications, and microRNA effects). In addition, both of them can lead to HCC progression through abnormal lipid metabolism, persistent inflammatory response, immune and intestinal microbiome dysregulation.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenlong Wu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| |
Collapse
|
4
|
Bautista-Olivier CD, Elizondo G. PXR as the tipping point between innate immune response, microbial infections, and drug metabolism. Biochem Pharmacol 2022; 202:115147. [PMID: 35714683 DOI: 10.1016/j.bcp.2022.115147] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Pregnane X receptor (PXR) is a xenosensor that acts as a transcription factor in the cell nucleus to protect cells from toxic insults. In response to exposure to several chemical agents, PXR induces the expression of enzymes and drug transporters that biotransform xenobiotic and endobiotic and eliminate metabolites. Recently, PXR has been shown to have immunomodulatory effects that involve cross-communication with molecular pathways in innate immunity cells. Conversely, several inflammatory factors regulate PXR signaling. This review examines the crosstalk between PXR and nuclear factor kappa B (NFkB), Toll-like receptors (TLRs), and inflammasome components. Discussions of the consequences of these interactions on immune responses to infections caused by viruses, bacteria, fungi, and parasites are included together with a review of the effects of microorganisms on PXR-associated drug metabolism. This paper aims to encourage researchers to pursue studies that will better elucidate the relationship between PXR and the immune system and thus inform treatment development.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Matsui C, Yuliandari P, Deng L, Abe T, Shoji I. The Role of Chaperone-Mediated Autophagy in Hepatitis C Virus-Induced Pathogenesis. Front Cell Infect Microbiol 2021; 11:796664. [PMID: 34926330 PMCID: PMC8674663 DOI: 10.3389/fcimb.2021.796664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Lysosome incorporate and degrade proteins in a process known as autophagy. There are three types of autophagy; macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Although autophagy is considered a nonselective degradation process, CMA is known as a selective degradation pathway. All proteins internalized in the lysosome via CMA contain a pentapeptide KFERQ-motif, also known as a CMA-targeting motif, which is necessary for selectivity. CMA directly delivers a substrate protein into the lysosome lumen using the cytosolic chaperone HSC70 and the lysosomal receptor LAMP-2A for degradation. Hepatitis C virus (HCV) NS5A protein interacts with hepatocyte-nuclear factor 1α (HNF-1α) together with HSC70 and promotes the lysosomal degradation of HNF-1α via CMA, resulting in HCV-induced pathogenesis. HCV NS5A promotes recruitment of HSC70 to the substrate protein HNF-1α. HCV NS5A plays a crucial role in HCV-induced CMA. Further investigations of HCV NS5A-interacting proteins containing CMA-targeting motifs may help to elucidate HCV-induced pathogenesis.
Collapse
Affiliation(s)
- Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Putu Yuliandari
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Bali, Indonesia
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
6
|
PIAS1 Regulates Hepatitis C Virus-Induced Lipid Droplet Accumulation by Controlling Septin 9 and Microtubule Filament Assembly. Pathogens 2021; 10:pathogens10101327. [PMID: 34684276 PMCID: PMC8537804 DOI: 10.3390/pathogens10101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection often leads to fibrosis and chronic hepatitis, then cirrhosis and ultimately hepatocellular carcinoma (HCC). The processes of the HVC life cycle involve intimate interactions between viral and host cell proteins and lipid metabolism. However, the molecules and mechanisms involved in this tripartite interaction remain poorly understood. Herein, we show that the infection of HCC-derived Huh7.5 cells with HCV promotes upregulation of the protein inhibitor of activated STAT1 (PIAS1). Reciprocally, PIAS1 regulated the expression of HCV core protein and HCV-induced LD accumulation and impaired HCV replication. Furthermore, PIAS1 controlled HCV-promoted septin 9 filament formation and microtubule polymerization. Subsequently, we found that PIAS1 interacted with septin 9 and controlled its assembly on filaments, which thus affected septin 9-induced lipid droplet accumulation. Taken together, these data reveal that PIAS1 regulates the accumulation of lipid droplets and offer a meaningful insight into how HCV interacts with host proteins.
Collapse
|
7
|
High Rates of Liver Cirrhosis and Hepatocellular Carcinoma in Chronic Hepatitis B Patients with Metabolic and Cardiovascular Comorbidities. Microorganisms 2021; 9:microorganisms9050968. [PMID: 33946154 PMCID: PMC8146494 DOI: 10.3390/microorganisms9050968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The prevalence of metabolic and cardiovascular diseases is rising worldwide. However, little is known about the impact of such disorders on hepatic disease progression in chronic hepatitis B (CHB) during the era of potent nucleo(s)tide analogues (NAs). Methods: We retrospectively analyzed a single-center cohort of 602 CHB patients, comparing the frequency of liver cirrhosis at baseline and incidences of liver-related events during follow-up (hepatocellular carcinoma, liver transplantation and liver-related death) between CHB patients with a history of diabetes, obesity, hypertension or coronary heart disease (CHD). Results: Rates of cirrhosis at baseline and liver-related events during follow-up (median follow-up time: 2.51 years; NA-treated: 37%) were substantially higher in CHB patients with diabetes (11/23; 3/23), obesity (6/13; 2/13), CHD (7/11; 2/11) or hypertension (15/43; 4/43) compared to CHB patients without the indicated comorbidities (26/509; 6/509). Multivariate analysis identified diabetes as the most significant predictor for cirrhosis (p = 0.0105), while comorbidities did not correlate with liver-related events in pre-existing cirrhosis. Conclusion: The combination of metabolic diseases and CHB is associated with substantially increased rates of liver cirrhosis and secondary liver-related events compared to CHB alone, indicating that hepatitis B patients with metabolic comorbidities warrant particular attention in disease surveillance and evaluation of treatment indication.
Collapse
|
8
|
Gameaa RM, Hawash N, Badawi R, Abd-Elsalam S, Kasem GK, Wasfy ESA. Assessment of Hepatic Steatosis in Patients with Chronic Hepatitis B Using Fibroscan and its Relation to Insulin Resistance. THE OPEN BIOMARKERS JOURNAL 2019; 9:70-78. [DOI: 10.2174/1875318301909010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/24/2019] [Accepted: 11/02/2019] [Indexed: 09/01/2023]
Abstract
Background & Aim:
Simple hepatic steatosis is a benign condition, but it may cause serious liver damage as it may lead to steatohepatitis, fibrosis and cirrhosis. The Controlled Attenuation Parameter (CAP) of fibroscan assesses hepatic steatosis. The aim of this work was to assess hepatic steatosis in patients with chronic hepatitis B infection using FibroScan and to detect its relation to insulin resistance.
Methods:
Seventy-seven patients with chronic HBV were enrolled in this study. Body mass index, complete lipid profile, fasting insulin, HOMA-IR, pelviabdominal ultrasound and fibroscan were assessed in all patients.
Results:
According to the presence of significant steatosis, seventy-seven patients enrolled in this study were divided into different groups, such as group I 47 patients (61.04%) with CHB virus infection with non-significant steatosis and group II 30 patients (38.96%) with CHB infection with significant steatosis. There was a statistically significant increase in fasting insulin and HOMA-IR in group II (p-value <0.001). CAP results ranged from 100-396 db/m with no significant difference in liver stiffness measurements in two studied groups (P value= 0.886). There was a significant positive correlation between the degree of hepatic steatosis measured by fibroscan and fasting insulin blood level, HOMA-IR, serum cholesterol and LDL. At cutoff > 222 db/m steatosis measured by fibroscan had a sensitivity of 63.33% and specificity of 82.35% for the detection of insulin resistance.
Conclusion:
In CHB infected patients, steatosis measurement by fibroscan was a strong predictor of Insulin Resistance (IR) and vice versa.
