1
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA. Towards a comprehensive understanding of the muscle proteome in Schizothorax labiatus: Insights from seasonal variations, metabolic responses, and reproductive signatures in the River Jhelum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170840. [PMID: 38340828 DOI: 10.1016/j.scitotenv.2024.170840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Proteomics is a very advanced technique used for defining correlations, compositions and activities of hundreds of proteins from organisms as well as effectively used in identifying particular proteins with varying peptide lengths and amino acid counts. In the present study, an endeavour has been put forth to create muscle proteome expression of snow trout, Schizothorax labiatus. Liquid chromatography-mass spectrometry (LC-MS) using label free quantification (LFQ) technique has extensively been carried out to explore changes in protein metabolism and its composition to discriminate across species, clarify functions and pinpoint protein biomarkers from organisms. In LFQ technique, the abundances of proteins are determined based on the signal intensities of their corresponding peptides in mass spectrometry. The main benefit of using this method is that it doesn't require pre-labelling proteins with isotopic tags, which streamlines the experimental procedure and gets rid of any bias that might have been caused by the labelling process. LFQ techniques frequently offer a wider dynamic range, making it possible to detect and quantify proteins over a broad range of abundances obtained from the complex biological materials including fish muscle. The results of proteomic analysis could provide an insight in understanding about how various proteins are expressed in response to environmental challenges. For proteomic study, two different weight groups of S. labiatus were taken from River Jhelum based on biological, physiological and logistical factors. These groups corresponded to different life stages, such as younger size and adults/brooders in order to capture potential variations in the muscle proteome related to growth and development. The proteomic analysis of S. labiatus depicted that an overall of 220 proteins in male and 228 in female fish of group 1 were noted. However, when male and female S. labiatus were examined based on spectral count and peptide abundance using ProteinLynx Global Software, a total of 10 downregulated and 32 upregulated proteins were found. In group 2 of S. labiatus, a total of 249 proteins in male and 301 in female fish were documented. When the two genders of S. labiatus were likened to one another by LFQ technique, a total of 41 downregulated and 06 upregulated proteins were identified. The variability in the protein numbers between two fish weight groups reflected biological differences, influenced by factors such as age, developmental stages, physiological condition and reproductive activities. During the study, it was observed that S. labiatus exhibited downregulated levels of proteins that were involved in feeding and growth. The contributing factors to this manifestation could be explained by lower feeding and metabolic activity of fish and decreased food availability during winter in River Jhelum. Contrarily, the fish immune response proteins were found to be significantly over-expressed in S. labiatus, indicating that the environment was more likely to undergo increased microbial infection, pollution load and anthropogenic activities. In addition, it was also discovered that there was an upregulated expression of the reproductive proteins in S. labiatus, which could be linked to the fish's pre-spawning time as the fish used in this study was collected in the winter season which is the pre-spawning period of the fish. Therefore, the present study would be useful in obtaining new insights regarding the molecular makeup of species, methods of adaptation and reactions to environmental stresses. This information contributes to our understanding of basic science and may have applications in environmental monitoring, conservation and preservation of fish species.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatin Raza Khan
- Departmentof Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, India
| |
Collapse
|
2
|
Gajahin Gamage NT, Miyashita R, Takahashi K, Asakawa S, Senevirathna JDM. Proteomic Applications in Aquatic Environment Studies. Proteomes 2022; 10:proteomes10030032. [PMID: 36136310 PMCID: PMC9505238 DOI: 10.3390/proteomes10030032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Genome determines the unique individualities of organisms; however, proteins play significant roles in the generation of the colorful life forms below water. Aquatic systems are usually complex and multifaceted and can take on unique modifications and adaptations to environmental changes by altering proteins at the cellular level. Proteomics is an essential strategy for exploring aquatic ecosystems due to the diverse involvement of proteins, proteoforms, and their complexity in basic and advanced cellular functions. Proteomics can expedite the analysis of molecular mechanisms underlying biological processes in an aquatic environment. Previous proteomic studies on aquatic environments have mainly focused on pollution assessments, ecotoxicology, their role in the food industry, and extraction and identification of natural products. Aquatic protein biomarkers have been comprehensively reported and are currently extensively applied in the pharmaceutical and medical industries. Cellular- and molecular-level responses of organisms can be used as indicators of environmental changes and stresses. Conversely, environmental changes are expedient in predicting aquatic health and productivity, which are crucial for ecosystem management and conservation. Recent advances in proteomics have contributed to the development of sustainable aquaculture, seafood safety, and high aquatic food production. Proteomic approaches have expanded to other aspects of the aquatic environment, such as protein fingerprinting for species identification. In this review, we encapsulated current proteomic applications and evaluated the potential strengths, weaknesses, opportunities, and threats of proteomics for future aquatic environmental studies. The review identifies both pros and cons of aquatic proteomics and projects potential challenges and recommendations. We postulate that proteomics is an emerging, powerful, and integrated omics approach for aquatic environmental studies.
