1
|
Chang ML, Cheng JS, Chen WT, Shen YJ, Kuo CJ, Chien RN. Mixed cryoglobulinemia decelerates hepatocellular carcinoma development in hepatitis C patients with SVR by downregulating regulatory B cells: a 12-year prospective cohort study. Oncoimmunology 2025; 14:2470128. [PMID: 40008547 DOI: 10.1080/2162402x.2025.2470128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
How mixed cryoglobulinemia (MC) affects cancer risk in chronic hepatitis C patients with sustained virologic response (SVR) remains unclear. In a 12-year prospective study, post-SVR MC was assessed every 3‒6 months. Among the 891 SVR patients, 265 (29.7%) had baseline (24 weeks after completing anti-HCV therapy) MC, and the 12-year cancer cumulative incidence was 19.7%. Among the 73 patients who developed cancer, 37 (50.7%) had hepatocellular carcinoma (HCC), with the following associated baseline variables: for cancer, male sex, age and alanine aminotransferase (ALT) levels; for HCC, male sex, age, and cirrhosis; and for non-HCC cancer, rheumatoid factor levels. Among patients with post-SVR HCC, the mean time to HCC was longer in those with than in those without baseline MC (1545.4 ± 276.5 vs. 856.9 ± 115.2 days, p = 0.014). Patients with baseline MC had decreased circulating interleukin-10 (IL-10)-positive B cell (CD19+IL-10+cells/CD19+cells) (31.24 ± 16.14 vs. 40.08 ± 15.42%, p = 0.031), regulatory B cell (Breg) (CD19+CD24hi CD27+cells/CD19+cells) (10.45 ± 7.10 vs. 15.76 ± 9.14%, p = 0.035), IL-10-positive Breg (CD19+CD24hiCD27+IL-10+cells/CD19+cells) (5.06 ± 4.68 vs. 8.83 ± 5.46%, p = 0.015) and HCC-infiltrating Breg (18.6 ± 10 vs. 33.51 ± 6.8%, p = 0.022) ratios but comparable circulating and HCC-infiltrating regulatory T cell ratios relative to patients without baseline MC. In conclusion, old male SVR patients with elevated ALT levels or cirrhosis require intensive monitoring for cancer development, especially HCC. Tailored HCC follow-up is needed for SVR patients according to their baseline MC, which might downregulate Bregs to decelerate HCC development for almost 2 years.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jur-Shan Cheng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ting Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Jyun Shen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Jung Kuo
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Rong-Nan Chien
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Alrasheed AR, Awadalla M, Alnajran H, Alammash MH, Almaqati AM, Qadri I, Alosaimi B. Harnessing immunotherapeutic molecules and diagnostic biomarkers as human-derived adjuvants for MERS-CoV vaccine development. Front Immunol 2025; 16:1538301. [PMID: 40181980 PMCID: PMC11965926 DOI: 10.3389/fimmu.2025.1538301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
The pandemic potential of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) highlights the critical need for effective vaccines due to its high fatality rate of around 36%. In this review, we identified a variety of immunotherapeutic molecules and diagnostic biomarkers that could be used in MERS vaccine development as human-derived adjuvants. We identified immune molecules that have been incorporated into standard clinical diagnostics such as CXCL10/IP10, CXCL8/IL-8, CCL5/RANTES, IL-6, and the complement proteins Ca3 and Ca5. Utilization of different human monoclonal antibodies in the treatment of MERS-CoV patients demonstrates promising outcomes in combatting MERS-CoV infections in vivo, such as hMS-1, 4C2H, 3B11-N, NBMS10-FC, HR2P-M2, SAB-301, M336, LCA60, REGN3051, REGN3048, MCA1, MERs-4, MERs-27, MERs-gd27, and MERs-gd33. Host-derived adjuvants such as CCL28, CCL27, RANTES, TCA3, and GM-CSF have shown significant improvements in immune responses, underscoring their potential to bolster both systemic and mucosal immunity. In conclusion, we believe that host-derived adjuvants like HBD-2, CD40L, and LL-37 offer significant advantages over synthetic options in vaccine development, underscoring the need for clinical trials to validate their efficacy.
Collapse
Affiliation(s)
- Abdullah R. Alrasheed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maaweya Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Hadeel Alnajran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Adil M. Almaqati
- Riyadh Regional Laboratory, Ministry of Health, Riyadh, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Rodriguez P, Laskowski LJ, Pallais JP, Bock HA, Cavalco NG, Anderson EI, Calkins MM, Razzoli M, Sham YY, McCorvy JD, Bartolomucci A. Functional profiling of the G protein-coupled receptor C3aR1 reveals ligand-mediated biased agonism. J Biol Chem 2024; 300:105549. [PMID: 38072064 PMCID: PMC10796979 DOI: 10.1016/j.jbc.2023.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are leading druggable targets for several medicines, but many GPCRs are still untapped for their therapeutic potential due to poor understanding of specific signaling properties. The complement C3a receptor 1 (C3aR1) has been extensively studied for its physiological role in C3a-mediated anaphylaxis/inflammation, and in TLQP-21-mediated lipolysis, but direct evidence for the functional relevance of the C3a and TLQP-21 ligands and signal transduction mechanisms are still limited. In addition, C3aR1 G protein coupling specificity is still unclear, and whether endogenous ligands, or drug-like compounds, show ligand-mediated biased agonism is unknown. Here, we demonstrate that C3aR1 couples preferentially to Gi/o/z proteins and can recruit β-arrestins to cause internalization. Furthermore, we showed that in comparison to C3a63-77, TLQP-21 exhibits a preference toward Gi/o-mediated signaling compared to β-arrestin recruitment and internalization. We also show that the purported antagonist SB290157 is a very potent C3aR1 agonist, where antagonism of ligand-stimulated C3aR1 calcium flux is caused by potent β-arrestin-mediated internalization. Finally, ligand-mediated signaling bias impacted cell function as demonstrated by the regulation of calcium influx, lipolysis in adipocytes, phagocytosis in microglia, and degranulation in mast cells. Overall, we characterize C3aR1 as a Gi/o/z-coupled receptor and demonstrate the functional relevance of ligand-mediated signaling bias in key cellular models. Due to C3aR1 and its endogenous ligands being implicated in inflammatory and metabolic diseases, these results are of relevance toward future C3aR1 drug discovery.
Collapse
Affiliation(s)
- Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hailey A Bock
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Natalie G Cavalco
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
4
|
Meri S, Magrini E, Mantovani A, Garlanda C. The Yin Yang of Complement and Cancer. Cancer Immunol Res 2023; 11:1578-1588. [PMID: 37902610 DOI: 10.1158/2326-6066.cir-23-0399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023]
Abstract
Cancer-related inflammation is a crucial component of the tumor microenvironment (TME). Complement activation occurs in cancer and supports the development of an inflammatory microenvironment. Complement has traditionally been considered a mechanism of immune resistance against cancer, and its activation is known to contribute to the cytolytic effects of antibody-based immunotherapeutic treatments. However, several studies have recently revealed that complement activation may exert protumoral functions by sustaining cancer-related inflammation and immunosuppression through different molecular mechanisms, targeting both the TME and cancer cells. These new discoveries have revealed that complement manipulation can be considered a new strategy for cancer therapies. Here we summarize our current understanding of the mechanisms by which the different elements of the complement system exert antitumor or protumor functions, both in preclinical studies and in human tumorigenesis. Complement components can serve as disease biomarkers for cancer stratification and prognosis and be exploited for tumor treatment.
Collapse
Affiliation(s)
- Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University and University Hospital of Helsinki, Helsinki, Finland
| | | | - Alberto Mantovani
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
5
|
Ge X, Yu Z, Guo X, Li L, Ye L, Ye M, Yuan J, Zhu C, Hu W, Hou Y. Complement and complement regulatory proteins are upregulated in lungs of COVID-19 patients. Pathol Res Pract 2023; 247:154519. [PMID: 37244049 PMCID: PMC10165854 DOI: 10.1016/j.prp.2023.154519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
We explored the pathological changes and the activation of local complement system in COVID-19 pneumonia. Lung paraffin sections of COVID-19 infected patients were analyzed by HE (hematoxylin-eosin) staining. The deposition of complement C3, the deposition of C3b/iC3b/C3d and C5b-9, and the expression of complement regulatory proteins, CD59, CD46 and CD55 were detected by immunohistochemistry. In COVID-19 patients' lung tissues, fibrin exudation, mixed with erythrocyte, alveolar macrophage and shed pneumocyte are usually observed in the alveoli. The formation of an "alveolar emboli" structure may contribute to thrombosis and consolidation in lung tissue. In addition, we also found that compared to normal tissue, the lung tissues of COVID-19 patients displayed the hyper-activation of complement that is represented by extensive deposition of C3, C3b/iC3b/C3d and C5b-9, and the increased expression level of complement regulatory proteins CD55, and especially CD59 but not CD46. The thrombosis and consolidation in lung tissues may contribute to the pathogenesis of COVID-19. The increased expression of CD55 and CD59 may reflect a feedback of self-protection on the complement hyper-activation. Further, the increased C3 deposition and the strongly activated complement system in lung tissues may suggest the rationale of complement-targeted therapeutics in conquering COVID-19.