Collapse
|
9
|
Heterogeneity and coexistence of oncogenic mechanisms involved in HCV-associated B-cell lymphomas. Crit Rev Oncol Hematol 2019; 138:156-171. [PMID: 31092372 DOI: 10.1016/j.critrevonc.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The association of HCV-infection with B-lymphomas is supported by the regression of most indolent/low-grade lymphomas following anti-viral therapy. Studies on direct and indirect oncogenic mechanisms have elucidated the pathogenesis of HCV-associated B-lymphoma subtypes. These include B-lymphocyte proliferation and sustained clonal expansion by HCV-envelope protein stimulation of B-cell receptors, and prolonged HCV-infected B-cell growth by overexpression of an anti-apoptotic BCL-2 oncogene caused by the increased frequency of t(14;18) chromosomal translocations in follicular lymphomas. HCV has been implicated in lymphomagenesis by a "hit-and-run" mechanism, inducing enhanced mutation rate in immunoglobulins and anti-oncogenes favoring immune escape, due to permanent genetic damage by double-strand DNA-breaks. More direct oncogenic mechanisms have been identified in cytokines and chemokines in relation to NS3 and Core expression, particularly in diffuse large B-cell lymphoma. By reviewing genetic alterations and disrupted signaling pathways, we intend to highlight how mutually non-contrasting mechanisms cooperate with environmental factors toward progression of HCV-lymphoma.
Collapse
|
10
|
Mahmoudvand S, Shokri S, Taherkhani R, Farshadpour F. Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma. World J Gastroenterol 2019; 25:42-58. [PMID: 30643357 PMCID: PMC6328967 DOI: 10.3748/wjg.v25.i1.42] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer, and hepatitis C virus (HCV) infection plays a major role in HCC development. The molecular mechanisms by which HCV infection leads to HCC are varied. HCV core protein is an important risk factor in HCV-associated liver pathogenesis and can modulate several signaling pathways involved in cell cycle regulation, cell growth promotion, cell proliferation, apoptosis, oxidative stress and lipid metabolism. The dysregulation of signaling pathways such as transforming growth factor β (TGF-β), vascular endothelial growth factor (VEGF), Wnt/β-catenin (WNT), cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptor α (PPARα) by HCV core protein is implicated in the development of HCC. Therefore, it has been suggested that this protein be considered a favorable target for further studies in the development of HCC. In addition, considering the axial role of these signaling pathways in HCC, they are considered druggable targets for cancer therapy. Therefore, using strategies to limit the dysregulation effects of core protein on these signaling pathways seems necessary to prevent HCV-related HCC.
Collapse
Affiliation(s)
- Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Fatemeh Farshadpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| |
Collapse
|
11
|
Authentic Patient-Derived Hepatitis C Virus Infects and Productively Replicates in Primary CD4 + and CD8 + T Lymphocytes In Vitro. J Virol 2018; 92:JVI.01790-17. [PMID: 29167333 DOI: 10.1128/jvi.01790-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Abstract
Accumulated evidence indicates that immune cells can support the replication of hepatitis C virus (HCV) in infected patients and in culture. However, there is a scarcity of data on the degree to which individual immune cell types support HCV propagation and on characteristics of virus assembly. We investigated the ability of authentic, patient-derived HCV to infect in vitro two closely related but functionally distinct immune cell types, CD4+ and CD8+ T lymphocytes, and assessed the properties of the virus produced by these cells. The HCV replication system in intermittently mitogen-stimulated T cells was adapted to infect primary human CD4+ or CD8+ T lymphocytes. HCV replicated in both cell types although at significantly higher levels in CD4+ than in CD8+ T cells. Thus, the HCV RNA replicative (negative) strand was detected in CD4+ and CD8+ cells at estimated mean levels ± standard errors of the means of 6.7 × 102 ± 3.8 × 102 and 1.2 × 102 ± 0.8 × 102 copies/μg RNA, respectively (P < 0.0001). Intracellular HCV NS5a and/or core proteins were identified in 0.9% of CD4+ and in 1.2% of CD8+ T cells. Double staining for NS5a and T cell type-specific markers confirmed that transcriptionally competent virus replicated in both cell types. Furthermore, an HCV-specific protease inhibitor, telaprevir, inhibited infection in both CD4+ and CD8+ cells. The emergence of unique HCV variants and the release of HCV RNA-reactive particles with biophysical properties different from those of virions in plasma inocula suggested that distinct viral particles were assembled, and therefore, they may contribute to the pool of circulating virus in infected patients.IMPORTANCE Although the liver is the main site of HCV replication, infection of the immune system is an intrinsic characteristic of this virus independent of whether infection is symptomatic or clinically silent. Many fundamental aspects of HCV lymphotropism remain uncertain, including the degree to which different immune cells support infection and contribute to virus diversity. We show that authentic, patient-derived HCV productively replicates in vitro in two closely related but functionally distinct types of T lymphocytes, CD4+ and CD8+ cells. The display of viral proteins and unique variants, the production of virions with biophysical properties distinct from those in plasma serving as inocula, and inhibition of replication by an antiviral agent led us to ascertain that both T cell subtypes supported virus propagation. Infection of CD4+ and CD8+ T cells, which are central to adaptive antiviral immune responses, can directly affect HCV clearance, favor virus persistence, and decisively influence the development and progression of hepatitis C.
Collapse
|
12
|
Weng X, He Y, Visvabharathy L, Liao CM, Tan X, Balakumar A, Wang CR. Crosstalk between type II NKT cells and T cells leads to spontaneous chronic inflammatory liver disease. J Hepatol 2017; 67:791-800. [PMID: 28596110 PMCID: PMC5605413 DOI: 10.1016/j.jhep.2017.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/28/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIM Natural killer T (NKT) cells are CD1d-restricted innate-like T cells that modulate innate and adaptive immune responses. Unlike the well-characterized invariant/type I NKT cells, type II NKT cells with a diverse T cell receptor repertoire are poorly understood. This study defines the pathogenic role of type II NKT cells in the etiology of chronic liver inflammation. METHODS Transgenic mice with the Lck promoter directing CD1d overexpression on T cells in Jα18 wild-type (Lck-CD1dTgJα18+; type I NKT cell sufficient) and Jα18-deficient (Lck-CD1dTgJα18o, type I NKT cell deficient) mice were analyzed for liver pathology and crosstalk between type II NKT cells and conventional T cells. CD1d expression on T cells in peripheral blood samples and liver sections from autoimmune hepatitis patients and healthy individuals were also examined. RESULTS Lck-CD1dTgJα18o and Lck-CD1dTgJα18+ mice developed similar degrees of liver pathology resembling chronic autoimmune hepatitis in humans. Increased CD1d expression on T cells promoted the activation of type II NKT cells and other T cells. This resulted in Th1-skewing and impaired Th2 cytokine production in type II NKT cells. Dysfunction of type II NKT cells was accompanied by conventional T cell activation and pro-inflammatory cytokine production, leading to a hepatic T/B lymphocyte infiltration, elevated autoantibodies and hepatic injury in Lck-CD1dTg mice. A similar mechanism could be extended to humans as CD1d expression is upregulated on activated human T cells and increased presence of CD1d-expressing T cells was observed in autoimmune hepatitis patients. CONCLUSIONS Our data reveals enhanced crosstalk between type II NKT cells and conventional T cells, leading to a Th1-skewed inflammatory milieu, and consequently, to the development of chronic autoimmune liver disease. Lay summary: CD1d overexpression on T cells enhances crosstalk between type II NKT cells and T cells, resulting in their aberrant activation and leading to the development of chronic autoimmune liver disease.
Collapse
Affiliation(s)
- Xiufang Weng
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States; Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying He
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Chia-Min Liao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Xiaosheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Arjun Balakumar
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
13
|
Abstract
Hepatitis C virus (HCV) infection is a common liver disease worldwide with a high rate of chronicity (75-80%) in infected individuals. The chronic form of HCV leads to steatosis, cirrhosis and hepatocellualr carcinoma. Steatosis is prevalent in HCV patients (55%) due to a combination of viral factors (effect of viral proteins on some of the intracellular pathways) and host factors (overweight, insulin resistance, diabetes mellitus, and alcohol consumption). The response rates to treatment of chronic HCV with pegylated interferon (PEG-IFN) and (in the case of genotype-1 HCV, the most common infecting genotype in the USA) ribavirin (RBV) is low, with a sustained viral response rate ≤ 40%. Adding direct-acting antiviral agents-recently approved by the FDA-to the standard protocol has increased the response rate; however HCV-related end-stage liver disease is still the primary indication for liver transplantation in the USA. The focus of this article is on the interrelation between HCV, steatosis and metabolic syndrome.