Collapse
Affiliation(s)
- Nadeeka Thushari Gajahin Gamage
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Rina Miyashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazutaka Takahashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Jayan Duminda Mahesh Senevirathna
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
- Correspondence:
| |
Collapse
|
3
|
Priya P, Aneesh B, Harikrishnan K. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. J Microbiol Methods 2021; 185:106215. [PMID: 33839214 DOI: 10.1016/j.mimet.2021.106215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Intense agricultural practices to meet rising food demands have caused ecosystem perturbations. For sustainable crop production, biological agents are gaining attention, but exploring their functional potential on a multi-layered complex ecosystem like the rhizosphere is challenging. This review explains the significance of genomics as a culture-independent molecular tool to understand the diversity and functional significance of the rhizosphere microbiome for sustainable agriculture. It discusses the recent significant studies in the rhizosphere environment carried out using evolving techniques like metagenomics, metatranscriptomics, and metaproteomics, their challenges, constraints infield application, and prospective solutions. The recent advances in techniques such as nanotechnology for the development of bioformulations and visualization techniques contemplating environmental safety were also discussed. The need for development of metagenomic data sets of regionally important crops, their plant microbial interactions and agricultural practices for narrowing down significant data from huge databases have been suggested. The role of taxonomical and functional diversity of soil microbiota in understanding soil suppression and part played by the microbial metabolites in the process have been analyzed and discussed in the context of 'omics' approach. 'Omics' studies have revealed important information about microbial diversity, their responses to various biotic and abiotic stimuli, and the physiology of disease suppression. This can be translated to crop sustainability and combinational approaches with advancing visualization and analysis methodologies fix the existing knowledge gap to a huge extend. With improved data processing and standardization of the methods, details of plant-microbe interactions can be successfully decoded to develop sustainable agricultural practices.
Collapse
Affiliation(s)
- P Priya
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - B Aneesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences Cochin University of Science and Technology, Cochin, Kerala, India.
| | - K Harikrishnan
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
4
|
Bernardo L, Morcia C, Carletti P, Ghizzoni R, Badeck FW, Rizza F, Lucini L, Terzi V. Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. J Proteomics 2017; 169:21-32. [PMID: 28366879 DOI: 10.1016/j.jprot.2017.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are plant growth promoters that ameliorate plant-water relations and the nutrient uptake of wheat. In this work, two cultivars of Triticum spp., a bread and a durum wheat, grown under drought stress and inoculated or not by AMF, are evaluated through a shotgun proteomic approach. The AMF association had beneficial effects as compared to non-mycorrhizal roots, in both bread and durum wheat. The beneficial symbiosis was confirmed by measuring morphological and physiological traits. In our work, we identified 50 statistically differential proteins in the bread wheat cultivar and 66 differential proteins in the durum wheat cultivar. The findings highlighted a modulation of proteins related to sugar metabolism, cell wall rearrangement, cytoskeletal organization and sulphur-containing proteins, as well as proteins related to plant stress responses. Among differentially expressed proteins both cultivars evidenced a decrease in sucrose:fructan 6-fructosyltransferas. In durum wheat oxylipin signalling pathway was involved with two proteins: increased 12-oxo-phytodienoic acid reductase and decreased jasmonate-induced protein, both related to the biosynthesis of jasmonic acid. Interactome analysis highlighted the possible involvement of ubiquitin although not evidenced among differentially expressed proteins. The AMF association helps wheat roots reducing the osmotic stress and maintaining cellular integrity. BIOLOGICAL SIGNIFICANCE Drought is one of the major constraints that plants must face in some areas of the world, associated to climate change, negatively affecting the worldwide plant productivity. The adoption of innovative agronomic protocols may represent a winning strategy in facing this challenge. The arbuscular mycorrhizal fungi (AMF) inoculation may represent a natural and sustainable way to mitigate the negative effects due to drought in several crop, ameliorating plant growth and development. Studies on the proteomic responses specific to AMF in drought-stressed plants will help clarify how mycorrhization elicits plant growth, nutrient uptake, and stress-tolerance responses. Such studies also offer the potential to find biological markers and genetic targets to be used during breeding for new drought-resistant varieties.