Collapse
Affiliation(s)
- Xiaowen Ge
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Xinxin Guo
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Dongan Road 270, Shanghai 200032, PR China
| | - Ling Ye
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Maosong Ye
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Chouwen Zhu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Dongan Road 270, Shanghai 200032, PR China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China.
| |
Collapse
|
6
|
Xiao Z, Yeung CLS, Yam JWP, Mao X. An update on the role of complement in hepatocellular carcinoma. Front Immunol 2022; 13:1007382. [PMID: 36341431 PMCID: PMC9629811 DOI: 10.3389/fimmu.2022.1007382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
As a main producer of complement, the environment in the liver is greatly affected by the complement system. Although the complement system is considered to have the ability of nonself discrimination, remarkable studies have revealed the tight association between improper complement activation in tumour initiation and progression. As complement activation predominantly occurs within the liver, the protumourigenic role of the complement system may contribute to the development of hepatocellular carcinoma (HCC). Improvement in the understanding of the molecular targets involved in complement-mediated tumour development, metastasis, and tumour-promoting inflammation in HCC would certainly aid in the development of better treatments. This minireview is focused on recent findings of the protumourigenic role of the complement system in HCC.
Collapse
Affiliation(s)
- Zhijie Xiao
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Charlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Faculty of Medicine, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Faculty of Medicine, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaowen Mao
- Department of Pathology, School of Clinical Medicine, Faculty of Medicine, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Xiaowen Mao,
| |
Collapse
|
7
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
Li G, Guo X. LncRNA STARD13-AS blocks lung squamous carcinoma cells growth and movement by targeting miR-1248/C3A. Pulm Pharmacol Ther 2020; 64:101949. [PMID: 32949706 DOI: 10.1016/j.pupt.2020.101949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND This research aims to illustrate the effect of lncRNA StAR Related Lipid Transfer Domain Containing 13 antisense RN (STARD13-AS)/miR-1248/C3A on lung squamous carcinoma cells growth and metastasis. METHODS Bioinformatics analysis was applied to detect the expression of STARD13-AS/miR-1248/C3A in lung cancer samples and establish the ceRNA network. Transfection was performed to construct over-expression or knockdown models. PCR was implemented to examine the transfection efficiency. The biological function including growth, invasion and migration of LUSC cells were estimated by CCK-8 analysis, colony formation assay and transwell assay. Luciferase assay was executed to analyze the relationship between C3A and miR-1248, as well as miR-1248 and STARD13-AS. RESULTS By consulting the TCGA database and GEPIA website, we found that C3A expression was significantly reduced in LUSC samples. Additionally, we also discovered that miR-1248, which was a downstream target of STARD13-AS, was presented as an upstream regulator of C3A. Moreover, STARD13-AS was under expressed in LUSC cells and has a negative effect on LUSC cells growth ability. C3A expression was co-regulated by miR-1248 and STARD13-AS. Importantly, the inhibitory effect of C3A or the promoting effect of miR-1248 on LUSC cells growth, invasion and migration abilities can be regulated by STARD13-AS. CONCLUSIONS Our findings revealed that overexpression of STARD13-AS restricted the growth and aggressiveness of LUSC cells via regulating miR-1248/C3A.
Collapse
Affiliation(s)
- Guosen Li
- Queen Mary School of Medical College, Jiangxi Medical College, Qianhu Campus, Nanchang University, No. 1299 Xuefu Street, Nanchang, Jiangxi, China.
| | - Xiangyun Guo
- Department of Internal Medicine, Jining Infectious Disease Hospital, Jiu Mi Gu Dui, Rencheng District, Jining, Shandong, China
| |
Collapse
|
9
|
Laskowski J, Renner B, Pickering MC, Serkova NJ, Smith-Jones PM, Clambey ET, Nemenoff RA, Thurman JM. Complement factor H-deficient mice develop spontaneous hepatic tumors. J Clin Invest 2020; 130:4039-4054. [PMID: 32369457 PMCID: PMC7410061 DOI: 10.1172/jci135105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is difficult to detect, carries a poor prognosis, and is one of few cancers with an increasing yearly incidence. Molecular defects in complement factor H (CFH), a critical regulatory protein of the complement alternative pathway (AP), are typically associated with inflammatory diseases of the eye and kidney. Little is known regarding the role of CFH in controlling complement activation within the liver. While studying aging CFH-deficient (fH-/-) mice, we observed spontaneous hepatic tumor formation in more than 50% of aged fH-/- males. Examination of fH-/- livers (3-24 months) for evidence of complement-mediated inflammation revealed widespread deposition of complement-activation fragments throughout the sinusoids, elevated transaminase levels, increased hepatic CD8+ and F4/80+ cells, overexpression of hepatic mRNA associated with inflammatory signaling pathways, steatosis, and increased collagen deposition. Immunostaining of human HCC biopsies revealed extensive deposition of complement fragments within the tumors. Investigating the Cancer Genome Atlas also revealed that increased CFH mRNA expression is associated with improved survival in patients with HCC, whereas mutations are associated with worse survival. These results indicate that CFH is critical for controlling complement activation in the liver, and in its absence, AP activation leads to chronic inflammation and promotes hepatic carcinogenesis.
Collapse
Affiliation(s)
- Jennifer Laskowski
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brandon Renner
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College of London, London, United Kingdom
| | - Natalie J. Serkova
- Department of Medicine, Radiology
- Department of Medicine, Radiation Oncology, and
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter M. Smith-Jones
- Department of Medicine, Radiology
- Department of Medicine, Radiation Oncology, and
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Raphael A. Nemenoff
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joshua M. Thurman
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
10
|
Zhu J, Warner E, Parikh ND, Lubman DM. Glycoproteomic markers of hepatocellular carcinoma-mass spectrometry based approaches. MASS SPECTROMETRY REVIEWS 2019; 38:265-290. [PMID: 30472795 PMCID: PMC6535140 DOI: 10.1002/mas.21583] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/19/2018] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most-common cause of cancer-related death worldwide. Most cases of HCC develop in patients that already have liver cirrhosis and have been recommended for surveillance for an early onset of HCC. Cirrhosis is the final common pathway for several etiologies of liver disease, including hepatitis B and C, alcohol, and increasingly non-alcoholic fatty liver disease. Only 20-30% of patients with HCC are eligible for curative therapy due primarily to inadequate early-detection strategies. Reliable, accurate biomarkers for HCC early detection provide the highest likelihood of curative therapy and survival; however, current early-detection methods that use abdominal ultrasound and serum alpha fetoprotein are inadequate due to poor adherence and limited sensitivity and specificity. There is an urgent need for convenient and highly accurate validated biomarkers for HCC early detection. The theme of this review is the development of new methods to discover glycoprotein-based markers for detection of HCC with mass spectrometry approaches. We outline the non-mass spectrometry based methods that have been used to discover HCC markers including immunoassays, capillary electrophoresis, 2-D gel electrophoresis, and lectin-FLISA assays. We describe the development and results of mass spectrometry-based assays for glycan screening based on either MALDI-MS or ESI analysis. These analyses might be based on the glycan content of serum or on glycan screening for target molecules from serum. We describe some of the specific markers that have been developed as a result, including for proteins such as Haptoglobin, Hemopexin, Kininogen, and others. We discuss the potential role for other technologies, including PGC chromatography and ion mobility, to separate isoforms of glycan markers. Analyses of glycopeptides based on new technologies and innovative softwares are described and also their potential role in discovery of markers of HCC. These technologies include new fragmentation methods such as EThcD and stepped HCD, which can identify large numbers of glycopeptide structures from serum. The key role of lectin extraction in various assays for intact glycopeptides or their truncated versions is also described, where various core-fucosylated and hyperfucosylated glycopeptides have been identified as potential markers of HCC. Finally, we describe the role of LC-MRMs or lectin-FLISA MRMs as a means to validate these glycoprotein markers from patient samples. These technological advancements in mass spectrometry have the potential to lead to novel biomarkers to improve the early detection of HCC.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, The University of Michigan, Ann Arbor 48109, Michigan
| | - Elisa Warner
- Department of Surgery, The University of Michigan, Ann Arbor 48109, Michigan
| | - Neehar D. Parikh
- Department of Internal Medicine, The University of Michigan, Ann Arbor 48109, Michigan
| | - David M. Lubman
- Department of Surgery, The University of Michigan, Ann Arbor 48109, Michigan
| |
Collapse
|
11
|
Ajona D, Ortiz-Espinosa S, Pio R. Complement anaphylatoxins C3a and C5a: Emerging roles in cancer progression and treatment. Semin Cell Dev Biol 2017; 85:153-163. [PMID: 29155219 DOI: 10.1016/j.semcdb.2017.11.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Recent insights into the role of complement anaphylatoxins C3a and C5a in cancer provide new opportunities for the development of innovative biomarkers and therapeutic strategies. These two complement activation products can maintain chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and increase the motility and metastatic potential of cancer cells. Still, the diverse heterogeneity of responses mediated by these peptides poses a challenge both to our understanding of the role played by these molecules in cancer progression and to the development of effective treatments. This review attempts to summarize the evidence surrounding the involvement of anaphylatoxins in the biological contexts associated with tumor progression. We also describe the recent developments that support the inhibition of anaphylatoxins, or their cognate receptors C3aR and C5aR1, as a treatment option for maximizing the clinical efficacy of current immunotherapies that target the PD-1/PD-L1 immune checkpoint.