Collapse
Affiliation(s)
- Jamak Modaresi Esfeh
- Department of Gastroenterology and Hepatology, The Cleveland Clinic, Cleveland, OH, USA
| | - Kianoush Ansari-Gilani
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
14
|
Specialization of Hepatitis C Virus Envelope Glycoproteins for B Lymphocytes in Chronically Infected Patients. J Virol 2015; 90:992-1008. [PMID: 26537674 DOI: 10.1128/jvi.02516-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) productively infects hepatocytes. Virion surface glycoproteins E1 and E2 play a major role in this restricted cell tropism by mediating virus entry into particular cell types. However, several pieces of evidence have suggested the ability of patient-derived HCV particles to infect peripheral blood mononuclear cells. The viral determinants and mechanisms mediating such events remain poorly understood. Here, we aimed at isolating viral determinants of HCV entry into B lymphocytes. For this purpose, we constructed a library of full E1E2 sequences isolated from serum and B lymphocytes of four chronically infected patients. We observed a strong phylogenetic compartmentalization of E1E2 sequences isolated from B lymphocytes in one patient, indicating that E1E2 glycoproteins can represent important mediators of the strong segregation of two specialized populations in some patients. Most of the E1E2 envelope glycoproteins were functional and allowed transduction of hepatocyte cell lines using HCV-derived pseudoparticles. Strikingly, introduction of envelope glycoproteins isolated from B lymphocytes into the HCV JFH-1 replicating virus switched the entry tropism of this nonlymphotropic virus from hepatotropism to lymphotropism. Significant detection of viral RNA and viral proteins within B cells was restricted to infections with JFH-1 harboring E1E2 from lymphocytes and depended on an endocytic, pH-dependent entry pathway. Here, we achieved for the first time the isolation of HCV viral proteins carrying entry-related lymphotropism determinants. The identification of genetic determinants within E1E2 represents a first step for a better understanding of the complex relationship between HCV infection, viral persistence, and extrahepatic disorders. IMPORTANCE Hepatitis C virus (HCV) mainly replicates within the liver. However, it has been shown that patient-derived HCV particles can slightly infect lymphocytes in vitro and in vivo, highlighting the existence of lymphotropism determinants within HCV viral proteins. We isolated HCV envelope glycoproteins from patient B lymphocytes that conferred to a nonlymphotropic HCV the ability to enter B cells, thus providing a platform for characterization of HCV entry into lymphocytes. This unusual tropism was accompanied by a loss of entry function into hepatocytes, suggesting that HCV lymphotropic variants likely constitute a distinct but parallel source for viral persistence and immune escape within chronically infected patients. Moreover, the level of genetic divergence of B-cell-derived envelopes correlated with their degree of lymphotropism, underlining a long-term specialization of some viral populations for B-lymphocytes. Consequently, the clearance of both hepatotropic and nonhepatotropic HCV populations may be important for effective treatment of chronically infected patients.
Collapse
|
15
|
Yano Y, Utsumi T, Lusida MI, Hayashi Y. Hepatitis B virus infection in Indonesia. World J Gastroenterol 2015; 21:10714-20. [PMID: 26478663 PMCID: PMC4600573 DOI: 10.3748/wjg.v21.i38.10714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/14/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
Approximately 240 million people are chronically infected with hepatitis B virus (HBV), 75% of whom reside in Asia. Approximately 600000 of infected patients die each year due to HBV-related diseases or hepatocellular carcinoma (HCC). The endemicity of hepatitis surface antigen in Indonesia is intermediate to high with a geographical difference. The risk of HBV infection is high in hemodialysis (HD) patients, men having sex with men, and health care workers. Occult HBV infection has been detected in various groups such as blood donors, HD patients, and HIV-infected individuals and children. The most common HBV subgenotype in Indonesia is B3 followed by C1. Various novel subgenotypes of HBV have been identified throughout Indonesia, with the novel HBV subgenotypes C6-C16 and D6 being successfully isolated. Although a number of HBV subgenotypes have been discovered in Indonesia, genotype-related pathogenicity has not yet been elucidated in detail. Therefore, genotype-related differences in the prognosis of liver disease and their effects on treatments need to be determined. A previous study conducted in Indonesia revealed that hepatic steatosis was associated with disease progression. Pre-S2 mutations and mutations at C1638T and T1753V in HBV/B3 have been associated with advanced liver diseases including HCC. However, drug resistance to lamivudine, which is prominent in Indonesia, remains obscure. Although the number of studies on HBV in Indonesia has been increasing, adequate databases on HBV infection are limited. We herein provided an overview of the epidemiology and clinical characteristics of HBV infection in Indonesia.
Collapse
|
16
|
Abstract
Hepatitis C virus (HCV) is a leading etiology of hepatocellular carcinoma (HCC). The interaction of HCV with its human host is complex and multilayered; stemming in part from the fact that HCV is a RNA virus with no ability to integrate in the host's genome. Direct and indirect mechanisms of HCV-induced HCC include activation of multiple host pathways such as liver fibrogenic pathways, cellular and survival pathways, interaction with the immune and metabolic systems. Host factors also play a major role in HCV-induced HCC as evidenced by genomic studies identifying polymorphisms in immune, metabolic, and growth signaling systems associated with increased risk of HCC. Despite highly effective direct-acting antiviral agents, the morbidity and incidence of liver-related complications of HCV, including HCC, is likely to persist in the near future. Clinical markers to selectively identify HCV subjects at higher risk of developing HCC have been reported however they require further validation, especially in subjects who have experienced sustained virological response. Molecular biomarkers allowing further refinement of HCC risk are starting to be implemented in clinical platforms, allowing objective stratification of risk and leading to individualized therapy and surveillance for HCV individuals. Another role for molecular biomarker-based stratification could be enrichment of HCC chemoprevention clinical trials leading to smaller sample size, shorter trial duration, and reduced costs.
Collapse
Affiliation(s)
- Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
17
|
Abstract
Hepatocellular carcinoma (HCC) is a development of severe liver disease frequently due to HBV and/or HCV infection. The aim of this retrospective study was to evaluate the development of HCC in patients with HBV-HCV chronic infection compared with patients with single HBV or HCV infection and the viral and host factors correlated to HCC in co-infected patients. We studied 268 patients with histology proven chronic hepatitis: 56 had HBV-HCV co-infection (HBV-HCV group), 46 had HBV infection (HBV group) and 166 had HCV infection (HCV group). Patients were followed up for at least 3 years. Viral and host factors were studied. HCC was more frequent in HBV-HCV group (14%) compared with HBV (2%, p = 0.006) and HCV monoinfected (4%, p = 0.006). The Mantel-Haenszel test used to investigate the relationship between HBV-HCV co-infection and development of HCC indicated an association between development of HCC and HBV-HCV co-infection (p < 0.001). In the HBV-HCV group, patients with HCC were significantly older (p = 0.000), had longer disease duration (p = 0.001), higher blood glucose levels (p = 0.001), lower levels of steatosis (p = 0.02), higher levels of fibrosis (p = 0.000), higher HCV RNA (p = 0.01) than those without HCC. ALT, lipid profile, PNPLA3 variant distribution and HBV viral load did not differ among co-infected patients with or without HCC. In conclusion HCC was more frequent in our patients with HBV-HCV co-infection, than in those with HBV or HCV mono-infection; possible associated risk factors for HCC development seem a long duration of disease, high levels of fibrosis and carbohydrate intolerance.
Collapse
|
18
|
Abstract
Hepatitis C virus (HCV) is one of the major etiologic agents of liver cancer. HCV is an RNA virus that, unlike hepatitis B virus, is unable to integrate into the host genome. Through complex interactions between viral and host proteins that induce host responses and promote inflammation, fibrosis, and ultimately cirrhosis, HCV infection can result in the development of hepatocellular carcinoma (HCC). The HCV oncogenic process involves genetic and epigenetic alterations and oncogenic effects mediated by viral proteins in the activation of cellular oncogenes, inactivation of tumor-suppressor genes, and dysregulation of multiple signal-transduction pathways. Advances in genetics and gene expression profiling have enhanced our current understanding of the pathways involved in HCV-associated liver cancer development. In this review, we summarize the current understanding of mechanisms of hepatocarcinogenesis induced by HCV infection.
