1
|
Dutta S, Houdinet G, NandaKafle G, Kafle A, Hawkes CV, Garcia K. Agrobacterium tumefaciens-mediated transformation of Nigrospora sp. isolated from switchgrass leaves and antagonistic toward plant pathogens. J Microbiol Methods 2023; 215:106849. [PMID: 37907117 DOI: 10.1016/j.mimet.2023.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Nigrospora is a diverse genus of fungi colonizing plants through endophytic, pathogenic, or saprobic interactions. Endophytic isolates can improve growth and development of host plants, as well as their resistance to microbial pathogens, but exactly how they do so remains poorly understood. Developing a reliable transformation method is crucial to investigate these mechanisms, in particular to identify pivotal genes for specific functions that correlate with specific traits. In this study, we identified eight isolates of Nigrospora sp. internally colonizing the leaves of switchgrass plants cultivated in North Carolina. Using an Agrobacterium tumefaciens-mediated transformation approach with control and GFP-expressing vectors, we report the first successful transformation of two Nigrospora isolates. Finally, we demonstrate that wild-type and transgenic isolates both negatively impact the growth of two plant pathogens in co-culture conditions, Bipolaris maydis and Parastagonospora nodorum, responsible for the Southern Leaf Blight and Septoria Nodorum Blotch diseases, respectively. The GFP-transformed strains developed here can therefore serve as accurate reporters of spatial interactions in future studies of Nigrospora and pathogens in the plant. Finally, the transformation method we describe lays the foundation for further genetic research on the Nigrospora genus to expand our mechanistic understanding of plant-endophyte interactions.
Collapse
Affiliation(s)
- Summi Dutta
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Gabriella Houdinet
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA
| | - Gitanjali NandaKafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Christine V Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Lim FH, Rasid OA, Idris AS, As'wad AWM, Vadamalai G, Parveez GKA, Wong MY. Enhanced polyethylene glycol (PEG)-mediated protoplast transformation system for the phytopathogenic fungus, Ganoderma boninense. Folia Microbiol (Praha) 2021; 66:677-688. [PMID: 34041694 DOI: 10.1007/s12223-021-00852-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
The basidiomycete fungus, Ganoderma boninense, has been identified as the main causal agent of oil palm basal stem rot (BSR) disease which has caused significant economic losses to the industry especially in Malaysia and Indonesia. Various efforts have been initiated to understand the disease and this plant pathogen especially at the molecular level. This is the first study of its kind on the development of a polyethylene glycol (PEG)-mediated protoplast transformation system for G. boninense. Based on the minimal inhibitory concentration study, 60 µg/mL and above of hygromycin were effective to completely inhibit G. boninense growth. Approximately 5.145 × 107 cells/mL of protoplasts with the viability of 97.24% was successfully obtained from G. boninense mycelium tissue. The PEG-mediated G. boninense protoplast transformation using 1 µg of transformation vector, 25% of PEG solution, 10 min of pre-transformation incubation, and 30 min of post-transformation incubation has improved the transformation rate as compared with the previous reported protocols for other basidiomycete fungi. Optimization of four transformation parameters has improved the transformation efficiency of G. boninense from an average of 2 to 67 putative transformants. The presence of hygromycin phosphotransferase (hpt) and enhanced green fluorescent protein (eGFP) genes in the putative transformants was detected by PCR and verified by gene sequence analysis. Southern hybridization result further confirmed the integration of hpt gene in G. boninense transformants, and the green fluorescent signal was detected in the G. boninense transformants under the microscopic analysis. The establishment of this transformation system will accelerate the gene function studies of G. boninense especially those genes that may contribute to the pathogenesis of this fungus in oil palm.