Collapse
Affiliation(s)
- Daniel Ajona
- University of Navarra, Center for Applied Medical Research (CIMA), Program in Solid Tumors and Biomarkers, Pamplona, Spain; Navarra's Health Research Institute (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Sergio Ortiz-Espinosa
- University of Navarra, Center for Applied Medical Research (CIMA), Program in Solid Tumors and Biomarkers, Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Ruben Pio
- University of Navarra, Center for Applied Medical Research (CIMA), Program in Solid Tumors and Biomarkers, Pamplona, Spain; Navarra's Health Research Institute (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain.
| |
Collapse
|
12
|
Effects of Well-Controlled HIV Infection on Complement Activation and Function. J Acquir Immune Defic Syndr 2017; 73:20-6. [PMID: 27192377 DOI: 10.1097/qai.0000000000001079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Uncontrolled HIV infection is known to activate the complement system, leading to an increase in chronic inflammation. Whether or not this activation of complement persists and contributes to chronic inflammation in subjects with HIV infection that is well controlled through use of antiretroviral therapy has not been studied. METHODS We conducted an observational, cross-sectional study using sera from 305 adults with well-controlled HIV infection and 30 healthy controls. Sera was tested for markers of complement activation (C3a and C5a levels), complement function (CH50 assay), and immunoglobulin levels (IgG1-IgG4) as IgG can activate complement. We evaluated the association of well-controlled HIV infection with C3a, C5a, CH50, IgG1-IgG4, and total IgG levels using both univariate and multivariate analyses, controlling for factors such as age, sex, race, comorbidities (including hepatitis C coinfection), smoking status, and statin use. RESULTS Well-controlled HIV infection was associated with a 54% increase in complement activation as measured by C3a levels compared with healthy controls (P < 0.0001). Hepatitis C coinfection was associated with a further 52% increase in complement activation, as measured by C3a levels, over HIV alone (P = 0.003). CONCLUSION These results suggest that complement activation may contribute to a proinflammatory state even in well-controlled HIV infection. Furthermore, hepatitis C virus coinfection may be even more proinflammatory, in complement activation, compared with HIV infection alone.
Collapse
|
13
|
Nan P, Yan S, Wang Y, Du Q, Chang Z. Gene expression profile changes induced by acute toxicity of [C 16 mim]Cl in loach (Paramisgurnus dabryanus). ENVIRONMENTAL TOXICOLOGY 2017; 32:404-416. [PMID: 26892570 DOI: 10.1002/tox.22244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Ionic liquids (ILs) are widely used as reaction media in various commercial applications. Many reports have indicated that most ILs are poorly decomposed by microorganisms and are toxic to aquatic organisms. In this study, differential gene expression profiling was conducted using a suppression subtraction hybridization cDNA library from hepatic tissue of the loach (Paramisgurnus dabryanus) after exposure to 1-hexadecyl-3-methylimidazolium chloride ([C16 mim]Cl), a representative IL. Two hundred and fifty-nine differentially expressed candidate genes, whose expression was altered by >2.0-fold by the [C16 mim]Cl treatment, were identified, including 127 upregulated genes and 132 downregulated genes. A gene ontology analysis of the known genes isolated in this study showed that [C16 mim]Cl-responsive genes were involved in cell cycle, stimulus response, defense response, DNA damage response, oxidative stress responses, and other biological responses. To identify candidate genes that may be involved in [C16 mim]Cl-induced toxicity, 259 clones were examined by Southern blot macroarray hybridization, and 20 genes were further characterized using quantitative real-time polymerase chain reaction. Finally, six candidate genes were selected, including three DNA damage response genes, two toxic substance metabolic genes, and one stress protein gene. Our results indicate that these changes in gene expression are associated with [C16 mim]Cl-induced toxicity, and that these six candidate genes can be promising biomarkers for detecting [C16 mim]Cl-induced toxicity. Therefore, this study demonstrates the use of a powerful assay to identify genes potentially involved in [C16 mim]Cl toxicity, and it provides a foundation for the further study of related genes and the molecular mechanism of [C16 mim]Cl toxicity. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 404-416, 2017.
Collapse
Affiliation(s)
- Ping Nan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, No.46, East Jianshe Road, Xinxiang, Henan, 453007, China
| | - Shuaiguo Yan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, No.46, East Jianshe Road, Xinxiang, Henan, 453007, China
| | - Yaxing Wang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, No.46, East Jianshe Road, Xinxiang, Henan, 453007, China
| | - Qiyan Du
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, No.46, East Jianshe Road, Xinxiang, Henan, 453007, China
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, No.46, East Jianshe Road, Xinxiang, Henan, 453007, China
| |
Collapse
|
14
|
Hu J, Mo Y, Gao Z, Wang X, Gu M, Liang Y, Cheng X, Hu S, Liu W, Liu H, Chen S, Liu X, Peng D, Liu X. PA-X-associated early alleviation of the acute lung injury contributes to the attenuation of a highly pathogenic H5N1 avian influenza virus in mice. Med Microbiol Immunol 2016; 205:381-95. [PMID: 27289459 PMCID: PMC7086737 DOI: 10.1007/s00430-016-0461-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022]
Abstract
PA-X is a novel discovered accessory protein encoded by the PA mRNA. Our previous study demonstrated that PA-X decreases the virulence of a highly pathogenic H5N1 strain A/Chicken/Jiangsu/k0402/2010 in mice. However, the underlying mechanism of virulence attenuation associated with PA-X is still unknown. In this study, we compared two PA-X-deficient mutant viruses and the parental virus in terms of induction of pathology and manipulation of host response in the mouse lung, stimulation of cell death and PA nuclear accumulation. We first found that down-regulated PA-X expression markedly aggravated the acute lung injury of the infected mice early on day 1 post-infection (p.i.). We then determined that loss of PA-X expression induced higher levels of cytokines, chemokines and complement-derived peptides (C3a and C5a) in the lung, especially at early time point’s p.i. In addition, in vitro assays showed that the PA-X-deficient viruses enhanced cell death and increased expression of reactive oxygen species (ROS) in mammalian cells. Moreover, we also found that PA nuclear accumulation of the PA-X-null viruses accelerated in MDCK cells. These results demonstrate that PA-X decreases the level of complement components, ROS, cell death and inflammatory response, which may together contribute to the alleviated lung injury and the attenuation of the virulence of H5N1 virus in mice.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Mo
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xin Cheng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Daxing Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Meng X, Wei G, Chang Q, Peng R, Shi G, Zheng P, He F, Wang W, Ming L. The platelet-to-lymphocyte ratio, superior to the neutrophil-to-lymphocyte ratio, correlates with hepatitis C virus infection. Int J Infect Dis 2016; 45:72-7. [PMID: 26948479 DOI: 10.1016/j.ijid.2016.02.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES The platelet-to-lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio (NLR) have been studied widely in cancer diseases. However, their correlation with hepatitis C virus (HCV) infection is unknown. The aim of this study was to investigate the correlation of PLR and NLR with disease severity in patients with HCV-related liver disease and the virological response in chronic hepatitis C (CHC) patients. METHODS The clinical data of 120 HCV-infected patients and 40 healthy controls were analyzed. The clinical data of 24 CHC patients who had been followed up regularly were collected for the following time points: before treatment (week 0) and weeks 4, 48, and 72 during treatment. These data were also analyzed. All data were collected from the database of the hospital patient electronic medical record system. RESULTS The HCV-related cirrhosis group and HCV-related hepatocellular carcinoma group were found to have lower PLRs (61±31 and 51±23) than the healthy controls (115±23). The PLR of the HCV cleared group (154±85) was significantly higher than that of the HCV untreated group and HCV uncleared group (90±28 and 88±40, respectively). Receiver operating characteristics curve analysis for the PLR showed an area under the curve of 0.772 (95% confidence interval 0.674-0.869, p<0.000); for NLR, the area under the curve was 0.612 (95% confidence interval 0.495-0.730, p=0.063). Furthermore, an increasing PLR in CHC patients indicated a good virological response, and a stable PLR or a downward trend in PLR could predict no rapid virological response being achieved by week 4, and even no sustained virological response by week 72. CONCLUSIONS The PLR is closely related to disease severity in patients with HCV-related liver disease and to the virological response in CHC patients. Dynamic continuous monitoring of the PLR will contribute to disease surveillance, with an increasing tendency predicting a good virological response.