Collapse
Affiliation(s)
- Ming V Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114; , ,
| | | | | |
Collapse
|
19
|
Foka P, Dimitriadis A, Kyratzopoulou E, Giannimaras DA, Sarno S, Simos G, Georgopoulou U, Mamalaki A. A complex signaling network involving protein kinase CK2 is required for hepatitis C virus core protein-mediated modulation of the iron-regulatory hepcidin gene expression. Cell Mol Life Sci 2014; 71:4243-58. [PMID: 24718935 PMCID: PMC11114079 DOI: 10.1007/s00018-014-1621-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/25/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) infection is associated with hepatic iron overload and elevated serum iron that correlate to poor antiviral responses. Hepcidin (HAMP), a 25-aa cysteine-rich liver-specific peptide, controls iron homeostasis. Its expression is up-regulated in inflammation and iron excess. HCV-mediated hepcidin regulation remains controversial. Chronic HCV patients possess relatively low hepcidin levels; however, elevated HAMP mRNA has been reported in HCV core transgenic mice and HCV replicon-expressing cells. We investigated the effect of HCV core protein on HAMP gene expression and delineated the complex interplay of molecular mechanisms involved. HCV core protein up-regulated HAMP promoter activity, mRNA, and secreted protein levels. Enhanced promoter activity was abolished by co-transfections of core with HAMP promoter constructs containing mutated/deleted BMP and STAT binding sites. Dominant negative constructs, pharmacological inhibitors, and silencing experiments against STAT3 and SMAD4 confirmed the participation of both pathways in HAMP gene regulation by core protein. STAT3 and SMAD4 expression levels were found increased in the presence of HCV core, which orchestrated SMAD4 translocation into the nucleus and STAT3 phosphorylation. To further understand the mechanisms governing the core effect, the role of the JAK/STAT-activating kinase CK2 was investigated. A CK2-dominant negative construct, a CK2-specific inhibitor, and RNAi interference abrogated the core-induced increase on HAMP promoter activity, mRNA, and protein levels, while CK2 acted in synergy with core to significantly enhance HAMP gene expression. Therefore, HCV core up-regulates HAMP gene transcription via a complex signaling network that requires both SMAD/BMP and STAT3 pathways and CK2 involvement.
Collapse
Affiliation(s)
- Pelagia Foka
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Alexios Dimitriadis
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Eleni Kyratzopoulou
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Dionysios A. Giannimaras
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Avgi Mamalaki
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
20
|
Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol 2014; 61:S79-90. [PMID: 25443348 PMCID: PMC4435677 DOI: 10.1016/j.jhep.2014.07.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) is one of the major aetiologic agents that causes hepatocellular carcinoma (HCC) by generating an inflammatory, fibrogenic, and carcinogenic tissue microenvironment in the liver. HCV-induced HCC is a rational target for cancer preventive intervention because of the clear-cut high-risk condition, cirrhosis, associated with high cancer incidence (1% to 7% per year). Studies have elucidated direct and indirect carcinogenic effects of HCV, which have in turn led to the identification of candidate HCC chemoprevention targets. Selective molecular targeted agents may enable personalized strategies for HCC chemoprevention. In addition, multiple experimental and epidemiological studies suggest the potential value of generic drugs or dietary supplements targeting inflammation, oxidant stress, or metabolic derangements as possible HCC chemopreventive agents. While the successful use of highly effective direct-acting antiviral agents will make important inroads into reducing long-term HCC risk, there will remain an important role for HCC chemoprevention even after viral cure, given the persistence of HCC risk in persons with advanced HCV fibrosis, as shown in recent studies. The successful development of cancer preventive therapies will be more challenging compared to cancer therapeutics because of the requirement for larger and longer clinical trials and the need for a safer toxicity profile given its use as a preventive agent. Molecular biomarkers to selectively identify high-risk population could help mitigate these challenges. Genome-wide, unbiased molecular characterization, high-throughput drug/gene screening, experimental model-based functional analysis, and systems-level in silico modelling are expected to complement each other to facilitate discovery of new HCC chemoprevention targets and therapies.
Collapse
Affiliation(s)
- Yujin Hoshida
- Liver Cancer Program, Tisch Cancer Institute, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, United States.
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, United States
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, United States
| | - Thomas F Baumert
- INSERM Unité 1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, and Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, France; Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, United States
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, United States.
| |
Collapse
|
21
|
Li HC, Ma HC, Yang CH, Lo SY. Production and pathogenicity of hepatitis C virus core gene products. World J Gastroenterol 2014; 20:7104-7122. [PMID: 24966583 PMCID: PMC4064058 DOI: 10.3748/wjg.v20.i23.7104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/05/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases, including steatosis, cirrhosis and hepatocellular carcinoma, and its infection is also associated with insulin resistance and type 2 diabetes mellitus. HCV, belonging to the Flaviviridae family, is a small enveloped virus whose positive-stranded RNA genome encoding a polyprotein. The HCV core protein is cleaved first at residue 191 by the host signal peptidase and further cleaved by the host signal peptide peptidase at about residue 177 to generate the mature core protein (a.a. 1-177) and the cleaved peptide (a.a. 178-191). Core protein could induce insulin resistance, steatosis and even hepatocellular carcinoma through various mechanisms. The peptide (a.a. 178-191) may play a role in the immune response. The polymorphism of this peptide is associated with the cellular lipid drop accumulation, contributing to steatosis development. In addition to the conventional open reading frame (ORF), in the +1 frame, an ORF overlaps with the core protein-coding sequence and encodes the alternative reading frame proteins (ARFP or core+1). ARFP/core+1/F protein could enhance hepatocyte growth and may regulate iron metabolism. In this review, we briefly summarized the current knowledge regarding the production of different core gene products and their roles in viral pathogenesis.
Collapse
|
22
|
Rojas Á, del Campo JA, Maraver M, Aparcero R, García-Valdecasas M, Diago M, Carmona I, Andrade RJ, Solà R, Romero-Gómez M. Hepatitis C virus infection alters lipid metabolism depending on IL28B polymorphism and viral genotype and modulates gene expression in vivo and in vitro. J Viral Hepat 2014; 21:19-24. [PMID: 24188401 DOI: 10.1111/jvh.12209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/15/2013] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) interacts with lipid receptors to enter the cell, circulates as lipoviroparticle and is secreted as VLDL. We aimed to investigate the role of the rs12979860 polymorphism in the IL28B gene in 143 with chronic hepatitis C genotype 1, 144 infected with genotype 3, 90 genotype 4 and 413 noninfected individuals on lipid profile and to test the impact of HCV infection in an in vitro model on VLDL biosynthesis-related gene expression rs12979860 polymorphism was analysed using real-time PCR coupled to Fluorescence Resonance Energy Transfer (FRET). Huh7.5 (rs12979860 CT) and Huh7 (genotype CC) cells were infected with JFH-1 particles and serum from patients infected with genotypes 1 and 3. Gene expression of apolipoprotein B (apoB), microsomal triglyceride transfer protein (MTP), acetyl CoA carboxylase (ACC), diacylglycerol acyltransferase 2 (DGAT2), diacylglycerol acyltransferase 1 (DGAT1) and low-density lipoprotein receptor (LDLr) genes were determined by semiquantitative RT-PCR in vivo and in vitro. Genotype CC rs12979860 polymorphism was associated with significantly higher serum LDL and total cholesterol levels in patients with hepatitis C genotype 1 but not in patients with hepatitis C genotype 3, genotype 4 and control (noninfected) population. Genotype CC was more often seen in genotype 3 and healthy people in comparison with genotype 1; P = 0.001. In vitro results showed that HCV infection promotes lipid metabolism gene expression induction depending on viral genotype, but to a lesser extent in cells with CT genotype. These results demonstrate that IL28B genotype influences lipid metabolism in patients with hepatitis C but not in noninfected and it seems to be viral genotype-mediated. HCV infection modifies lipid-related genes expression (DGAT1 and DGAT2) in cultured cells based on viral genotype and IL28 polymorphism.