Collapse
Affiliation(s)
- Fook-Hwa Lim
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | - Omar Abd Rasid
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abu Seman Idris
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abdul Wahab Mohd As'wad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Ganesan Vadamalai
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Mui-Yun Wong
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Agrobacterium tumefaciens-Mediated Genetic Transformation of the Ect-endomycorrhizal Fungus Terfezia boudieri. Genes (Basel) 2020; 11:genes11111293. [PMID: 33143066 PMCID: PMC7693413 DOI: 10.3390/genes11111293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023] Open
Abstract
Mycorrhizal desert truffles such as Terfezia boudieri, Tirmania nivea, and Terfezia claveryi, form mycorrhizal associations with plants of the Cistaceae family. These valued truffles are still collected from the wild and not cultivated under intensive farming due to the lack of basic knowledge about their biology at all levels. Recently, several genomes of desert truffles have been decoded, enabling researchers to attempt genetic manipulations to enable cultivation. To execute such manipulations, the development of molecular tools for genes transformation into truffles is needed. We developed an Agrobacterium tumefaciens-mediated genetic transformation system in T. boudieri. This system was optimized for the developmental stage of the mycelia explants, bacterial optical density, infection and co-cultivation durations, and concentrations of the selection antibiotics. The pFPL-Rh plasmid harboring hph gene conferring hygromycin resistance as a selection marker and the red fluorescent protein gene were used as visual reporters. The optimal conditions were incubation with 200 μM of acetosyringone, attaining a bacterial optical density of 0.3 OD600; transfer time of 45 min; and co-cultivation for 3 days. This is the first report on a transformation system for T. boudieri, and the proposed protocol can be adapted for the transformation of other important desert truffles as well as ectomycorrhizal species.
Collapse
|
4
|
Characterization of the effects of terminators and introns on recombinant gene expression in the basidiomycete Ceriporiopsis subvermispora. J Microbiol 2020; 58:1037-1045. [DOI: 10.1007/s12275-020-0213-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023]
|
5
|
Kemppainen M, Chowdhury J, Lundberg-Felten J, Pardo A. Fluorescent protein expression in the ectomycorrhizal fungus Laccaria bicolor: a plasmid toolkit for easy use of fluorescent markers in basidiomycetes. Curr Genet 2020; 66:791-811. [PMID: 32170354 DOI: 10.1007/s00294-020-01060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
For long time, studies on ectomycorrhiza (ECM) have been limited by inefficient expression of fluorescent proteins (FPs) in the fungal partner. To convert this situation, we have evaluated the basic requirements of FP expression in the model ECM homobasidiomycete Laccaria bicolor and established eGFP and mCherry as functional FP markers. Comparison of intron-containing and intronless FP-expression cassettes confirmed that intron-processing is indispensable for efficient FP expression in Laccaria. Nuclear FP localization was obtained via in-frame fusion of FPs between the intron-containing genomic gene sequences of Laccaria histone H2B, while cytosolic FP expression was produced by incorporating the intron-containing 5' fragment of the glyceraldehyde-3-phosphate dehydrogenase encoding gene. In addition, we have characterized the consensus Kozak sequence of strongly expressed genes in Laccaria and demonstrated its boosting effect on transgene mRNA accumulation. Based on these results, an Agrobacterium-mediated transformation compatible plasmid set was designed for easy use of FPs in Laccaria. The four cloning plasmids presented here allow fast and highly flexible construction of C-terminal in-frame fusions between the sequences of interest and the two FPs, expressed either from the endogenous gene promoter, allowing thus evaluation of the native regulation modes of the gene under study, or alternatively, from the constitutive Agaricus bisporus gpdII promoter for enhanced cellular protein localization assays. The molecular tools described here for cell-biological studies in Laccaria can also be exploited in studies of other biotrophic or saprotrophic basidiomycete species susceptible to genetic transformation.
Collapse
Affiliation(s)
- Minna Kemppainen
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, Nacional University of Quilmes and CONICET, Bernal, Buenos Aires, Argentina.