Collapse
Affiliation(s)
- Xianchun Meng
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Jianshe Road 1st, Zhengzhou, Henan 450052, China; Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Gaohui Wei
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Jianshe Road 1st, Zhengzhou, Henan 450052, China; Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Qian Chang
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Jianshe Road 1st, Zhengzhou, Henan 450052, China; Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Ruoyu Peng
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Jianshe Road 1st, Zhengzhou, Henan 450052, China; Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Guang Shi
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Jianshe Road 1st, Zhengzhou, Henan 450052, China; Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Peiguo Zheng
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Jianshe Road 1st, Zhengzhou, Henan 450052, China; Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Fucheng He
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Jianshe Road 1st, Zhengzhou, Henan 450052, China; Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Wanhai Wang
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Jianshe Road 1st, Zhengzhou, Henan 450052, China; Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China.
| | - Liang Ming
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Jianshe Road 1st, Zhengzhou, Henan 450052, China; Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
16
|
Mehrabani D, Shamsdin SA, Dehghan A, Safarpour A. Clinical significance of serum vascular endothelial growth factor and complement 3a levels in patients with colorectal cancer in southern Iran. Asian Pac J Cancer Prev 2015; 15:9713-7. [PMID: 25520093 DOI: 10.7314/apjcp.2014.15.22.9713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colon cancer (CRC) is perhaps the second most common cause of cancer mortality. This study determined the clinical significance of serum vascular endothelial growth factor (VEGF) and serum complement 3a (C3a) levels in patients with CRC in Fars province, southern Iran. MATERIALS AND METHODS Between June 2010 and June 2012, 110 patients with CRC of both genders and different age groups were divided into 3 groups. Group A included patients who had just undergone surgery; Group B had undergone chemotherapy after surgery; and Group C had undergone chemotherapy and radiotherapy after surgery. Twenty one healthy subjects with normal colonoscopy were considered as a control group. ELISA was undertaken to determine VEGF and C3a levels before and after treatment measures. RESULTS The mean age of patients was 53.9±14.1 years. Considering VEGF level, a significant decrease was visible after treatment measures in groups A and B, but not Group C. For VEGF level, the difference was not statistically significant between two genders and various age groups before and after treatment. No significant difference was found for VEGF level between patients and normal group before any treatment. Regarding C3a levels in 101 subjects, they significantly decreased after treatment measures. Before and after treatment, the difference was statistically significant between two genders, but was not statistically significant among various age groups. CONCLUSIONS As VEGF and C3a levels were significantly lower in patients after treatment, these may be beneficial markers in assessment of CRC therapy especially in early stages.
Collapse
Affiliation(s)
- Davood Mehrabani
- Stem Cell and Transgenic Technology Research Center, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran E-mail :
| | | | | | | |
Collapse
|
17
|
The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infect 2015; 4:e28. [PMID: 26060601 PMCID: PMC4451266 DOI: 10.1038/emi.2015.28] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 12/14/2022]
Abstract
The complement system, an important part of innate immunity, plays a critical role in pathogen clearance. Unregulated complement activation is likely to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by highly pathogenic virus including influenza A viruses H5N1, H7N9, and severe acute respiratory syndrome (SARS) coronavirus. In highly pathogenic virus-induced acute lung diseases, high levels of chemotactic and anaphylatoxic C5a were produced as a result of excessive complement activaiton. Overproduced C5a displays powerful biological activities in activation of phagocytic cells, generation of oxidants, and inflammatory sequelae named "cytokine storm", and so on. Blockade of C5a signaling have been implicated in the treatment of ALI induced by highly pathogenic virus. Herein, we review the literature that links C5a and ALI, and review our understanding of the mechanisms by which C5a affects ALI during highly pathogenic viral infection. In particular, we discuss the potential of the blockade of C5a signaling to treat ALI induced by highly pathogenic viruses.
Collapse
|
18
|
Proteomic and metabonomic biomarkers for hepatocellular carcinoma: a comprehensive review. Br J Cancer 2015; 112:1141-56. [PMID: 25826224 PMCID: PMC4385954 DOI: 10.1038/bjc.2015.38] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/04/2014] [Accepted: 12/20/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks third in overall global cancer-related mortality. Symptomatic presentation often means advanced disease where potentially curative treatment options become very limited. Numerous international guidelines propose the routine monitoring of those with the highest risk factors for the condition in order to diagnose potential tumourigenesis early. To aid this, the fields of metabonomic- and proteomic-based biomarker discovery have applied advanced tools to identify early changes in protein and metabolite expression in HCC patients vs controls. With robust validation, it is anticipated that from these candidates will rise a high-performance non-invasive test able to diagnose early HCC and related conditions. This review gathers the numerous markers proposed by studies using mass spectrometry and proton nuclear magnetic resonance spectroscopy and evaluates areas of consistency as well as discordance.
Collapse
|
19
|
Ferrín G, Rodríguez-Perálvarez M, Aguilar-Melero P, Ranchal I, Llamoza C, Linares CI, González-Rubio S, Muntané J, Briceño J, López-Cillero P, Montero-Álvarez JL, de la Mata M. Plasma protein biomarkers of hepatocellular carcinoma in HCV-infected alcoholic patients with cirrhosis. PLoS One 2015; 10:e0118527. [PMID: 25789864 PMCID: PMC4366144 DOI: 10.1371/journal.pone.0118527] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/26/2014] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers in the world, with limited options for treatment unless timely diagnosed. Chronic hepatitis C virus (HCV) infection and persistent heavy alcohol consumption are independent risk factors for HCC development, which may induce a specific protein expression pattern different from those caused separately. The aim of the study was to identify protein biomarkers for the detection of HCC in HCV-infected alcoholic patients with cirrhosis in order to improve survival. We compared protein expression profiles of plasma samples from 52 HCV-infected alcoholic patients with and without HCC, using 2-D DIGE coupled with MALDI-TOF/TOF mass spectrometry. The 2-D DIGE results were analyzed statistically using Decyder software, and verified by western-blot and ELISA. In plasma samples from HCV-infected alcoholic patients, we found significantly differential expression profiles of carboxypeptidase-N, ceruloplasmin (CP), complement component 4a (C4a), fibrinogen-alpha (FGA), immunoglobulin mu chain C region, serum albumin, and serum paraoxonase/arylesterase 1 (PON1). Deregulation of plasma/serum levels of the identified proteins was associated to HCV, ethanol consumption, and/or HCC progression. In the validation through ELISA, C4a serum concentration was increased in HCC patients (2.4±1 ng/mg vs 1.8±0.6 ng/mg; p = 0.029), being the only independent predictor of HCC in the multivariate analysis (OR = 2.15; p = 0.015), with an AUROC = 0.70. The combination of C4a, FGA, CP and PON1 improved slightly the predictive ability of C4a alone (AUROC 0.81). In conclusion, we identified proteins related to acute-phase response, oxidative stress, or immune response, whose differential expression in plasma may be attributed to the presence of HCC. Among them, C4a, and its combination with CP, FGA and PON1, could be considered as potentially reliable biomarkers for the detection of HCC in HCV-infected alcoholic patients.
Collapse
Affiliation(s)
- Gustavo Ferrín
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Patricia Aguilar-Melero
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Isidora Ranchal
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
| | - Camilo Llamoza
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Clara I. Linares
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Sandra González-Rubio
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Jordi Muntané
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
| | - Javier Briceño
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Pedro López-Cillero
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - José Luis Montero-Álvarez
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Manuel de la Mata
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|
20
|
Li C, Zhang Z, Zhang P, Liu J. Diagnostic accuracy of des-gamma-carboxy prothrombin versus α-fetoprotein for hepatocellular carcinoma: A systematic review. Hepatol Res 2014; 44:E11-25. [PMID: 23834468 DOI: 10.1111/hepr.12201] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 12/24/2022]
Abstract
AIMS Des-gamma-carboxy prothrombin (DCP) and α-fetoprotein (AFP) are useful tumor markers for the detection of hepatocellular carcinoma (HCC). However, it remains controversial whether the diagnostic accuracy of DCP is superior to AFP. The aims of this review were to compare the diagnostic accuracy of DCP, AFP and combination of both markers for detecting HCC and further compare their accuracy in diagnosing early stage HCC. METHODS We conducted a comprehensive literature search of MEDLINE, EMBASE and Cochrane library until April 2013. Two authors independently assessed the methodological quality of each included study. Summary estimates of sensitivity, specificity and area under the receiver operating curve (AUROC) were calculated. RESULTS Forty-nine studies involving 14 118 participants (including 1544 with early stage HCC) were included. In case of detection of HCC, the summary estimates of DCP were: sensitivity 63% (95% confidence interval [CI], 58%-67%), specificity 91% (95% CI, 88%-93%), and the values of AFP were: sensitivity 59% (95% CI, 54%-63%), specificity 86% (95% CI, 82%-89%). The AUROC of DCP, AFP and combination of both markers were 0.83, 0.77 and 0.88, respectively. Among the early stage HCC, the summary estimates of DCP and AFP were: sensitivity 45% (95% CI, 35%-57%) versus 48% (95% CI, 39%-57%), and specificity 95% (95% CI, 91%-97%) versus 89% (95% CI, 79%-95%). The AUROC was 0.84 for DCP, 0.68 for AFP and 0.83 for the combination of both markers. CONCLUSION Des-gamma-carboxy prothrombin shows more diagnostic accuracy than AFP, especially in diagnosing early stage HCC, and the combination of both markers cannot improve the diagnostic accuracy of early stage HCC.