Collapse
Affiliation(s)
- Á Rojas
- UCM Digestive Diseases and CIBERehd, Hospital de Valme, Sevilla, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Izumi N, Asahina Y, Kurosaki M, Yamada G, Kawai T, Kajiwara E, Okamura Y, Takeuchi T, Yokosuka O, Kariyama K, Toyoda J, Inao M, Tanaka E, Moriwaki H, Adachi H, Katsushima S, Kudo M, Takaguchi K, Hiasa Y, Chayama K, Yatsuhashi H, Oketani M, Kumada H. Inhibition of hepatocellular carcinoma by PegIFNα-2a in patients with chronic hepatitis C: a nationwide multicenter cooperative study. J Gastroenterol 2013; 48:382-90. [PMID: 22875473 PMCID: PMC3618412 DOI: 10.1007/s00535-012-0641-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/25/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND We investigated whether the administration of maintenance doses of interferon prevented hepatocellular carcinoma (HCC) in patients with chronic hepatitis C. METHODS Study 1: A multicenter, retrospective, cooperative study was carried out to determine whether long-term administration of low-dose peginterferon alpha-2a (PegIFNα-2a) prevented HCC development in patients with chronic hepatitis C. In total, 594 chronic hepatitis C patients without a history of HCC were enrolled and treated with 90 μg PegIFNα-2a administered weekly or bi-weekly for at least 1 year. Study 2: HCC developed in 16 of 99 additional patients without PegIFNα-2a treatment during 3.8 years of observation. A propensity-matched control study was then carried out to compare the incidence of HCC between the 59 patients who received low-dose PegIFNα-2a (PegIFNα-2a group) and 59 patients who did not receive PegIFNα-2a treatment (control group), matched for sex, age, platelet count, and total bilirubin levels. RESULTS Study 1: HCC developed in 49 patients. The risk of HCC was lower in patients with undetectable hepatitis C virus RNA, ≤40 IU/L alanine aminotransferase (ALT), or ≤10 ng/L alpha-fetoprotein (AFP) 24 weeks after the start of therapy. Study 2: The incidence of HCC was significantly lower in the PegIFNα-2a group than in the control group. CONCLUSIONS Low-dose and long-term maintenance administration of PegIFNα-2a decreased the incidence of HCC in patients with normalized ALT and AFP levels at 24 weeks compared with patients without normal ALT and AFP levels.
Collapse
Affiliation(s)
- Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red-Cross Hospital, Musashino, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shlomai A, Rechtman MM, Burdelova EO, Zilberberg A, Hoffman S, Solar I, Fishman S, Halpern Z, Sklan EH. The metabolic regulator PGC-1α links hepatitis C virus infection to hepatic insulin resistance. J Hepatol 2012; 57:867-73. [PMID: 22732512 DOI: 10.1016/j.jhep.2012.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 05/19/2012] [Accepted: 06/14/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Chronic hepatitis C virus (HCV) infection is strongly associated with insulin resistance and diabetes mellitus. Peroxisome proliferator-activated receptor-gamma co-activator 1α (PGC-1α) is a transcriptional co-activator involved in the initiation of gluconeogenesis in the liver. Increased hepatic expression of PGC-1α has been implicated in insulin resistance. We investigated whether modulation of PGC-1α levels following HCV infection underlies HCV-associated hepatic insulin resistance. METHODS HCV genomes were expressed in hepatoma cells followed by analysis of PGC-1α and gluconeogenesis levels. RESULTS PGC-1α was robustly induced in HCV infected cells. PGC-1α induction was accompanied by an elevated expression of the gluconeogenic gene glucose-6 phosphatase (G6Pase) and increased glucose production. The induction of gluconeogenesis is HCV dependent, since interferon treatment abolishes PGC-1α and G6Pase elevation and decreases glucose output. Moreover, PGC-1α knockdown resulted in a significant reduction of G6Pase levels in HCV full length replicon cells, emphasizing the central role of PGC-1α in the exaggerated gluconeogenic response observed in HCV patients. Treatment of HCV replicon cells with the antioxidant N-acetylcysteine resulted in reduction of PGC-1α levels, suggesting that HCV-induced oxidative stress promoted PGC-1α upregulation. Finally, both PGC-1α and G6Pase RNA levels were significantly elevated in liver samples of HCV infected patients, highlighting the clinical relevance of these results. CONCLUSIONS PGC-1α is robustly induced following HCV infection, resulting in an upregulated gluconeogenic response, thereby linking HCV infection to hepatic insulin resistance. Our results suggest that PGC-1α is a potential molecular target for the treatment of HCV-associated insulin resistance.
Collapse
Affiliation(s)
- Amir Shlomai
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
PPARs and HCV-Related Hepatocarcinoma: A Mitochondrial Point of View. PPAR Res 2012; 2012:605302. [PMID: 22966221 PMCID: PMC3431172 DOI: 10.1155/2012/605302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
Hepatitis-C-virus-related infective diseases are worldwide spread pathologies affecting primarily liver. The infection is often asymptomatic, but when chronically persisting can lead to liver scarring and ultimately to cirrhosis, which is generally apparent after decades. In some cases, cirrhosis will progress to develop liver failure, liver cancer, or life-threatening esophageal and gastric varices. HCV-infected cells undergo profound metabolic dysregulation whose mechanisms are yet not well understood. An emerging feature in the pathogenesis of the HCV-related disease is the setting of a pro-oxidative condition caused by dysfunctions of mitochondria which proved to be targets of viral proteins. This causes deregulation of mitochondria-dependent catabolic pathway including fatty acid oxidation. Nuclear receptors and their ligands are fundamental regulators of the liver metabolic homeostasis, which are disrupted following HCV infection. In this contest, specific attention has been focused on the peroxisome proliferator activated receptors given their role in controlling liver lipid metabolism and the availability of specific pharmacological drugs of potential therapeutic utilization. However, the reported role of PPARs in HCV infection provides conflicting results likely due to different species-specific contests. In this paper we summarize the current knowledge on this issue and offer a reconciling model based on mitochondria-related features.
Collapse
|
26
|
Wu Q, Liu Q. Do hepatitis B virus and hepatitis C virus co-infections increase hepatocellular carcinoma occurrence through synergistically modulating lipogenic gene expression? Hepatol Res 2012; 42:733-40. [PMID: 22487144 DOI: 10.1111/j.1872-034x.2012.00994.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections cause a wide range of liver diseases including hepatocellular carcinoma (HCC). Because of the similar modes of transmission, HBV HCV co-infections are found in approximately 7-20 million people globally. Compared with HBV or HCV mono-infections, co-infections are associated with more severe liver diseases and higher risk of HCC. Abnormal lipid biosynthesis and metabolism has been increasingly recognized as a cause for cancer. While HBV infection does not seem to significantly increase the risk of developing hepatic steatosis, steatosis is a prominent feature of chronic hepatitis C (CHC). In addition, steatosis in HBV or HCV mono-infections is a significant and independent risk factor for HCC. However, whether and how HBV HCV co-infections synergistically increase the risk of HCC development through modulating lipid metabolism is not well understood. Possible mechanisms by which steatosis causes HCC include: activation of sterol regulatory element-binding protein-mediated lipogenesis through the PI3K-Akt pathway, abnormal activation of peroxisome proliferator-activated receptors and endoplasmic reticulum stress. Here, we review the potential mechanisms by which HBV HCV co-infections may increase HCC risk through modulation of lipogenic gene expression. We begin with reviewing the impact of HBV and HCV on host lipogenic gene expression and carcinogenesis. We then discuss the potential mechanisms by which HBV and HCV can increase carcinogenesis through synergistically activating lipid biosynthesis and metabolism. We end by sharing our thoughts on future research directions in this emerging paradigm with an ultimate goal of developing effective therapeutics.
Collapse
Affiliation(s)
- Qi Wu
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
27
|
Lee SY, Song KH, Koo I, Lee KH, Suh KS, Kim BY. Comparison of pathways associated with hepatitis B- and C-infected hepatocellular carcinoma using pathway-based class discrimination method. Genomics 2012; 99:347-54. [PMID: 22564472 DOI: 10.1016/j.ygeno.2012.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 12/25/2022]
Abstract
Molecular signatures causing hepatocellular carcinoma (HCC) from chronic infection of hepatitis B virus (HBV) or hepatitis C virus (HCV) are not clearly known. Using microarray datasets composed of HCV-positive HCC or HBV-positive HCC, pathways that could discriminate tumor tissue from adjacent non-tumor liver tissue were selected by implementing nearest shrunken centroid algorithm. Cancer-related signaling pathways and lipid metabolism-related pathways were predominantly enriched in HCV-positive HCC, whereas functionally diverse pathways including immune-related pathways, cell cycle pathways, and RNA metabolism pathways were mainly enriched in HBV-positive HCC. In addition to differentially involved pathways, signaling pathways such as TGF-β, MAPK, and p53 pathways were commonly significant in both HCCs, suggesting the presence of common hepatocarcinogenesis process. The pathway clustering also verified segregation of pathways into the functional subgroups in both HCCs. This study indicates the functional distinction and similarity on the pathways implicated in the development of HCV- and/or HBV-positive HCC.