| | - Jamil Chowdhury
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Judith Lundberg-Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Alejandro Pardo
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, Nacional University of Quilmes and CONICET, Bernal, Buenos Aires, Argentina
| |
Collapse
|
6
|
Yin C, Fan X, Ma K, Chen Z, Shi D, Yao F, Gao H, Ma A. Identification and characterization of a novel light-induced promoter for recombinant protein production in Pleurotus ostreatus. J Microbiol 2019; 58:39-45. [PMID: 31686390 DOI: 10.1007/s12275-020-9230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 11/30/2022]
Abstract
A lectin gene (plectin) with a high level of expression was previously identified by comparative transcriptome analysis of Pleurotus ostreatus. In this study, we cloned a 733-bp DNA fragment from the start codon of the plectin gene. Sequence analysis showed that the plectin promoter (Plp) region contained several eukaryotic transcription factor binding motifs, such as the TATA-box, four possible CAAT-box, light respon-siveness motifs and MeJA-responsiveness motifs. To deter-mine whether the Plp promoter was a light-regulated promoter, we constructed an expression vector with the fused egfp-hph fragment under the control of the Plp promoter and transformed P. ostreatus mycelia via Agrobacterium tunte-faciens. PCR and Southern blot analyses confirmed the Plp-egfp-hph fragment was integrated into the chromosomal DNA of transformants. qRT-PCR, egfp visualization, and intracellular egfp determination experiments showed the Plp promoter could be a light-induced promoter that may be suitable for P. ostreatus genetic engineering. This study lays the foundation for gene homologous expression in P. ostreatus.
Collapse
Affiliation(s)
- Chaomin Yin
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China. .,National Research and Development Center for Edible Fungi Processing (Wuhan), Wuhan, 430064, P. R. China.
| | - Xiuzhi Fan
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China
| | - Kun Ma
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China
| | - Zheya Chen
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China
| | - Defang Shi
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China
| | - Fen Yao
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China
| | - Hong Gao
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China.,National Research and Development Center for Edible Fungi Processing (Wuhan), Wuhan, 430064, P. R. China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
7
|
Herzog R, Solovyeva I, Bölker M, Lugones LG, Hennicke F. Exploring molecular tools for transformation and gene expression in the cultivated edible mushroom Agrocybe aegerita. Mol Genet Genomics 2019; 294:663-677. [PMID: 30778675 DOI: 10.1007/s00438-018-01528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022]
Abstract
Agrocybe aegerita is a cultivated edible mushroom in numerous countries, which also serves as a model basidiomycete to study fruiting body formation. Aiming to create an easily expandable customised molecular toolset for transformation and constitutive gene of interest expression, we first created a homologous dominant marker for transformant selection. Progeny monokaryons of the genome-sequenced dikaryon A. aegerita AAE-3 used here were identified as sensitive to the systemic fungicide carboxin. We cloned the wild-type gene encoding the iron-sulphur protein subunit of succinate dehydrogenase AaeSdi1 including its up- and downstream regions, and introduced a single-point mutation (His237 to Leu) to make it confer carboxin resistance. PEG-mediated transformation of protoplasts derived from either oidia or vegetative monokaryotic mycelium with the resulting carboxin resistance marker (CbxR) plasmid pSDI1E3 yielded carboxin-resistant transformants in both cases. Plasmid DNA linearised within the selection marker resulted in transformants with ectopic multiple insertions of plasmid DNA in a head-to-tail repeat-like fashion. When circular plasmid was used, ectopic single integration into the fungal genome was favoured, but also gene conversion at the homologous locus was seen in 1 out of 11 analysed transformants. Employing CbxR as selection marker, two versions of a reporter gene construct were assembled via Golden Gate cloning which allows easy recombination of its modules. These consisted of an eGFP expression cassette controlled by the native promoter PAaeGPDII and the heterologous terminator Tnos, once with and once without an intron in front of the eGFP start codon. After protoplast transformation with either construct as circular plasmid DNA, GFP fluorescence was detected with either transformants, indicating that expression of eGFP is intron-independent in A. aegerita. This paves the way for functional genetics approaches to A. aegerita, e.g., via constitutive expression of fruiting-related genes.