Collapse
Affiliation(s)
- Changzai Li
- Department of Hepatobiliary Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning
| | | | | | | |
Collapse
|
21
|
Lu Y, Hu XB. C5a stimulates the proliferation of breast cancer cells via Akt-dependent RGC-32 gene activation. Oncol Rep 2014; 32:2817-23. [PMID: 25230890 DOI: 10.3892/or.2014.3489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/14/2014] [Indexed: 11/05/2022] Open
Abstract
Complement system activation contributes to various immune and inflammatory diseases, as well as cancers.However, the role of complement activation in the proliferation of cancer cells is not clear. In the present study, we investigated the consequences of complement activation on the proliferation of breast cancer cells and its possible mechanisms. We focused our study on the potential roles of the anaphylatoxins C3a and C5a in the proliferation of human breast cancer, as two important immune mediators generated after complement activation. Our study revealed that C5a stimulation, but not C3a, enhanced the proliferation of human breast cancer cells in vitro. Moreover, the expression of response gene to complement 32 (RGC-32) was pronounced in breast cancer cells in response to C5a stimulation. Notably, blockade of the C5a receptor markedly reduced the expression of RGC-32 and the proliferation of breast cancer cells stimulated by C5a. Meanwhile, silencing of RGC-32 expression reduced the proliferation of breast cancer cells induced by C5a treatment. Further investigation revealed that Akt activation was involved in C5a-induced RGC-32 expression and breast cancer cell proliferation. In conclusion, the present study indicates that C5a may promote the proliferation of breast cancer cells through Akt1 activation of the RGC-32 gene.
Collapse
Affiliation(s)
- Yi Lu
- Department of General Surgery, Suzhou Kowloon Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215021, P.R. China
| | - Xiao-Bo Hu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
22
|
Liu Z, Yuan Z, Zhao Q. SELDI-TOF-MS proteomic profiling of serum, urine, and amniotic fluid in neural tube defects. PLoS One 2014; 9:e103276. [PMID: 25054433 PMCID: PMC4108413 DOI: 10.1371/journal.pone.0103276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/29/2014] [Indexed: 12/13/2022] Open
Abstract
Neural tube defects (NTDs) are common birth defects, whose specific biomarkers are needed. The purpose of this pilot study is to determine whether protein profiling in NTD-mothers differ from normal controls using SELDI-TOF-MS. ProteinChip Biomarker System was used to evaluate 82 maternal serum samples, 78 urine samples and 76 amniotic fluid samples. The validity of classification tree was then challenged with a blind test set including another 20 NTD-mothers and 18 controls in serum samples, and another 19 NTD-mothers and 17 controls in urine samples, and another 20 NTD-mothers and 17 controls in amniotic fluid samples. Eight proteins detected in serum samples were up-regulated and four proteins were down-regulated in the NTD group. Four proteins detected in urine samples were up-regulated and one protein was down-regulated in the NTD group. Six proteins detected in amniotic fluid samples were up-regulated and one protein was down-regulated in the NTD group. The classification tree for serum samples separated NTDs from healthy individuals, achieving a sensitivity of 91% and a specificity of 97% in the training set, and achieving a sensitivity of 90% and a specificity of 97% and a positive predictive value of 95% in the test set. The classification tree for urine samples separated NTDs from controls, achieving a sensitivity of 95% and a specificity of 94% in the training set, and achieving a sensitivity of 89% and a specificity of 82% and a positive predictive value of 85% in the test set. The classification tree for amniotic fluid samples separated NTDs from controls, achieving a sensitivity of 93% and a specificity of 89% in the training set, and achieving a sensitivity of 90% and a specificity of 88% and a positive predictive value of 90% in the test set. These suggest that SELDI-TOF-MS is an additional method for NTDs pregnancies detection.
Collapse
Affiliation(s)
- Zhenjiang Liu
- Department of Pediatric Surgery, The Shengjing Hospital, China Medical University, Heping District, Shenyang City, Liaoning Province, People’s Republic of China
- * E-mail:
| | - Zhengwei Yuan
- Department of Pediatric Surgery, The Shengjing Hospital, China Medical University, Heping District, Shenyang City, Liaoning Province, People’s Republic of China
| | - Qun Zhao
- Department of Pediatric Surgery, The Shengjing Hospital, China Medical University, Heping District, Shenyang City, Liaoning Province, People’s Republic of China
| |
Collapse
|
23
|
Yi X, Yu S, Bao Y. Alpha-fetoprotein-L3 in hepatocellular carcinoma: a meta-analysis. Clin Chim Acta 2013; 425:212-20. [PMID: 23954771 DOI: 10.1016/j.cca.2013.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/27/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Alpha-fetoprotein (AFP) has been widely used as a diagnostic marker. AFP is also increased in patients at high risk for hepatocellular carcinoma (HCC), ie those with chronic hepatitis. The percentage of lens culinaris agglutinin-reactive alpha-fetoprotein (AFP-L3%) has long been proposed as a marker for HCC, but has not been widely adopted due to inconsistent results reported in the literature. In this study, the performance of AFP-L3% is specifically evaluated for diagnosis of HCC. METHODS A systematic review of relevant studies, the sensitivity, specificity, and diagnostic odds ratio (DOR) for the diagnosis of HCC were pooled using random-effects models. The overall test performance was summarized using summary receiver operating characteristic (SROC) curve analysis. Potential between-study heterogeneity was explored by meta-regression model. RESULTS Twelve articles were included in this meta-analysis. The overall estimates of AFP-L3% in detecting HCC were as follows: pooled sensitivity, 0.483 (95% confidence interval (CI) 0.459-0.507); pooled specificity, 0.929 (95% CI 0.916-0.940); DOR, 12.33 (95% CI 7.82-19.44); and area under the curve (AUC), 0.7564. CONCLUSIONS AFP-L3% could be complementary to AFP as a marker for HCC.
Collapse
Affiliation(s)
- Xiaoyan Yi
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| | | | | |
Collapse
|
24
|
Khandhadia S, Hakobyan S, Heng LZ, Gibson J, Adams DH, Alexander GJ, Gibson JM, Martin KR, Menon G, Nash K, Sivaprasad S, Ennis S, Cree AJ, Morgan BP, Lotery AJ. Age-related macular degeneration and modification of systemic complement factor H production through liver transplantation. Ophthalmology 2013; 120:1612-8. [PMID: 23562165 DOI: 10.1016/j.ophtha.2013.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To investigate whether modification of liver complement factor H (CFH) production, by alteration of liver CFH Y402H genotype through liver transplantation (LT), influences the development of age-related macular degeneration (AMD). DESIGN Multicenter, cross-sectional study. PARTICIPANTS We recruited 223 Western European patients ≥ 55 years old who had undergone LT ≥ 5 years previously. METHODS We determined AMD status using a standard grading system. Recipient CFH Y402H genotype was obtained from DNA extracted from recipient blood samples. Donor CFH Y402H genotype was inferred from recipient plasma CFH Y402H protein allotype, measured using enzyme-linked immunosorbent assays. This approach was verified by genotyping donor tissue from a subgroup of patients. Systemic complement activity was ascertained by measuring levels of plasma complement proteins using an enzyme-linked immunosorbent assay, including substrates (C3, C4), activation products (C3a, C4a, and terminal complement complex), and regulators (total CFH, C1 inhibitor). MAIN OUTCOME MEASURES We evaluated AMD status and recipient and donor CFH Y402H genotype. RESULTS In LT patients, AMD was associated with recipient CFH Y402H genotype (P = 0.036; odds ratio [OR], 1.6; 95% confidence interval [CI], 1.0-2.4) but not with donor CFH Y402H genotype (P = 0.626), after controlling for age, sex, smoking status, and body mass index. Recipient plasma CFH Y402H protein allotype predicted donor CFH Y402H genotype with 100% accuracy (n = 49). Plasma complement protein or activation product levels were similar in LT patients with and without AMD. Compared with previously reported prevalence figures (Rotterdam Study), LT patients demonstrated a high prevalence of both AMD (64.6% vs 37.1%; OR, 3.09; P<0.001) and the CFH Y402H sequence variation (41.9% vs 36.2%; OR, 1.27; P = 0.014). CONCLUSIONS Presence of AMD is not associated with modification of hepatic CFH production. In addition, AMD is not associated with systemic complement activity in LT patients. These findings suggest that local intraocular complement activity is of greater importance in AMD pathogenesis. The high AMD prevalence observed in LT patients may be associated with the increased frequency of the CFH Y402H sequence variation. FINANCIAL DISCLOSURE(S) The authors have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Samir Khandhadia
- Clinical and Experimental Sciences, Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fye HKS, Wright-Drakesmith C, Kramer HB, Camey S, da Costa AN, Jeng A, Bah A, Kirk GD, Sharif MIF, Ladep NG, Okeke E, Hainaut P, Taylor-Robinson SD, Kessler BM, Mendy ME. Protein profiling in hepatocellular carcinoma by label-free quantitative proteomics in two west African populations. PLoS One 2013; 8:e68381. [PMID: 23935864 PMCID: PMC3728326 DOI: 10.1371/journal.pone.0068381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/28/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatocellular Carcinoma is the third most common cause of cancer related death worldwide, often diagnosed by measuring serum AFP; a poor performance stand-alone biomarker. With the aim of improving on this, our study focuses on plasma proteins identified by Mass Spectrometry in order to investigate and validate differences seen in the respective proteomes of controls and subjects with LC and HCC. METHODS Mass Spectrometry analysis using liquid chromatography electro spray ionization quadrupole time-of-flight was conducted on 339 subjects using a pooled expression profiling approach. ELISA assays were performed on four significantly differentially expressed proteins to validate their expression profiles in subjects from the Gambia and a pilot group from Nigeria. Results from this were collated for statistical multiplexing using logistic regression analysis. RESULTS Twenty-six proteins were identified as differentially expressed between the three subject groups. Direct measurements of four; hemopexin, alpha-1-antitrypsin, apolipoprotein A1 and complement component 3 confirmed their change in abundance in LC and HCC versus control patients. These trends were independently replicated in the pilot validation subjects from Nigeria. The statistical multiplexing of these proteins demonstrated performance comparable to or greater than ALT in identifying liver cirrhosis or carcinogenesis. This exercise also proposed preliminary cut offs with achievable sensitivity, specificity and AUC statistics greater than reported AFP averages. CONCLUSIONS The validated changes of expression in these proteins have the potential for development into high-performance tests usable in the diagnosis and or monitoring of HCC and LC patients. The identification of sustained expression trends strengthens the suggestion of these four proteins as worthy candidates for further investigation in the context of liver disease. The statistical combinations also provide a novel inroad of analyses able to propose definitive cut-offs and combinations for evaluation of performance.