Collapse
Affiliation(s)
- Letizia Bernardo
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy.
| | - Caterina Morcia
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale dell'Università, 16, I-35020 Legnaro, PD, Italy
| | - Roberta Ghizzoni
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Franz W Badeck
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Fulvia Rizza
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, I-29122 PC, Italy
| | - Valeria Terzi
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| |
Collapse
|
5
|
Sebastiana M, Martins J, Figueiredo A, Monteiro F, Sardans J, Peñuelas J, Silva A, Roepstorff P, Pais MS, Coelho AV. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. MYCORRHIZA 2017; 27:109-128. [PMID: 27714470 DOI: 10.1007/s00572-016-0734-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
An increased knowledge on the real impacts of ectomycorrhizal symbiosis in forest species is needed to optimize forest sustainable productivity and thus to improve forest services and their capacity to act as carbon sinks. In this study, we investigated the response of an oak species to ectomycorrhizae formation using a proteomics approach complemented by biochemical analysis of carbohydrate levels. Comparative proteome analysis between mycorrhizal and nonmycorrhizal cork oak plants revealed no differences at the foliar level. However, the protein profile of 34 unique oak proteins was altered in the roots. Consistent with the results of the biochemical analysis, the proteome analysis of the mycorrhizal roots suggests a decreasing utilization of sucrose for the metabolic activity of mycorrhizal roots which is consistent with an increased allocation of carbohydrates from the plant to the fungus in order to sustain the symbiosis. In addition, a promotion of protein unfolding mechanisms, attenuation of defense reactions, increased nutrient mobilization from the plant-fungus interface (N and P), as well as cytoskeleton rearrangements and induction of plant cell wall loosening for fungal root accommodation in colonized roots are also suggested by the results. The suggested improvement in root capacity to take up nutrients accompanied by an increase of root biomass without apparent changes in aboveground biomass strongly re-enforces the potential of mycorrhizal inoculation to improve cork oak forest resistance capacity to cope with coming climate change.
Collapse
Affiliation(s)
- Mónica Sebastiana
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal.
| | - Joana Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da Republica, 2780-s157, Oeiras, Portugal
| | - Andreia Figueiredo
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Filipa Monteiro
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Anabela Silva
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Maria Salomé Pais
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da Republica, 2780-s157, Oeiras, Portugal
| |
Collapse
|
6
|
Peinado-Guevara LI, López-Meyer M, López-Valenzuela JA, Maldonado-Mendoza IE, Galindo-Flores H, Campista-León S, Medina-Godoy S. Comparative proteomic analysis of leaf tissue from tomato plants colonized with Rhizophagus irregularis. Symbiosis 2017. [DOI: 10.1007/s13199-016-0470-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Larrainzar E, Wienkoop S. A Proteomic View on the Role of Legume Symbiotic Interactions. FRONTIERS IN PLANT SCIENCE 2017; 8:1267. [PMID: 28769967 PMCID: PMC5513976 DOI: 10.3389/fpls.2017.01267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/05/2017] [Indexed: 05/04/2023]
Abstract
Legume plants are key elements in sustainable agriculture and represent a significant source of plant-based protein for humans and animal feed worldwide. One specific feature of the family is the ability to establish nitrogen-fixing symbiosis with Rhizobium bacteria. Additionally, like most vascular flowering plants, legumes are able to form a mutualistic endosymbiosis with arbuscular mycorrhizal (AM) fungi. These beneficial associations can enhance the plant resistance to biotic and abiotic stresses. Understanding how symbiotic interactions influence and increase plant stress tolerance are relevant questions toward maintaining crop yield and food safety in the scope of climate change. Proteomics offers numerous tools for the identification of proteins involved in such responses, allowing the study of sub-cellular localization and turnover regulation, as well as the discovery of post-translational modifications (PTMs). The current work reviews the progress made during the last decades in the field of proteomics applied to the study of the legume-Rhizobium and -AM symbioses, and highlights their influence on the plant responses to pathogens and abiotic stresses. We further discuss future perspectives and new experimental approaches that are likely to have a significant impact on the field including peptidomics, mass spectrometric imaging, and quantitative proteomics.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Department of Environmental Sciences, Universidad Pública de NavarraPamplona, Spain