Collapse
Affiliation(s)
- Robert Herzog
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institute of Ecology, Evolution and Diversity, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Department of Environmental Biotechnology, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Irina Solovyeva
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Michael Bölker
- LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Luis G Lugones
- Department of Biology, Microbiology, Utrecht University, Utrecht, The Netherlands
| | - Florian Hennicke
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Institute of Ecology, Evolution and Diversity, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany. .,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Department of Biology, Microbiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Al-Salihi SAA, Scott TA, Bailey AM, Foster GD. Improved vectors for Agrobacterium mediated genetic manipulation of Hypholoma spp. and other homobasidiomycetes. J Microbiol Methods 2017; 142:4-9. [PMID: 28843436 DOI: 10.1016/j.mimet.2017.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/01/2022]
Abstract
The basidiomycete fungi Hypholoma fasciculare and H. sublateritium are both prolific producers of sesquiterpenes and triterpenes, some of which have relevant pharmaceutical properties. Although H. sublateritium has been transformed in the past, the low reported efficiencies highlighted the need for establishing an effective simple transformation system for these valuable species. We have optimized Agrobacterium tumefaciens-mediated transformation through testing various parameters in these two Hypholoma species, showing that a mixture of homogenized mycelia and Agrobacterium (strain LBA4404) co-cultivated for 84h at 25°C is optimal for efficient transformation in these basidiomycetes. This study also reveals the requirements for transgene expression, with the first report of GFP expression in these Hypholoma, the need for an intron for such transgene expression, and further demonstrates the functionality of the expression vector by its use in Clitopilus passeckerianus. This development of transformation system and expression constructs, can facilitate further genetic investigation such as gene functionality in these fungi.
Collapse
Affiliation(s)
- Suhad A A Al-Salihi
- Molecular Plant Pathology and Fungal Biology Group, University of Bristol, School of Biological Sciences, 24 Tyndall Avenue Bristol, BS8 1TQ, UK
| | - Thomas A Scott
- Molecular Plant Pathology and Fungal Biology Group, University of Bristol, School of Biological Sciences, 24 Tyndall Avenue Bristol, BS8 1TQ, UK
| | - Andy M Bailey
- Molecular Plant Pathology and Fungal Biology Group, University of Bristol, School of Biological Sciences, 24 Tyndall Avenue Bristol, BS8 1TQ, UK
| | - Gary D Foster
- Molecular Plant Pathology and Fungal Biology Group, University of Bristol, School of Biological Sciences, 24 Tyndall Avenue Bristol, BS8 1TQ, UK.
| |
Collapse
|
9
|
Stephan BI, Alvarez Crespo MC, Kemppainen MJ, Pardo AG. Agrobacterium-mediated insertional mutagenesis in the mycorrhizal fungus Laccaria bicolor. Curr Genet 2016; 63:215-227. [PMID: 27387518 DOI: 10.1007/s00294-016-0627-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
Abstract
Agrobacterium-mediated gene transfer (AMT) is extensively employed as a tool in fungal functional genomics and accordingly, in previous studies we used AMT on a dikaryotic strain of the ectomycorrhizal basidiomycete Laccaria bicolor. The interest in this fungus derives from its capacity to establish a symbiosis with tree roots, thereby playing a major role in nutrient cycling of forest ecosystems. The ectomycorrhizal symbiosis is a highly complex interaction involving many genes from both partners. To advance in the functional characterization of fungal genes, AMT was used on a monokaryotic L. bicolor. A collection of over 1200 transgenic strains was produced, of which 200 randomly selected strains were analyzed for their genomic T-DNA insertion patterns. By means of insertional mutagenesis, a number of transgenic strains were obtained displaying differential growth features. Moreover, mating with a compatible strain resulted in dikaryons that retained altered phenotypic features of the transgenic monokaryon. The analysis of the T-DNA integration pattern revealed mostly similar results to those reported in earlier studies, confirming the usefulness of AMT on different genetic backgrounds of L. bicolor. Taken together, our studies display the great versatility and potentiality of AMT as a tool for the genetic characterization of L. bicolor.
Collapse
Affiliation(s)
- B I Stephan
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - M C Alvarez Crespo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - M J Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - A G Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Ford KL, Baumgartner K, Henricot B, Bailey AM, Foster GD. A native promoter and inclusion of an intron is necessary for efficient expression of GFP or mRFP in Armillaria mellea. Sci Rep 2016; 6:29226. [PMID: 27384974 PMCID: PMC4935854 DOI: 10.1038/srep29226] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022] Open
Abstract
Armillaria mellea is a significant pathogen that causes Armillaria root disease on numerous hosts in forests, gardens and agricultural environments worldwide. Using a yeast-adapted pCAMBIA0380 Agrobacterium vector, we have constructed a series of vectors for transformation of A. mellea, assembled using yeast-based recombination methods. These have been designed to allow easy exchange of promoters and inclusion of introns. The vectors were first tested by transformation into basidiomycete Clitopilus passeckerianus to ascertain vector functionality then used to transform A. mellea. We show that heterologous promoters from the basidiomycetes Agaricus bisporus and Phanerochaete chrysosporium that were used successfully to control the hygromycin resistance cassette were not able to support expression of mRFP or GFP in A. mellea. The endogenous A. mellea gpd promoter delivered efficient expression, and we show that inclusion of an intron was also required for transgene expression. GFP and mRFP expression was stable in mycelia and fluorescence was visible in transgenic fruiting bodies and GFP was detectable in planta. Use of these vectors has been successful in giving expression of the fluorescent proteins GFP and mRFP in A. mellea, providing an additional molecular tool for this pathogen.