Collapse
Affiliation(s)
- Haddy K. S. Fye
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology - University of Oxford, Oxford, Oxfordshire, United Kingdom
- Department of Disease Control and Elimination, MRC Unit (UK) The Gambia Laboratories, Fajara, Banjul, The Gambia
| | - Cynthia Wright-Drakesmith
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology - University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Holger B. Kramer
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology - University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Suzi Camey
- Laboratory Services and Bio-bank Group, International Agency for Research on Cancer, Lyon, France
- Departamento de Estatistica, Instituto de Matematica, Universidade Federal do Rio Grande do Sul, Rio Grande, Brazil
| | - Andre Nogueira da Costa
- Laboratory Services and Bio-bank Group, International Agency for Research on Cancer, Lyon, France
| | - Adam Jeng
- Department of Disease Control and Elimination, MRC Unit (UK) The Gambia Laboratories, Fajara, Banjul, The Gambia
| | - Alasana Bah
- Department of Disease Control and Elimination, MRC Unit (UK) The Gambia Laboratories, Fajara, Banjul, The Gambia
| | - Gregory D. Kirk
- Department of Epidemiology - Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mohamed I. F. Sharif
- Liver Unit - Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Nimzing G. Ladep
- Liver Unit - Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Edith Okeke
- Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Pierre Hainaut
- Laboratory Services and Bio-bank Group, International Agency for Research on Cancer, Lyon, France
- The International Prevention Research Institute, Lyon, France
| | - Simon D. Taylor-Robinson
- Liver Unit - Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Benedikt M. Kessler
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology - University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Maimuna E. Mendy
- Laboratory Services and Bio-bank Group, International Agency for Research on Cancer, Lyon, France
- Department of Disease Control and Elimination, MRC Unit (UK) The Gambia Laboratories, Fajara, Banjul, The Gambia
| |
Collapse
|
26
|
Sogabe A, Uto H, Kanmura S, Nosaki T, Oyamada M, Tokunaga K, Nishida C, Fukumoto M, Oku M, Nishimoto K, Takenouchi S, Ido A, Shimada Y, Tsubouchi H. Correlation of serum levels of complement C4a desArg with pathologically estimated severity of glomerular lesions and mesangial hypercellularity scores in patients with IgA nephropathy. Int J Mol Med 2013; 32:307-14. [PMID: 23708385 DOI: 10.3892/ijmm.2013.1390] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/12/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore serum biomarkers for the pathology of IgA nephropathy using serum proteomics. The subjects were 57 patients with IgA nephropathy who were divided into two groups (group 1, n=25; group 2, n=32) and 14 healthy controls. Serum protein profiles were analyzed using the ProteinChip surface-enhanced laser desorption ionization (SELDI) system. Associations between signal intensities of proteins and histological findings in patients with IgA nephropathy were studied in group 1. Serum levels of a candidate biomarker protein (complement component C4a desArg) for IgA nephropathy were determined by enzyme linked-immunosorbent assay (ELISA) in group 2 and the relationships of these levels with histological findings were evaluated. There were significant differences in 93 protein signals between patients in group 1 and controls. Among these signals, 3 proteins at 8592, 8757 and 8806 m/z were significantly correlated with the severity of glomerular lesions. The protein at 8592 m/z was identified as C4a desArg and the signal intensity of 8592 m/z was strongly correlated with serum C4a levels, including C4a desArg, determined by ELISA. In addition, the serum levels of C4a (mainly C4a desArg) were significantly higher in patients in group 2 compared to controls and were correlated with the severity of glomerular lesions and with mesangial hypercellularity scores. In conclusion, the serum levels of complement C4a desArg are significantly higher in patients with IgA nephropathy compared to healthy controls and are significantly correlated with the severity of glomerular lesions and mesangial hypercellularity scores. Thus, serum C4a desArg is a potential biomarker for the severity of histological findings in patients with IgA nephropathy.
Collapse
Affiliation(s)
- Atsushi Sogabe
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pio R, Ajona D, Lambris JD. Complement inhibition in cancer therapy. Semin Immunol 2013; 25:54-64. [PMID: 23706991 DOI: 10.1016/j.smim.2013.04.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/13/2013] [Indexed: 02/08/2023]
Abstract
For decades, complement has been recognized as an effector arm of the immune system that contributes to the destruction of tumor cells. In fact, many therapeutic strategies have been proposed that are based on the intensification of complement-mediated responses against tumors. However, recent studies have challenged this paradigm by demonstrating a tumor-promoting role for complement. Cancer cells seem to be able to establish a convenient balance between complement activation and inhibition, taking advantage of complement initiation without suffering its deleterious effects. Complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. In this context, inhibition of complement activation would be a therapeutic option for treating cancer. This concept is relatively new and deserves closer attention. In this article, we summarize the mechanisms of complement activation on cancer cells, the cancer-promoting effect of complement initiation, and the rationale behind the use of complement inhibition as a therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Ruben Pio
- Oncology Division, Center for Applied Medical Research-CIMA, Pamplona, Spain. rpio.@unav.es
| | | | | |
Collapse
|
28
|
Garcia CC, Weston-Davies W, Russo RC, Tavares LP, Rachid MA, Alves-Filho JC, Machado AV, Ryffel B, Nunn MA, Teixeira MM. Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury. PLoS One 2013; 8:e64443. [PMID: 23696894 PMCID: PMC3655967 DOI: 10.1371/journal.pone.0064443] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/15/2013] [Indexed: 01/30/2023] Open
Abstract
Influenza virus A (IAV) causes annual epidemics and intermittent pandemics that affect millions of people worldwide. Potent inflammatory responses are commonly associated with severe cases of IAV infection. The complement system, an important mechanism of innate and humoral immune responses to infections, is activated during primary IAV infection and mediates, in association with natural IgM, viral neutralization by virion aggregation and coating of viral hemmagglutinin. Increased levels of the anaphylatoxin C5a were found in patients fatally infected with the most recent H1N1 pandemic virus. In this study, our aim was to evaluate whether targeting C5 activation alters inflammatory lung injury and viral load in a murine model of IAV infection. To address this question C57Bl/6j mice were infected intranasally with 10(4) PFU of the mouse adapted Influenza A virus A/WSN/33 (H1N1) or inoculated with PBS (Mock). We demonstrated that C5a is increased in bronchoalveolar lavage fluid (BALF) upon experimental IAV infection. To evaluate the role of C5, we used OmCI, a potent arthropod-derived inhibitor of C5 activation that binds to C5 and prevents release of C5a by complement. OmCI was given daily by intraperitoneal injection from the day of IAV infection until day 5. Treatment with OmCI only partially reduced C5a levels in BALF. However, there was significant inhibition of neutrophil and macrophage infiltration in the airways, Neutrophil Extracellular Traps (NETs) formation, death of leukocytes, lung epithelial injury and overall lung damage induced by the infection. There was no effect on viral load. Taken together, these data suggest that targeting C5 activation with OmCI during IAV infection could be a promising approach to reduce excessive inflammatory reactions associated with the severe forms of IAV infections.
Collapse
Affiliation(s)
- Cristiana C. Garcia
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Remo C. Russo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana P. Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Milene A. Rachid
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Geral, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José C. Alves-Filho
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre V. Machado
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Bernhard Ryffel
- CNRS UMR7355, CNRS and University Orleans, France and IIDMM, University of Cape Town, Cape Town, South Africa
| | - Miles A. Nunn
- Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Mauro M. Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
29
|
Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 2013; 65:500-43. [PMID: 23383423 DOI: 10.1124/pr.111.005223] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activation of the complement cascade, a cornerstone of the innate immune response, produces a number of small (74-77 amino acid) fragments, originally termed anaphylatoxins, that are potent chemoattractants and secretagogues that act on a wide variety of cell types. These fragments, C5a, C4a, and C3a, participate at all levels of the immune response and are also involved in other processes such as neural development and organ regeneration. Their primary function, however, is in inflammation, so they are important targets for the development of antiinflammatory therapies. Only three receptors for complement peptides have been found, but there are no satisfactory antagonists as yet, despite intensive investigation. In humans, there is a single receptor for C3a (C3a receptor), no known receptor for C4a, and two receptors for C5a (C5a₁ receptor and C5a₂ receptor). The most recently characterized receptor, the C5a₂ receptor (previously known as C5L2 or GPR77), has been regarded as a passive binding protein, but signaling activities are now ascribed to it, so we propose that it be formally identified as a receptor and be given a name to reflect this. Here, we describe the complex biology of the complement peptides, introduce a new suggested nomenclature, and review our current knowledge of receptor pharmacology.