Collapse
Affiliation(s)
- Sun Young Lee
- Division of Constitutional Medicine Research, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Ripoli M, Pazienza V. Impact of HCV genetic differences on pathobiology of disease. Expert Rev Anti Infect Ther 2012; 9:747-59. [PMID: 21905784 DOI: 10.1586/eri.11.94] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple HCV genotypes have been isolated worldwide. Genotype seems to be involved in the main pathological aspects of HCV infection. Insulin resistance, steatosis and progression toward cirrhosis, fibrosis and hepatocellular carcinoma establish and develop following genotype-specific mechanisms. Moreover genotype influences pharmacological treatment in term of dose and duration. Pathways involved in cell proliferation, apoptosis, lipid metabolism, insulin and interferon signaling are impaired to a different extent among genotypes, leading to distinct pathological settings. Genotype 1 is associated with a more aggressive disease with increased insulin resistance, worst response to therapy, higher risk of cirrhosis and hepatocellular carcinoma development, while genotype 3 is associated with increased steatosis and fibrosis. The identification and characterization of HCV types and subtypes provides insight into the different outcome of HCV infection and responsiveness to therapy. In the present article, we focused on the pathogenicity of HCV genotypes and their effect on disease progression and treatment.
Collapse
Affiliation(s)
- Maria Ripoli
- Gastroenterology Unit IRCCS Casa Sollievo della Sofferenza Hospital, viale dei Cappuccini n.1, 71013 San Giovanni Rotondo, Italy
| | | |
Collapse
|
29
|
Eslam M, Khattab MA, Harrison SA. Peroxisome proliferator-activated receptors and hepatitis C virus. Therap Adv Gastroenterol 2011; 4:419-431. [PMID: 22043232 PMCID: PMC3187680 DOI: 10.1177/1756283x11405251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The prevalence of type 2 diabetes mellitus and insulin resistance are higher among people chronically infected with hepatitis C (CHC) when compared with the general population and people with other causes of chronic liver disease. Both insulin resistance and diabetes are associated with adverse outcomes across all stages of CHC, including the liver transplant population. CHC is also associated with the development of hepatic steatosis, a common histological feature present in approximately 55% (32-81%) of cases. There is a complex interrelationship between insulin resistance and hepatic steatosis and both are postulated to aggravate each other. The peroxisome proliferator-activated receptors (PPARs) are nuclear factors involved in the regulation of glucose, lipid homeostasis, inflammatory response, cell differentiation, and cell cycle. The relationship between hepatitis C virus replication and PPARs has been the focus of recent study. Given the availability of potent agonists, PPARs may represent a novel pharmacological target in the treatment of CHC.
Collapse
Affiliation(s)
- M Eslam
- Department of Internal Medicine, Minia University, Minia, Egypt
| | | | | |
Collapse
|
30
|
Utsunomiya T, Shimada M. Molecular characteristics of non-cancerous liver tissue in non-B non-C hepatocellular carcinoma. Hepatol Res 2011; 41:711-21. [PMID: 21682827 DOI: 10.1111/j.1872-034x.2011.00818.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although chronic infection with hepatitis B virus (HBV) and/or hepatitis C virus (HCV) are the most important risk factors for the development of hepatocellular carcinoma (HCC) worldwide, the proportion of HCC patients negative for the hepatitis B surface antigen and hepatitis C antibody, so-called "non-B non-C HCC", is rapidly increasing, especially in Japan. The background liver diseases of non-B non-C HCC patients can be multifactorial, including occult HBV infection and non-alcoholic steatohepatitis. It is reasonable to investigate the non-cancerous liver tissues to identify the potential molecular mechanisms responsible for the processes of hepatocarcinogenesis of non-B non-C HCC. However, to date, only a few studies have focused on this research concept based on the idea of "field cancerization". This review highlights the potential importance of the molecular analysis of non-cancerous liver tissues to clarify the molecular characteristics in patients with non-B non-C HCC. A better understanding of the molecular mechanisms underlying the individual predisposition to non-B non-C HCC will lead to improvements in the prevention, early diagnosis and treatment of this neoplastic disease.
Collapse
Affiliation(s)
- Tohru Utsunomiya
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | | |
Collapse
|
31
|
Raglow Z, Thoma-Perry C, Gilroy R, Wan YJY. The interaction between HCV and nuclear receptor-mediated pathways. Pharmacol Ther 2011; 132:30-8. [PMID: 21620888 DOI: 10.1016/j.pharmthera.2011.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/03/2011] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) is presently the leading indication for liver transplantation in Western countries. Treatment for HCV infection includes a combination of pegylated interferon and ribavirin, which produces highly variable response rates. This reflects the lack of information regarding the roles of host and viral components during viral pathogenesis. Vital processes regulated by the liver, including metabolism, lipid homeostasis, cellular proliferation, and the immune response, are known to be systematically dysregulated as a result of persistent HCV infection. Nuclear receptors and their ligands are recognized as indispensable regulators of liver homeostasis. Pathways mediated by the nuclear receptor superfamily have been shown to be profoundly disrupted during HCV infection, leading to an increased importance in elucidating the exact nature of this complex relationship. Expanded understanding of the role of nuclear receptors in HCV infection may therefore be an essential step in the search for a more universally effective treatment.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | |
Collapse
|
32
|
Akiyama T, Mizuta T, Kawazoe S, Eguchi Y, Kawaguchi Y, Takahashi H, Ozaki I, Fujimoto K. Body mass index is associated with age-at-onset of HCV-infected hepatocellular carcinoma patients. World J Gastroenterol 2011; 17:914-21. [PMID: 21412500 PMCID: PMC3051141 DOI: 10.3748/wjg.v17.i7.914] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/29/2010] [Accepted: 10/06/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To identify factors associated with the age at onset of hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC). METHODS Five hundred and fifty-six consecutive patients positive for HCV antibody and treatment-naïve HCC diagnosed between 1995 and 2004 were analyzed. Patients were classified into three groups according to age at HCC onset: < 60 years (n = 79), 60-79 years (n = 439), or ≥ 80 years (n = 38). Differences among groups in terms of sex, body mass index (BMI), lifestyle characteristics, and liver function were assessed. Factors associated with HCC onset in patients < 60 or ≥ 80 years were analyzed by logistic regression analysis. RESULTS Significant differences emerged for sex, BMI, degree of smoking and alcohol consumption, mean bilirubin, alanine aminotransferase (ALT), and γ-glutamyl transpeptidase (GGT) levels, prothrombin activity, and platelet counts. The mean BMI values of male patients > 60 years old were lower and mean BMI values of female patients < 60 years old were higher than those of the general Japanese population. BMI > 25 kg/m² [hazard ratio (HR), 1.8, P = 0.045], excessive alcohol consumption (HR, 2.5, P = 0.024), male sex (HR, 3.6, P = 0.002), and GGT levels > 50 IU/L (HR, 2.4, P = 0.014) were independently associated with HCC onset in patients < 60 years. Low ALT level was the only factor associated with HCC onset in patients aged ≥ 80 years. CONCLUSION Increased BMI is associated with increased risk for early HCC development in HCV-infected patients. Achieving recommended BMI and reducing alcohol intake could help prevent hepatic carcinogenesis.
Collapse
|
33
|
Trapero-Marugán M, Mendoza J, Chaparro M, González-Moreno L, Moreno-Monteagudo JA, Borque MJ, Moreno-Otero R. Long-term outcome of chronic hepatitis C patients with sustained virological response to peginterferon plus ribavirin. World J Gastroenterol 2011; 17:493-8. [PMID: 21274379 PMCID: PMC3027016 DOI: 10.3748/wjg.v17.i4.493] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 10/07/2010] [Accepted: 10/14/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the clinical, biochemical and virological long-term outcome in chronic hepatitis C (CHC) patients with a sustained virological response (SVR) after peginterferon (PEG-IFN) plus ribavirin combination therapy.
METHODS: One hundred and fifty three patients with a SVR after treatment with PEG-IFN plus ribavirin were included in a 5-year follow-up study in a single Spanish center, based on standard clinical practice. Clinical anamnesis, biochemical analysis, hepatitis C virus RNA and alpha-fetoprotein measurement, ultrasonography and transient elastography were performed annually.