- *Correspondence: Estíbaliz Larrainzar
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Stefanie Wienkoop
| |
Collapse
|
8
|
Hypothetical protein Avin_16040 as the S-layer protein of Azotobacter vinelandii and its involvement in plant root surface attachment. Appl Environ Microbiol 2015; 81:7484-95. [PMID: 26276116 DOI: 10.1128/aem.02081-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022] Open
Abstract
A proteomic analysis of a soil-dwelling, plant growth-promoting Azotobacter vinelandii strain showed the presence of a protein encoded by the hypothetical Avin_16040 gene when the bacterial cells were attached to the Oryza sativa root surface. An Avin_16040 deletion mutant demonstrated reduced cellular adherence to the root surface, surface hydrophobicity, and biofilm formation compared to those of the wild type. By atomic force microscopy (AFM) analysis of the cell surface topography, the deletion mutant displayed a cell surface architectural pattern that was different from that of the wild type. Escherichia coli transformed with the wild-type Avin_16040 gene displayed on its cell surface organized motifs which looked like the S-layer monomers of A. vinelandii. The recombinant E. coli also demonstrated enhanced adhesion to the root surface.
Collapse
|
9
|
Moretti M, Grunau A, Minerdi D, Gehrig P, Roschitzki B, Eberl L, Garibaldi A, Gullino ML, Riedel K. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35. Proteomics 2011; 10:3292-320. [PMID: 20707000 DOI: 10.1002/pmic.200900716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.
Collapse
Affiliation(s)
- Marino Moretti
- Agroinnova-Centre of Competence for the Innovation in the Agro-Environmental Field, University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Meschini EP, Blanco FA, Zanetti ME, Beker MP, Küster H, Pühler A, Aguilar OM. Host genes involved in nodulation preference in common bean (Phaseolus vulgaris)-rhizobium etli symbiosis revealed by suppressive subtractive hybridization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:459-68. [PMID: 18321191 DOI: 10.1094/mpmi-21-4-0459] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Common bean cultivars are nodulated preferentially by Rhizobium etli lineages from the same center of host diversification. Nodulation was found to be earlier and numerous in bean plants inoculated with the cognate strain. We predicted that analysis of transcripts at early stages of the interaction between host and rhizobium would identify plant genes that are most likely to be involved in this preferential nodulation. Therefore, we applied a suppressive subtractive hybridization approach in which cDNA from a Mesoamerican cultivar inoculated with either the more- or less-efficient strain of R. etli was used as the driver and the tester, respectively. Forty-one independent tentative consensus sequences (TCs) were obtained and classified into different functional categories. Of 11 selected TCs, 9 were confirmed by quantitative reverse-transcriptase polymerase chain reaction. Two genes show high homology to previously characterized plant receptors. Two other upregulated genes encode for Rab11, a member of the small GTP-binding protein family, and HAP5, a subunit of the heterotrimeric CCAAT-transcription factor. Interestingly, one of the TCs encodes for an isoflavone reductase, which may lead to earlier Nod factor production by specific strains of rhizobia. The transcript abundance of selected cDNAs also was found to be higher in mature nodules of the more efficient interaction. Small or no differences were observed when an Andean bean cultivar was inoculated with a cognate strain, suggesting involvement of these genes in the strain-specific response. The potential role of these genes in the early preferential symbiotic interaction is discussed.
Collapse
Affiliation(s)
- Eitel Peltzer Meschini
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900-La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
11
|
Balestrini R, Lanfranco L. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. MYCORRHIZA 2006; 16:509-524. [PMID: 17004063 DOI: 10.1007/s00572-006-0069-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 07/05/2006] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Istituto per la Protezione delle Piante-Sezione di Torino-CNR, Viale Mattioli 25, 10125, Turin, Italy.