Collapse
Affiliation(s)
- Andreas Klos
- Department for Medical Microbiology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
30
|
Jayapalan JJ, Ng KL, Razack AHA, Hashim OH. Identification of potential complementary serum biomarkers to differentiate prostate cancer from benign prostatic hyperplasia using gel- and lectin-based proteomics analyses. Electrophoresis 2012; 33:1855-62. [PMID: 22740474 DOI: 10.1002/elps.201100608] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diagnosis of prostate cancer (PCa) is currently much reliant on the invasive and time-consuming transrectal ultrasound-guided biopsy of the prostate gland, particularly in light of the inefficient use of prostate-specific antigen as its biomarker. In the present study, we have profiled the sera of patients with PCa and benign prostatic hyperplasia (BPH) using the gel- and lectin-based proteomics methods and demonstrated the significant differential expression of apolipoprotein AII, complement C3 beta chain fragment, inter-alpha-trypsin inhibitor heavy chain 4 fragment, transthyretin, alpha-1-antitrypsin, and high molecular weight kininogen (light chain) between the two groups of patients' samples. Our data are suggestive of the potential use of the serum proteins as complementary biomarkers to effectively discriminate PCa from BPH, although this requires further extensive validation on clinically representative populations.
Collapse
Affiliation(s)
- Jaime J Jayapalan
- Faculty of Medicine, University of Malaya Centre for Proteomics Research, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
31
|
Ejaz A, Steinmann E, Bánki Z, Anggakusuma, Khalid S, Lengauer S, Wilhelm C, Zoller H, Schloegl A, Steinmann J, Grabski E, Kleines M, Pietschmann T, Stoiber H. Specific acquisition of functional CD59 but not CD46 or CD55 by hepatitis C virus. PLoS One 2012; 7:e45770. [PMID: 23049856 PMCID: PMC3458075 DOI: 10.1371/journal.pone.0045770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 08/22/2012] [Indexed: 01/07/2023] Open
Abstract
Viruses of different families encode for regulators of the complement system (RCAs) or acquire such RCAs from the host to get protection against complement-mediated lysis (CML). As hepatitis C virus (HCV) shares no genetic similarity to any known RCA and is detectable at high titers in sera of infected individuals, we investigated whether HCV has adapted host-derived RCAs to resist CML. Here we report that HCV selectively incorporates CD59 while neither CD55, nor CD46 are associated with the virus. The presence of CD59 was shown by capture assays using patient- and cell culture-derived HCV isolates. Association of CD59 with HCV was further confirmed by Western blot analysis using purified viral supernatants from infected Huh 7.5 cells. HCV captured by antibodies specific for CD59 remained infectious for Huh 7.5 cells. In addition, blocking of CD59 in the presence of active complement reduced the titer of HCV most likely due to CML. HCV produced in CD59 knock-down cells were more significantly susceptible to CML compared to wild type virus, but neither replication, assembly nor infectivity of the virus seemed to be impaired in the absence of CD59. In summary our data indicate that HCV incorporates selectively CD59 in its envelope to gain resistance to CML in serum of infected individuals.
Collapse
Affiliation(s)
- Asim Ejaz
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Imakiire K, Uto H, Sato Y, Sasaki F, Mawatari S, Ido A, Shimoda K, Hayashi K, Stuver SO, Ito Y, Okanoue T, Tsubouchi H. Difference in serum complement component C4a levels between hepatitis C virus carriers with persistently normal alanine aminotransferase levels or chronic hepatitis C. Mol Med Rep 2012; 6:259-64. [PMID: 22614103 PMCID: PMC3493081 DOI: 10.3892/mmr.2012.924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/16/2012] [Indexed: 12/16/2022] Open
Abstract
Certain hepatitis C virus (HCV) carriers exhibit persistently normal alanine aminotransferase (ALT) levels (PNALT) (≤30 IU/l) accompanied by normal platelet counts (≥15×104/μl); these individuals show milder disease activity and slower progression to cirrhosis. This study aimed to elucidate the characteristics of HCV carriers with PNALT using serum proteomics. The first group of subjects, who underwent clinical evaluation in the hospital, consisted of 19 HCV carriers with PNALT (PNALT-1) and 20 chronic hepatitis C (CHC-1) patients. The second group of subjects was part of a cohort study on the natural history of liver disease, and included 37 PNALT (PNALT-2) and 30 CHC (CHC-2) patients. Affinity bead-purified serum protein was subjected to matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis. Serum proteomics showed that 6 protein peaks with mass-to-charge ratios ranging from 1,000 to 3,000 differed significantly between the PNALT-1 and CHC-1 groups. Among these peaks, a 1738-m/z peak protein was identified as a fragment of complement component 4 (C4) and correlated significantly with serum C4a concentrations as determined by enzyme immunoassay. Serum C4a levels were also significantly higher in the PNALT-2 group compared to the CHC-2 group and healthy volunteers. Furthermore, in the PNALT-2 group, serum C4a levels negatively correlated with transaminase levels, but not with other biochemical tests, HCV core antigen levels, peripheral blood cell counts or serum hepatic fibrosis markers. This study indicates that host factors such as C4a not only differ between HCV carriers with PNALT and CHC, but that proteomic approaches could also contribute to the elucidation of factors in PNALT as more differences are discovered.
Collapse
Affiliation(s)
- Kazuyuki Imakiire
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Henkel C, Schwamborn K, Zimmermann HW, Tacke F, Kühnen E, Odenthal M, Groseclose MR, Caprioli RM, Weiskirchen R. From proteomic multimarker profiling to interesting proteins: thymosin-β(4) and kininogen-1 as new potential biomarkers for inflammatory hepatic lesions. J Cell Mol Med 2012; 15:2176-88. [PMID: 21496200 PMCID: PMC4394227 DOI: 10.1111/j.1582-4934.2010.01204.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite tremendous efforts in disclosing the pathophysiological and epidemiological factors associated with liver fibrogenesis, non-invasive diagnostic measures to estimate the clinical outcome and progression of liver fibrogenesis are presently limited. Therefore, there is a mandatory need for methodologies allowing the reasonable and reliable assessment of the severity and/or progression of hepatic fibrogenesis. We here performed proteomic serum profiling by matrix-assisted laser desorption ionization time-of-flight mass spectrometry in 179 samples of patients chronically infected with hepatitis C virus and 195 control sera. Multidimensional analysis of spectra allowed the definition of algorithms capable to distinguish class-specific protein expression profiles in serum samples. Overall about 100 peaks could be detected per single spectrum. Different algorithms including protein peaks in the range of 2000 and 10,000 Da were generated after pre-fractionation on a weak cation exchange surface. A specificity of 93% with a sensitivity of 86% as mean of the test set results was found, respectively. The nature of three of these protein peaks that belonged to kininogen-1 and thymosin-β4 was further analysed by tandem mass spectrometry (MS)/MS. We further found that kininogen-1 mRNA was significantly down-regulated in cirrhotic livers. We have identified kininogen-1 and thymosin-β4 as potential new biomarkers for human chronic hepatitis C and conclude that serum profiling is a reliable technique to identify hepatitis-associated expression patterns. Based on the high throughput capability, the identified differential protein panel may serve as a diagnostic marker and warrants further validation in larger cohorts.
Collapse
Affiliation(s)
- Corinna Henkel
- Institute of Pathology, RWTH University Hospital Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tamai T, Uto H, Takami Y, Oda K, Saishoji A, Hashiguchi M, Kumagai K, Kure T, Mawatari S, Moriuchi A, Oketani M, Ido A, Tsubouchi H. Serum manganese superoxide dismutase and thioredoxin are potential prognostic markers for hepatitis C virus-related hepatocellular carcinoma. World J Gastroenterol 2011; 17:4890-8. [PMID: 22171130 PMCID: PMC3235632 DOI: 10.3748/wjg.v17.i44.4890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/17/2011] [Accepted: 10/14/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the clinical significance of oxidative stress markers in patients with hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC).
METHODS: Sixty-four consecutive patients who were admitted to Kagoshima University Medical and Dental Hospital were enrolled in this retrospective study. All patients had chronic liver disease (CLD) due to infection with HCV. Thirty patients with HCV-related HCC, 34 with HCV-related CLD without HCC (non-HCC), and 20 healthy volunteers (HVs) were enrolled. Possible associations between serum manganese superoxide dismutase (MnSOD) and thioredoxin (TRX) levels and clinical parameters or patient prognosis were analyzed over a mean follow-up period of 31.7 mo.
RESULTS: The serum MnSOD levels were significantly higher in patients with HCV-related HCC than in patients without HCC (P = 0.03) or HVs (P < 0.001). Similarly, serum TRX levels were also significantly higher in patients with HCV-related HCC than in patients without HCC (P = 0.04) or HVs (P < 0.01). However, serum levels of MnSOD and TRX were not correlated in patients with HCC. Among patients with HCC, the overall survival rate (OSR) was lower in patients with MnSOD levels ≥ 110 ng/mL than in patients with levels < 110 ng/mL (P = 0.01), and the OSR tended to be lower in patients with TRX levels < 80 ng/mL (P = 0.05). In addition, patient prognosis with HCC was poorest with serum MnSOD levels ≥ 110 ng/mL and serum TRX levels < 80 ng/mL. Furthermore, a multivariate analysis using a Cox proportional hazard model and serum levels of five factors (MnSOD, prothrombin time, serum albumin, serum α-fetoprotein (AFP), and serum des-γ-carboxy prothrombin) revealed that MnSOD levels ≥ 110 ng/mL (risk ratio: 4.12, 95% confidential interval: 1.22-13.88, P = 0.02) and AFP levels ≥ 40 ng/mL (risk ratio: 6.75; 95% confidential interval: 1.70-26.85, P < 0.01) were independent risk factors associated with a poor patient prognosis.