RESULTS: The mean follow-up period of the 153 patients was 76 ± 13 mo after they obtained a SVR. Five patients (3.26%) presented with cirrhosis before treatment and 116 (75.8%) had genotype 1. No patient showed evidence of hepatic decompensation. One patient (0.65%) developed a hepatocellular carcinoma at month 30 after achieving SVR. There were no virological relapses during this follow-up period. Persistently elevated alanine aminotransferase was found in only one patient (0.65%). At the end of the 5-year follow-up, the mean value of transient elastography was 7 ± 4.3 kPa (F1). There were no deaths and no other tumors.
CONCLUSION: The long-term outcome of 153 CHC patients with SVR to PEG-IFN plus ribavirin was good. No evidence of a virological relapse was seen. One patient (0.65%) developed a hepatocellular carcinoma.
Collapse
|
34
|
Wang T, Campbell RV, Yi MK, Lemon SM, Weinman SA. Role of Hepatitis C virus core protein in viral-induced mitochondrial dysfunction. J Viral Hepat 2010; 17:784-93. [PMID: 20002299 PMCID: PMC2970657 DOI: 10.1111/j.1365-2893.2009.01238.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) infection results in several changes in mitochondrial function including increased reactive oxygen species (ROS) production and greater sensitivity to oxidant, Ca(2+) and cytokine-induced cell death. Prior studies in protein over-expression systems have shown that this effect can be induced by the core protein, but other viral proteins and replication events may contribute as well. To evaluate the specific role of core protein in the context of viral replication and infection, we compared mitochondrial sensitivity in Huh7-derived HCV replicon bearing cells with or without core protein expression with that of cells infected with the JFH1 virus strain. JFH1 infection increased hydrogen peroxide production and sensitized cells to oxidant-induced loss of mitochondrial membrane potential and cell death. An identical phenomenon occurred in genome-length replicons-bearing cells but not in cells bearing the subgenomic replicons lacking core protein. Both cell death and mitochondrial depolarization were Ca(2+) dependent and could be prevented by Ca(2+) chelation. The difference in the mitochondrial response of the two replicon systems could be demonstrated even in isolated mitochondria derived from the two cell lines with the 'genome-length' mitochondria displaying greater sensitivity to Ca(2+) -induced cytochrome c release. In vitro incubation of 'subgenomic' mitochondria with core protein increased oxidant sensitivity to a level similar to that of mitochondria derived from cells bearing genome-length replicons. These results indicate that increased mitochondrial ROS production and a reduced threshold for Ca(2+) and ROS-induced permeability transition is a characteristic of HCV infection. This phenomenon is a direct consequence of core protein interactions with mitochondria and is present whenever core is expressed, either in infection, full-length replicon-bearing cells, or in over-expression systems.
Collapse
Affiliation(s)
- T. Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - R. V. Campbell
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - M. K. Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - S. M. Lemon
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - S. A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
35
|
Abstract
It is evidenced that both HBV and HCV infections may cause chronic hepatitis, liver cirrhosis and hepatocellular carcinoma (HCC). HCV is considered as an oncogen virus. The mechanism of carcinogenesis in case of the two distinct viruses shows a number of common and different features. HCC usually develops in stage of liver cirrhosis caused by chronic inflammation of many years or decades. In contrast to HBC, HCV will not be incorporated into the genome of hepatocytes. It induces throughout different mechanisms the development of cancer cells, which will proliferate out of control. Before the discovery of HCV, the connection of non-A non-B (NANB) hepatitis and liver cancer has yet been observed. The subsequent epidemiological studies confirmed this association. A number of publications prove that HCC may develop without cirrhosis in HCV infected patients. The exact mechanism is not known, but data indicate that some proteins of the virus may induce oncogenic process. Differences were found in HCV core gene between HCC patients with and without cirrhosis. It is postulated that the virus evolves its oncogenic effect via endoplasmic and oxidative stress, further on by activation of different oncogenic signal pathways. Recent publications indicate the role of virus induced insulin resistance. Besides the virus determined factors, the host reaction, the deficient tumor cell eliminating capacity may also have a role in the development of liver carcinoma. Monitoring of HCV infected patients for HCC is an important clinical issue. Most relevant is the regular ultrasound cheek up. Serum alpha fetoprotein level is elevated only in a smaller proportion of the patients. The treatment protocol of HCV induced HCC does not differ from the others developed in non-HCV liver diseases.
Collapse
Affiliation(s)
- Ferenc Szalay
- Semmelweis Egyetem, Altalános Orvostudományi Kar, I. Belgyógyászati Klinika, Budapest.
| |
Collapse
|
36
|
Banerjee A, Ray RB, Ray R. Oncogenic potential of hepatitis C virus proteins. Viruses 2010; 2:2108-2133. [PMID: 21994721 PMCID: PMC3185750 DOI: 10.3390/v2092108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC). The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors and are involved in a wide range of activities, including cell cycle regulation, transcriptional regulation, cell proliferation, apoptosis, lipid metabolism, and cell growth promotion. Increasing experimental evidences suggest that HCV contributes to HCC by modulating pathways that may promote malignant transformation of hepatocytes. At least four of the 10 HCV gene products, namely core, NS3, NS5A and NS5B play roles in several potentially oncogenic pathways. Induction of both endoplasmic reticulum (ER) stress and oxidative stress by HCV proteins may also contribute to hepatocyte growth promotion. The current review identifies important functions of the viral proteins connecting HCV infections and potential for development of HCC. However, most of the putative transforming potentials of the HCV proteins have been defined in artificial cellular systems, and need to be established relevant to infection and disease models. The new insight into the mechanisms for HCV mediated disease progression may offer novel therapeutic targets for one of the most devastating human malignancies in the world today.
Collapse
Affiliation(s)
- Arup Banerjee
- Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA; E-Mail:
| | - Ratna B. Ray
- Department of Pathology, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 2nd Floor, St. Louis, MO 63104, USA; E-Mail:
| | - Ranjit Ray
- Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA; E-Mail:
- Molecular Microbiology & Immunology, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 1-314- 977-9034; Fax: 1-314-771-3816
| |
Collapse
|
37
|
Woodhouse SD, Narayan R, Latham S, Lee S, Antrobus R, Gangadharan B, Luo S, Schroth GP, Klenerman P, Zitzmann N. Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and metabolic impact of hepatitis C virus infection in vitro. Hepatology 2010; 52:443-53. [PMID: 20683944 PMCID: PMC3427885 DOI: 10.1002/hep.23733] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a major cause of liver disease but the full impact of HCV infection on the hepatocyte is poorly understood. RNA sequencing (RNA-Seq) is a novel method to analyze the full transcriptional activity of a cell or tissue, thus allowing new insight into the impact of HCV infection. We conducted the first full-genome RNA-Seq analysis in a host cell to analyze infected and noninfected cells, and compared this to microarray and proteomic analyses. The combined power of the triple approach revealed that HCV infection affects a number of previously unreported canonical pathways and biological functions, including pregnane X receptor/retinoic acid receptor activation as a potential host antiviral response, and integrin-linked kinase signaling as an entry factor. This approach also identified several mechanisms implicated in HCV pathogenesis, including an increase in reactive oxygen species. HCV infection had a broad effect on cellular metabolism, leading to increases in cellular cholesterol and free fatty acid levels, associated with a profound and specific decrease in cellular glucose levels. CONCLUSION RNA-Seq technology, especially when combined with established methods, demonstrated that HCV infection has potentially wide-ranging effects on cellular gene and protein expression. This in vitro study indicates a substantial metabolic impact of HCV infection and highlights new mechanisms of virus-host interaction which may be highly relevant to pathogenesis in vivo.