| | - Luisa Lanfranco
- Dipartimento di Biologia Vegetale, Università di Torino, Viale Mattioli 25, 10125, Turin, Italy
| |
Collapse
|
12
|
Mark G, Morrissey JP, Higgins P, O'gara F. Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 2006; 56:167-77. [PMID: 16629747 DOI: 10.1111/j.1574-6941.2006.00056.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Exploitation of beneficial plant-microbe interactions in the rhizosphere can result in the promotion of plant health and have significant implications for low input sustainable agriculture applications such as biocontrol. Bacteria such as Bacillus and Pseudomonas, and fungi such as Trichoderma, have been developed as commercial biocontrol products. Registration of microbial inocualants as biocontrol agents in either the European Union or the United States requires production of extensive dossiers covering efficacy, safety and risk assessment. Despite the fact that a number of Pseudomonas biocontrol products have been marketed there are still some limitations hampering the development of this technology for widespread use in agriculture. Although many strains show good performance in specific trials, this is often not translated into consistent, effective biocontrol in diverse field situations. Advances in 'Omics' technology and the publication of complete genome sequences of a number of plant-associative bacterial strains, has facilitated investigations into the molecular basis underpinning the establishment of beneficial plant-microbe interactions in the rhizosphere. The understanding of these molecular signalling processes and the functions they regulate is fundamental to promoting beneficial microbe-plant interactions, to overcome existing limitations and to designing improved strategies for the development of novel Pseudmonas biocontrol inoculant consortia.
Collapse
Affiliation(s)
- Genevievel Mark
- The BIOMERIT Research Centre, Department of Microbiology, National University of Ireland (University College Cork), Cork, Ireland
| | | | | | | |
Collapse
|
13
|
Rampitsch C, Srinivasan M. The application of proteomics to plant biology: a review. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The term proteomics, although still less than a decade old, is becoming commonplace in the vocabulary of biologists. Advances made in yeast and humans have been remarkable, sustained by equally remarkable progress in mass spectrometry, bioinformatics, and separation techniques. Progress in plants has been more recent, much of it in the model organisms Arabidopsis thaliana (L.) Heynh. and rice ( Oryza sativa L.), reflecting the tremendous advantage of a complete genomic sequence for proteomics endeavours. Other plants have also been the subject of investigation and this review deals with recent progress in proteomics under three main subheadings: total proteome studies, stress and post-translational modifications, and symbiotic plant–microbe interactions. Examples from the current literature are used to illustrate how proteomics can be used by itself or as part of a larger strategy to gain insight into the functioning of plants at the molecular level.
Collapse
Affiliation(s)
- Christof Rampitsch
- Cereal Research Centre, Agriculture and Agrifood Canada, 195 Dafoe Road, Winnipeg, MB R3T 2M9, Canada
- Yara International ASA, Bygdøy Alle 2, N-0202, Oslo, Norway
| | - Murali Srinivasan
- Cereal Research Centre, Agriculture and Agrifood Canada, 195 Dafoe Road, Winnipeg, MB R3T 2M9, Canada
- Yara International ASA, Bygdøy Alle 2, N-0202, Oslo, Norway
| |
Collapse
|
14
|
|
15
|
Barneah O, Benayahu Y, Weis VM. Comparative proteomics of symbiotic and aposymbiotic juvenile soft corals. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:11-6. [PMID: 16059755 DOI: 10.1007/s10126-004-5120-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Accepted: 04/04/2005] [Indexed: 05/03/2023]
Abstract
The symbiotic association between corals and photosynthetic unicellular algae is of great importance in coral reef ecosystems. The study of symbiotic relationships is multidisciplinary and involves research in phylogeny, physiology, biochemistry, and ecology. An intriguing phase in each symbiotic relationship is its initiation, in which the partners interact for the first time. The examination of this phase in coral-algae symbiosis from a molecular point of view is still at an early stage. In the present study we used 2-dimensional polyacrylamide gel electrophoresis to compare patterns of proteins synthesized in symbiotic and aposymbiotic primary polyps of the Red Sea soft coral Heteroxenia fuscescens. This is the first work to search for symbiosis-specific proteins during the natural onset of symbiosis in early host ontogeny. The protein profiles reveal changes in the host soft coral proteome through development, but surprisingly virtually no changes in the host proteome as a function of symbiotic state.