CONCLUSION: Serum MnSOD and TRX levels are potential clinical biomarkers that predict patient prognosis in HCV-related HCC.
Collapse
|
35
|
Mæland Nilsen M, Meier S, Larsen BK, Ketil Andersen O, Hjelle A. An estrogen-responsive plasma protein expression signature in Atlantic cod (Gadus morhua) revealed by SELDI-TOF MS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2175-2181. [PMID: 21880369 DOI: 10.1016/j.ecoenv.2011.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 07/25/2011] [Accepted: 07/30/2011] [Indexed: 05/31/2023]
Abstract
Compound-specific protein expression signatures (PESs) can be revealed by proteomic techniques. The SELDI-TOF MS approach is advantageous due to its simplicity and high-throughput capacity, however, there are concerns regarding the reproducibility of this method. The aim of this study was to define an estrogen-responsive PES in plasma of Atlantic cod (Gadus morhua) using the SELDI-TOF MS technique. Protein expression analysis of male cod exposed to 17β-estradiol (E₂) showed that 27 plasma peaks were differentially expressed following exposure. The reproducibility of this result was evaluated by reanalyzing the samples six months later, and a significant change in expression was confirmed for 13 of the 27 peaks detected in the first analysis. The performance of the reproducible E₂-responsive PES, constituting these 13 peaks, was then tested on samples from juvenile cod exposed to 4-nonylphenol, North Sea oil, or North Sea oil spiked with alkylphenols. Principal component analysis revealed that nonylphenol-exposed cod could be separated from unexposed cod based on the E₂-responsive PES, indicating that the PES can be used to assess estrogenic exposure of both juvenile and adult specimens of cod. A targeted antibody-assisted SELDI-TOF MS approach was carried out in an attempt to identify the E₂-responsive peaks. Results indicated that 2 peaks were fragments of the well-known biomarkers VTG and/or ZRP. In this study, the SELDI-TOF MS technology has shown its potential for defining compound-specific PESs in fish. Nevertheless, thorough validation of reproducibility, specificity and sensitivity of a PES is required before it can be applied in environmental monitoring.
Collapse
Affiliation(s)
- Mari Mæland Nilsen
- International Research Institute of Stavanger-IRIS, Biomiljø, P.O. Box 8046, N-4068 Stavanger, Norway.
| | | | | | | | | |
Collapse
|
36
|
Simula MP, De Re V. Hepatitis C virus-induced oxidative stress and mitochondrial dysfunction: a focus on recent advances in proteomics. Proteomics Clin Appl 2011; 4:782-93. [PMID: 21137022 DOI: 10.1002/prca.201000049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural history of chronic hepatitis C virus (HCV) infection presents two major aspects. On one side, the illness is by itself benign, whereas, on the other side, epidemiological evidence clearly identifies chronic HCV infection as the principal cause of cirrhosis, hepatocellular carcinoma, and extrahepatic diseases, such as autoimmune type II mixed cryoglobulinemia and some B cell non-Hodgkin's lymphomas. The mechanisms responsible for the progression of liver disease to severe liver injury are still poorly understood. Nonetheless, considerable biological data and studies from animal models suggest that oxidative stress contributes to steatohepatitis and that the increased generation of reactive oxygen and nitrogen species, together with the decreased antioxidant defense, promotes the development of hepatic and extrahepatic complications of HCV infection. The principal mechanisms causing oxidative stress in HCV-positive subjects have only been partially elucidated and have identified chronic inflammation, iron overload, ER stress, and a direct activity of HCV proteins in increasing mitochondrial ROS production, as key events. This review summarizes current knowledge regarding mechanisms of HCV-induced oxidative stress with its long-term effects in the context of HCV-related diseases, and includes a discussion of recent contributions from proteomics studies.
Collapse
Affiliation(s)
- Maria Paola Simula
- Experimental and Clinical Pharmacology Unit, CRO Centro di Riferimento Oncologico, IRCCS National Cancer Institute, AVIANO (PN), Italy
| | | |
Collapse
|
37
|
Umemura H, Togawa A, Sogawa K, Satoh M, Mogushi K, Nishimura M, Matsushita K, Tanaka H, Takizawa H, Kodera Y, Nomura F. Identification of a high molecular weight kininogen fragment as a marker for early gastric cancer by serum proteome analysis. J Gastroenterol 2011; 46:577-85. [PMID: 21298293 DOI: 10.1007/s00535-010-0369-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/23/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Serum biomarkers currently available for gastric cancers are not sufficiently sensitive and specific. METHODS We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) to generate comparative peptide profiles of serum samples obtained from gastric cancer patients (n = 81) and age- and sex-matched healthy controls (n = 66). RESULTS Because of initial screening and further validation, we found that the intensities of a 2209 m/z MS peak were increased in the preoperative sera obtained from gastric cancer patients, and we identified this peak, a 2209 Da peptide, as a high molecular weight (HMW) kininogen fragment. Receiver operating characteristic analyses showed that the area under the curve (AUC) for the 2209 Da peptide (AUC = 0.715) was greater than those for conventional tumor markers (carcinoembryonic antigen AUC = 0.593, carbohydrate antigen 19-9 AUC = 0.527) used for the detection of stage I gastric cancers. Inverse correlations were observed between the levels of intact HMW kininogen and the 2209 Da peptide, suggesting that the upregulation of some protease activities is responsible for the overproduction of a kininogen fragment in gastric cancer patients. CONCLUSIONS Serum levels of the 2209 Da peptide identified in this study have a greater diagnostic ability than those of conventional tumor markers used for the early detection of gastric cancer.
Collapse
Affiliation(s)
- Hiroshi Umemura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Danoprevir monotherapy decreases inflammatory markers in patients with chronic hepatitis C virus infection. Antimicrob Agents Chemother 2011; 55:3125-32. [PMID: 21502634 DOI: 10.1128/aac.00131-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Danoprevir is a potent and selective direct-acting antiviral agent that targets the protease activity of hepatitis C virus (HCV) NS3/4A. This agent results in a significant rapid decline in HCV RNA levels when it is used in monotherapy. The present study evaluated whether plasma concentrations of the inflammatory markers gamma interferon-inducible protein 10 (IP-10) and neopterin or the interferon-stimulated gene product 2'-5'-oligoadenylate synthetase (OAS-1) were correlated with the plasma HCV RNA concentration before or during 14-day danoprevir monotherapy. In contrast to pegylated interferon and ribavirin treatment, a higher baseline IP-10 concentration was positively correlated with a greater first-phase HCV RNA decline upon danoprevir administration. Changes in the IP-10 plasma concentration during danoprevir administration were also associated with categorical changes in HCV RNA concentration at days 7 and 14. The neopterin concentration appeared to be moderately decreased during danoprevir administration, although these changes were not statistically significant. However, changes in neopterin concentration showed a statistically significant correlation with changes in IP-10 concentration. Considerable variation in the OAS-1 concentration was observed before and during treatment, including in patients treated with placebo and/or patients with minimal virologic response. Overall, these results suggest that effective treatment with a direct-acting antiviral agent may reduce hepatic inflammation and that first-phase HCV RNA decline during treatment with an NS3/4A protease inhibitor is more robust in patients with high baseline IP-10 concentrations.
Collapse
|
39
|
Uto H, Kanmura S, Takami Y, Tsubouchi H. Clinical proteomics for liver disease: a promising approach for discovery of novel biomarkers. Proteome Sci 2010; 8:70. [PMID: 21192835 PMCID: PMC3023778 DOI: 10.1186/1477-5956-8-70] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/31/2010] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and advanced hepatic fibrosis is a major risk factor for HCC. Hepatic fibrosis including liver cirrhosis and HCC are mainly induced by persistent hepatitis B or C virus infection, with approximately 500 million people infected with hepatitis B or C virus worldwide. Furthermore, the number of patients with non-alcoholic fatty liver disease (NAFLD) has recently increased and NAFLD can progress to cirrhosis and HCC. These chronic liver diseases are major causes of morbidity and mortality, and the identification of non-invasive biomarkers is important for early diagnosis. Recent advancements in quantitative and large-scale proteomic methods could be used to optimize the clinical application of biomarkers. Early diagnosis of HCC and assessment of the stage of hepatic fibrosis or NAFLD can also contribute to more effective therapeutic interventions and an improve prognosis. Furthermore, advancements of proteomic techniques contribute not only to the discovery of clinically useful biomarkers, but also in clarifying the molecular mechanisms of disease pathogenesis by using body fluids, such as serum, and tissue samples and cultured cells. In this review, we report recent advances in quantitative proteomics and several findings focused on liver diseases, including HCC, NAFLD, hepatic fibrosis and hepatitis B or C virus infections.
Collapse
Affiliation(s)
- Hirofumi Uto
- Department of Digestive and Lifestyle-related Diseases, Health Research Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan.
| | | | | | | |
Collapse
|