Collapse
Affiliation(s)
- Stephen D Woodhouse
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Ramamurthy Narayan
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of OxfordOxford, United Kingdom
| | - Sally Latham
- Oxford Glycobiology Institute, Department of Biochemistry, University of OxfordOxford, United Kingdom
| | - Sheena Lee
- Oxford Centre for Gene Function, Department of Human Anatomy, Physiology and Genetics, University of OxfordOxford, United Kingdom
| | - Robin Antrobus
- Oxford Glycobiology Institute, Department of Biochemistry, University of OxfordOxford, United Kingdom
| | - Bevin Gangadharan
- Oxford Glycobiology Institute, Department of Biochemistry, University of OxfordOxford, United Kingdom
| | | | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of OxfordOxford, United Kingdom
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of OxfordOxford, United Kingdom
| |
Collapse
|
38
|
Tsai WL, Chung RT. Viral hepatocarcinogenesis. Oncogene 2010; 29:2309-24. [PMID: 20228847 PMCID: PMC3148694 DOI: 10.1038/onc.2010.36] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/29/2009] [Accepted: 01/06/2010] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Despite recent advances in the diagnosis and treatment of HCC, its prognosis remains dismal. Infection with hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major risk factors for HCC. Although both are hepatotropic viral infections, there are important differences between the oncogenic mechanisms of these two viruses. In addition to the oncogenic potential of its viral proteins, HBV, as a DNA virus, can integrate into host DNA and directly transform hepatocytes. In contrast, HCV, an RNA virus, is unable to integrate into the host genome, and viral protein expression has a more critical function in hepatocarcinogenesis. Both HBV and HCV proteins have been implicated in disrupting cellular signal transduction pathways that lead to unchecked cell growth. Most HCC develops in the cirrhotic liver, but the linkage between cirrhosis and HCC is likely multifactorial. In this review, we summarize current knowledge regarding the pathogenetic mechanisms of viral HCC.
Collapse
Affiliation(s)
- W-L Tsai
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - RT Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Kanmura S, Uto H, Sato Y, Kumagai K, Sasaki F, Moriuchi A, Oketani M, Ido A, Nagata K, Hayashi K, Stuver SO, Tsubouchi H. The complement component C3a fragment is a potential biomarker for hepatitis C virus-related hepatocellular carcinoma. J Gastroenterol 2010; 45:459-67. [PMID: 20012107 DOI: 10.1007/s00535-009-0160-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/28/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a high mortality rate, and early detection of HCC improves patient survival. However, the molecular diagnostic markers for early HCC have not been fully elucidated. The aim of this study was to identify novel diagnostic markers for HCC. METHODS Serum protein profiles of 45 hepatitis C virus infection (HCV)-related HCC patients (HCV-HCC) were compared to 42 HCV-related chronic liver disease patients without HCC (HCV-CLD) and 21 healthy volunteers using the ProteinChip SELDI system. One of the identified proteins was evaluated as a diagnostic marker for HCC in patients with HCV. RESULTS Five protein peaks (4067, 4470, 7564, 7929, and 8130 m/z) had p-values less than 1 x 10(-7) and were significantly increased in the sera of HCV-HCC patients compared to HCV-CLD patients and healthy volunteers. Among these proteins, an 8130 m/z peak was the most differentially expressed and identified as the complement component 3a (C3a) fragment. For HCV-HCC and HCV-CLD, the relative intensity of this C3a fragment had the best area under the ROC curve [0.70], followed by des-gamma-carboxy prothrombin (DCP) [0.68], lectin-bound alpha fetoprotein (AFP-L3) [0.58] and AFP [0.53] for HCC. A combined analysis of the C3a fragment, AFP and DCP led to a 98% positive identification rate. In addition, the measurable C3a fragment in some HCC patients was not only significantly higher in the year of HCC onset compared to the pre-onset year, but also decreased after treatment. CONCLUSIONS The 8130 m/z C3a fragment is a potential marker for the early detection of HCV-related HCC.
Collapse
Affiliation(s)
- Shuji Kanmura
- Digestive Disease and Life-style Related Disease Health Research, Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Hepatitis C virus (HCV) causes significant morbidity and mortality worldwide with nearly 3% of the world population infected by this virus. Fortunately, this virus does not establish latency, and hence it may be possible to eradicate it. HCV is strongly associated with liver cirrhosis and hepatocellular carcinoma and is currently treated with pegylated interferon-alpha (peg-IFN-alpha) and ribavirin. Unfortunately, these limited treatment options often produce significant side effects, and currently, complete eradication of virus with combined drug modalities has not yet been achieved for the majority of chronically HCV-infected individuals. Restricted treatment options, lack of a universal cure for HCV and the link between chronic infection, liver cirrhosis and hepatocellular carcinoma necessitate design of novel drugs and treatment options. Understanding the relationship between the immune response, viral clearance and inhibition of viral replication with pharmacology-based design can ultimately allow for complete eradication of HCV. This review focuses upon significant novel preclinical and clinical specifically targeted antiviral therapy (STAT-C) drugs under development, highlights their mechanism of action, and discusses their impact on systemic viral loads and permanent clearance of infection.
Collapse
Affiliation(s)
- R F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Veterans Affairs Medical Center/Emory University School of Medicine, Atlanta, GA, USA.
| | | | | |
Collapse
|
41
|
Utsunomiya T, Shimada M, Imura S, Morine Y, Ikemoto T, Mori M. Molecular signatures of noncancerous liver tissue can predict the risk for late recurrence of hepatocellular carcinoma. J Gastroenterol 2010; 45:146-52. [PMID: 19997856 DOI: 10.1007/s00535-009-0164-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 11/01/2009] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy mainly due to tumor metastases or recurrence even after undergoing potentially curative treatment. There are two types of HCC recurrence. The early and late tumor recurrences appear in distinct biological contexts, and their clinical courses are quite different. Therefore, it is important to precisely and distinctly discriminate the risk of each type of HCC recurrence. Many researchers have used DNA microarray technology to reclassify HCC with respect to its malignant potential. Some of these studies successfully identified specific gene-expression signatures derived from the cancerous tissues of HCC for predicting the early recurrence due to intrahepatic metastasis. However, there are no well-defined predictors for late recurrence. Recently, a few studies have focused on the nontumorous portion of liver tissues to predict late recurrence, possibly due to de novo hepatocarcinogenesis based on the idea of "field cancerization." This study reviewed the possible value of a gene-expression analysis of noncancerous liver tissue to clarify the risk for multicentric late recurrence of HCC. These findings may have important implications for chemopreventive strategies and tailored surveillance programs. Furthermore, this approach may also be applicable to other multifocal tumors, such as head and neck carcinoma.
Collapse
Affiliation(s)
- Tohru Utsunomiya
- Cancer Clinical Cooperation Center, Tokushima University Hospital, l3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The hepatitis C virus (HCV) induces lipid accumulation in vitro and in vivo. The pathogenesis of steatosis is due to both viral and host factors. Viral steatosis is mostly reported in patients with genotype 3a, whereas metabolic steatosis is often associated with genotype 1 and metabolic syndrome. Several molecular mechanisms responsible for steatosis have been associated with the HCV core protein, which is able to induce gene expression and activity of sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor γ (PPARγ), increasing the transcription of genes involved in hepatic fatty acid synthesis. Steatosis has been also implicated in viral replication. In infected cells, HCV core protein is targeted to lipid droplets which serve as intracellular storage organelles. These studies have shown that lipid droplets are essential for virus assembly. Thus, HCV promotes steatosis as an efficient mechanism for stable viral replication. Chronic HCV infection can also induce insulin resistance. In patients with HCV, insulin resistance is more strongly associated with viral load than visceral obesity. HCV seems to lead to insulin resistance through interference of intracellular insulin signalling by HCV proteins, mainly, the serine phosphorylation of insulin receptor-1 (IRS-1) and impairment of the downstream Akt signalling pathway. The HCV core protein interferes with in vitro insulin signalling by genotype-specific mechanisms, where the role of suppressor of cytokine signal 7 (SOCS-7) in genotype 3a and mammalian target of rapamycin (mTOR) in genotype 1 in IRS-1 downregulation play key roles. Steatosis and insulin resistance have been associated with fibrosis progression and a reduced rate of sustained response to peginterferon plus ribavirin.
Collapse
|
43
|
Negro F, Clément S. Impact of obesity, steatosis and insulin resistance on progression and response to therapy of hepatitis C. J Viral Hepat 2009; 16:681-8. [PMID: 19732324 DOI: 10.1111/j.1365-2893.2009.01186.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical progression of chronic hepatitis C depends on several cofactors, which also have a negative affect on the rate of response to interferon-alpha-based therapy. Given the current worldwide prevalence of the metabolic syndrome, the impact of obesity and insulin resistance, and of their histopathological correlate, hepatic steatosis, on the natural history and management of chronic hepatitis C is undoubtedly very important. We will review some of the current knowledge on the clinical consequences of overweight/obesity, steatosis and insulin resistance on chronic hepatitis C, and discuss how this issue may be dealt with in clinical practice.
Collapse
Affiliation(s)
- F Negro
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.
| | | |
Collapse
|