Collapse
Affiliation(s)
- Kathryn L. Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service, 363 Hutchison Hall, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Béatrice Henricot
- The Royal Horticultural Society, Wisley, Woking, Surrey, GU23 6QB, United Kingdom
| | - Andy M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Gary D. Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| |
Collapse
|
11
|
Garcia K, Delteil A, Conéjéro G, Becquer A, Plassard C, Sentenac H, Zimmermann S. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant. THE NEW PHYTOLOGIST 2014; 201:951-960. [PMID: 24279702 DOI: 10.1111/nph.12603] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/16/2013] [Indexed: 05/07/2023]
Abstract
Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway.
Collapse
Affiliation(s)
- Kevin Garcia
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro/UM2, Campus INRA/SupAgro, 2 Place Viala, 34060, Montpellier Cedex 2, France
| | - Amandine Delteil
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro/UM2, Campus INRA/SupAgro, 2 Place Viala, 34060, Montpellier Cedex 2, France
| | - Geneviève Conéjéro
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro/UM2, Campus INRA/SupAgro, 2 Place Viala, 34060, Montpellier Cedex 2, France
- Plateforme Histocytologie et Imagerie Cellulaire Végétale, INRA-CIRAD, 34398, Montpellier, France
| | - Adeline Becquer
- INRA, UMR 1222 Eco&Sols, 2 Place Viala, 34060, Montpellier Cedex 2, France
| | - Claude Plassard
- INRA, UMR 1222 Eco&Sols, 2 Place Viala, 34060, Montpellier Cedex 2, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro/UM2, Campus INRA/SupAgro, 2 Place Viala, 34060, Montpellier Cedex 2, France
| | - Sabine Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro/UM2, Campus INRA/SupAgro, 2 Place Viala, 34060, Montpellier Cedex 2, France
| |
Collapse
|
12
|
Garcia K, Haider MZ, Delteil A, Corratgé-Faillie C, Conéjero G, Tatry MV, Becquer A, Amenc L, Sentenac H, Plassard C, Zimmermann S. Promoter-dependent expression of the fungal transporter HcPT1.1 under Pi shortage and its spatial localization in ectomycorrhiza. Fungal Genet Biol 2013; 58-59:53-61. [DOI: 10.1016/j.fgb.2013.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/17/2022]
|
13
|
Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens. Curr Genet 2011; 58:21-33. [DOI: 10.1007/s00294-011-0362-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 02/01/2023]
|
14
|
Establishing molecular tools for genetic manipulation of the pleuromutilin-producing fungus Clitopilus passeckerianus. Appl Environ Microbiol 2009; 75:7196-204. [PMID: 19767458 DOI: 10.1128/aem.01151-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We describe efficient polyethylene glycol (PEG)-mediated and Agrobacterium-mediated transformation systems for a pharmaceutically important basidiomycete fungus, Clitopilus passeckerianus, which produces pleuromutilin, a diterpene antibiotic. Three dominant selectable marker systems based on hygromycin, phleomycin, and carboxin selection were used to study the feasibility of PEG-mediated transformation of C. passeckerianus. The PEG-mediated transformation of C. passeckerianus protoplasts was successful and generated hygromycin-resistant transformants more efficiently than either phleomycin or carboxin resistance. Agrobacterium-mediated transformation with plasmid pBGgHg containing hph gene under the control of the Agaricus bisporus gpdII promoter led to hygromycin-resistant colonies and was successful when homogenized mycelium and fruiting body gill tissue were used as starting material. Southern blot analysis of transformants revealed the apparently random integration of the transforming DNA to be predominantly multiple copies for the PEG-mediated system and a single copy for the Agrobacterium-mediated system within the genome. C. passeckerianus actin and tubulin promoters were amplified from genomic DNA and proved successful in driving green fluorescent protein and DsRed expression in C. passeckerianus, but only when constructs contained a 5' intron, demonstrating that the presence of an intron is prerequisite for efficient transgene expression. The feasibility of RNA interference-mediated gene silencing was investigated using gfp as a target gene easily scored in C. passeckerianus. Upon transformation of gfp antisense constructs into a highly fluorescent strain, transformants were recovered that exhibited either reduced or undetectable fluorescence. This was confirmed by Northern blotting showing depletion of the target mRNA levels. This demonstrated that gene silencing is a suitable tool for modulating gene expression in C. passeckerianus. The molecular tools developed in this study should facilitate studies aimed at gene isolation or characterization in this pharmaceutically important species.