Collapse
Affiliation(s)
- O Barneah
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
| | | | | |
Collapse
|
16
|
|
17
|
Valot B, Dieu M, Recorbet G, Raes M, Gianinazzi S, Dumas-Gaudot E. Identification of membrane-associated proteins regulated by the arbuscular mycorrhizal symbiosis. PLANT MOLECULAR BIOLOGY 2005; 59:565-80. [PMID: 16244907 DOI: 10.1007/s11103-005-8269-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/01/2005] [Indexed: 05/05/2023]
Abstract
A sub-cellular proteomic approach was carried out to monitor membrane-associated protein modifications in response to the arbuscular mycorrhizal (AM) symbiosis. Membrane proteins were extracted from Medicago truncatula roots either inoculated or not with the AM fungus Glomus intraradices. Comparative two-dimensional electrophoresis revealed that 36 spots were differentially displayed in response to the fungal colonization including 15 proteins induced, 3 up-regulated and 18 down-regulated. Among them, seven proteins were found to be commonly down-regulated in AM-colonized and phosphate-fertilized roots. Twenty-five spots out of the 36 of interest could be identified by matrix assisted laser desorption/ionisation-time of flight and/or tandem mass spectrometry analyses. Excepting an acid phosphatase and a lectin, none of them was previously reported as being regulated during AM symbiosis. In addition, this proteomic approach allowed us for the first time to identify AM fungal proteins in planta.
Collapse
Affiliation(s)
- Benoît Valot
- UMR 1088 INRA/CNRS 5184/UB Plante-Microbe-Environnement, INRA/CMSE, BP 86510, 21065 cedex, Dijon, France
| | | | | | | | | | | |
Collapse
|
18
|
Wan J, Torres M, Ganapathy A, Thelen J, DaGue BB, Mooney B, Xu D, Stacey G. Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:458-67. [PMID: 15915644 DOI: 10.1094/mpmi-18-0458] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection of soybean root hairs by Bradyrhizobium japonicum is the first of several complex events leading to nodulation. In the current proteomic study, soybean root hairs after inoculation with B. japonicum were separated from roots. Total proteins were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis. In one experiment, 96 protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to compare protein profiles between uninoculated roots and root hairs. Another 37 spots, derived from inoculated root hairs over different timepoints, were also analyzed by tandem MS (MS/MS). As expected, some proteins were differentially expressed in root hairs compared with roots (e.g., a chitinase and phosphoenolpyruvate carboxylase). Out of 37 spots analyzed by MS/MS, 27 candidate proteins were identified by database comparisons. These included several proteins known to respond to rhizobial inoculation (e.g., peroxidase and phenylalanine-ammonia lyase). However, novel proteins were also identified (e.g., phospholipase D and phosphoglucomutase). This research establishes an excellent system for the study of root-hair infection by rhizobia and, in a more general sense, the functional genomics of a single, plant cell type. The results obtained also indicate that proteomic studies with soybean, lacking a complete genome sequence, are practical.
Collapse
Affiliation(s)
- Jinrong Wan
- National Center for Soybean Biotechnology, Department of Plant Microbiology and Pathology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG. Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. PLANT PHYSIOLOGY 2005; 137:1250-60. [PMID: 15749990 PMCID: PMC1088318 DOI: 10.1104/pp.104.055277] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 01/06/2005] [Accepted: 01/09/2005] [Indexed: 05/18/2023]
Abstract
The Medicago truncatula line 2HA has a 500-fold greater capacity to regenerate plants in culture by somatic embryogenesis than wild-type Jemalong. We have compared proteomes of tissue cultures from leaf explants of these two lines. Both 2HA and Jemalong explants were grown on media containing the auxin 1-naphthaleneacetic acid and the cytokinin 6-benzylaminopurine. Proteins were extracted from the cultures at different time points (2, 5, and 8 weeks), separated by two-dimensional gel electrophoresis, and detected by silver staining. More than 2,000 proteins could be reproducibly resolved and detected on each gel. Statistical analysis showed that 54 protein spots were significantly (P < 0.05) changed in expression (accumulation) during the 8 weeks of culture, and most of these spots were extracted from colloidal Coomassie-stained two-dimensional gel electrophoresis gels and were subjected to matrix-assisted laser desorption ionization time-of-flight mass spectrometry or liquid chromatography-tandem mass spectrometry analysis. Using a publicly available expressed sequence tag database and the Mascot search engine, we were able to identify 16 differentially expressed proteins. More than 60% of the differentially expressed protein spots had very different patterns of gene expression between 2HA and Jemalong during the 8 weeks of culture.
Collapse
Affiliation(s)
- Nijat Imin
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra City, Australian Capital Territory, 2601, Australia
| | | | | | | | | | | |
Collapse
|