Collapse
|
15
|
Talhinhas P, Muthumeenakshi S, Neves-Martins J, Oliveira H, Sreenivasaprasad S. Agrobacterium-Mediated Transformation and Insertional Mutagenesis in Colletotrichum acutatum for Investigating Varied Pathogenicity Lifestyles. Mol Biotechnol 2008; 39:57-67. [DOI: 10.1007/s12033-007-9028-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 11/23/2007] [Indexed: 11/24/2022]
|
16
|
Gorfer M, Klaubauf S, Bandian D, Strauss J. Cadophora finlandia and Phialocephala fortinii: Agrobacterium-mediated transformation and functional GFP expression. ACTA ACUST UNITED AC 2007; 111:850-5. [PMID: 17662587 DOI: 10.1016/j.mycres.2007.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/05/2007] [Accepted: 05/08/2007] [Indexed: 11/16/2022]
Abstract
Hygromycin B resistance was transferred to the sterile mycelia of Cadophora finlandia and Phialocephala fortinii by co-cultivation with Agrobacterium tumefaciens. Constitutively expressed green fluorescent protein (GFP) was also introduced using the same vector. Confocal laser scanning microscopy (CLSM) revealed strong fluorescence of transformants. Both traits were mitotically stable during one year of subculturing on non-selective growth medium. Southern blot analysis showed that the majority of the transformants contained single-copy integrations at random sites in the genome.
Collapse
Affiliation(s)
- Markus Gorfer
- Fungal Genomics Unit, Austrian Research Centres and BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | | | | | | |
Collapse
|
17
|
Martino E, Murat C, Vallino M, Bena A, Perotto S, Spanu P. Imaging mycorrhizal fungal transformants that express EGFP during ericoid endosymbiosis. Curr Genet 2007; 52:65-75. [PMID: 17589849 DOI: 10.1007/s00294-007-0139-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/23/2007] [Accepted: 05/29/2007] [Indexed: 01/22/2023]
Abstract
Ericoid endomycorrhizal fungi form intracellular associations with the epidermal root cells of plants belonging to Ericales. In natural environments, these fungi increase the ability of their host plants to colonise soils polluted with toxic metals, although the underlying mechanisms are not clearly understood. Genetic transformation is a powerful tool to study the function of specific genes involved in the interaction of symbiotic fungi with the host plants and with the environment. Here, we investigated the possibility to genetically transform an ericoid endomycorrhizal strain. A metal tolerant mycorrhizal Oidiodendron maius strain isolated from a contaminated area was chosen to develop the transformation system. Two different protocols were used: protoplasts and Agrobacterium-mediated transformation. Stable transformants were obtained with both techniques. They remained competent for mycorrhizal formation and GFP-transformed fungi were visualised in planta. This is the first report of stable transformation of an ericoid endomycorrhizal fungus. The protocol set up could represent a good starting point for the identification of genes important in the ericoid mycorrhiza formation and in the understanding of how this symbiosis is established and functions. The success in the genetic transformation of this strain will allow us to better define its potential use in bioremediation strategies.
Collapse
Affiliation(s)
- Elena Martino
- Dipartimento di Biologia Vegetale dell'Università di Torino, Centre of Excellence for Plant and Microbial Biosensing (CEBIOVEM) and Istituto per la Protezione delle Piante del CNR, Sezione di Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|