1
|
Justamante MS, Larriba E, Zavala-González EA, Aranda-Martínez A, Pérez-Pérez JM. Transcriptional Profiling to Assess the Effects of Biological Stimulant Atlanticell Micomix on Tomato Seedlings Under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1198. [PMID: 40284086 PMCID: PMC12030531 DOI: 10.3390/plants14081198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Recent environmental changes in the Mediterranean region, attributable to anthropogenic climate change, present a substantial challenge to the adaptive evaluation of crops and the development of novel improvement strategies. In this study, we established a hydroponic tomato cultivation protocol under in vitro conditions to analyze the transcriptomic profile of seedlings exposed to salinity stress. The study also examined the impact of Atlanticell Micomix, a biological stimulant derived from a mixture of mycorrhizal microorganisms and rhizobacteria, on plant growth and development under standard conditions and in response to moderate salinity. Our transcriptomic analysis indicated a differential effect of biostimulant inoculation compared to the effect induced by salinity stress, involving genes such as GOX3 or DIR1, which are associated with the plant's defense response to adverse conditions. In addition, the presence of a cross-regulatory module between jasmonic acid and auxin, involving potential orthologs of IAA29 and JAZ, was proposed. The application of the biostimulant demonstrated a potential priming effect on the tomato seedlings, which might be useful in reversing the transcriptomic effects caused by salt stress. A comprehensive analysis of the pathways differentially affected by the treatments facilitates further investigation into the mechanisms underlying these effects.
Collapse
Affiliation(s)
- María Salud Justamante
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (E.L.)
| | - Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (E.L.)
| | | | | | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (E.L.)
| |
Collapse
|
2
|
Avilés-Cárdenas JD, Molinero-Rosales N, Pérez-Tienda J, Rosas-Díaz T, Castillo AG, García-Garrido JM. Enhancing arbuscular mycorrhiza symbiosis effectiveness through the involvement of the tomato GRAS transcription factor SCL3/SlGRAS18. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109019. [PMID: 39146911 DOI: 10.1016/j.plaphy.2024.109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi improve plant growth, nutrition, fitness and stress tolerance while AM fungi obtain carbohydrates and lipids from the host. This whole process of mutual benefit requires substantial alterations in the structural and functional aspects of the host root cells. These modifications ultimately culminate in the formation of arbuscules, which are specialized intraradical and highly branched fungal structures. Arbuscule-containing cells undergo massive reprogramming to hosting arbuscule and members of the GRAS transcription factor family have been characterized as AM inducible genes which play a pivotal role in these process. Here, we show a functional analysis for the GRAS transcription factor SCL3/SlGRAS18 in tomato. SlGRAS18 interacts with SlDELLA, a central regulator of AM formation. Silencing of SlGRAS18 positively impacts arbuscule development and the improvement in symbiotic status, favouring flowering and therefore progress in the formation and development of fruits in SlGRAS18 silenced plants which parallel to a discernible pattern of mineral nutrient redistribution in leaves. Our results advance the knowledge of GRAS transcription factors involved in the formation and establishment of AM symbiosis and provide experimental evidence for how specific genetic alterations can lead to more effective AM symbiosis.
Collapse
Affiliation(s)
- Jonathan D Avilés-Cárdenas
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain
| | - Nuria Molinero-Rosales
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain
| | - Jacob Pérez-Tienda
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain
| | - Tábata Rosas-Díaz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010, Málaga, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010, Málaga, Spain
| | - José M García-Garrido
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain.
| |
Collapse
|
3
|
Gilbert Ghislain MM, Emmilienne DT, Mari ED, Souleymanou A, Raymond F, Abassi N, Guy N, Aurelie S, Dieudonné N, Elie F. Growth, profitability, nutritional, and anti-nutritional properties of seven Manihot esculenta Crantz (cassava) varieties as affected by arbuscular mycorrhizal fungi. Heliyon 2024; 10:e36371. [PMID: 39263120 PMCID: PMC11388760 DOI: 10.1016/j.heliyon.2024.e36371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Despite a range of methods used to promote modern agriculture with several outcomes, food quality and availability problems remain. This work aims to evaluate the effect of AM fungi inoculation on the growth, yield, nutritional, and antinutritional properties of 7 varieties of cassava. Growth characteristics, yields, rentability, nutritional, and antinutritional of tubers of each treatment were determined at harvest. All the cassava varieties used form a symbiosis with AM fungi at various frequencies, with the I090590 variety being the best (61.66 %). The best amount of chlorophyll, carotenoid, and height of plants were recorded at 9 months old. The 96/1414, TME/693 and MD varieties respectively show the best amount of chlorophyll, size, and carotenoids at 9 months old. Following AM fungi inoculation, an increase in the content of chlorophyll, size, and carotenoids was recorded for all the varieties with the best rate attributed respectively to 92/0326, MD, and 92/0326. Tuber yields vary significantly depending on the cassava varieties, with the best (56.16 t/ha) recorded for the I090590 variety. Following inoculation with AM fungi, a significant increase in yields was recorded, with the best ratio (2.7) obtained with the AE variety. The I090590 variety shows the best yield and by then the most profitable. Inoculation with AM fungi leads to a significant increase in the sugar, protein, fibre, and phosphorus content of all cassava varieties, with the best ratios obtained in 96/1414, 01/1797, and I090590 varieties respectively. Similarly, the inoculation of cassava varieties with AM fungi leads to a significant reduction in the content of cyanides, oxalates, and phytates. The best ratio of reduction for cyanide was 1.91 for the MD variety. AM fungi inoculation is an important way to ensure safe, exponential production and high economic profitability of foodstuffs.
Collapse
Affiliation(s)
- Mbassi Manga Gilbert Ghislain
- Soil Microbiology Laboratory, the Biotechnology Centre, University of Yaoundé I, Cameroon
- Laboratory of Food Science and Metabolism, University of Yaoundé I, Cameroon
| | | | - Essono Damien Mari
- Soil Microbiology Laboratory, the Biotechnology Centre, University of Yaoundé I, Cameroon
| | - Adamou Souleymanou
- Soil Microbiology Laboratory, the Biotechnology Centre, University of Yaoundé I, Cameroon
- Faculty of Agronomy and Agricultural Sciences, University of Dschang, Cameroon
| | - Fokom Raymond
- Institute of Fisheries and Aquatic Sciences, University of Douala, Cameroon
- Soil Microbiology Laboratory, the Biotechnology Centre, University of Yaoundé I, Cameroon
| | - Nouhou Abassi
- Laboratory of Food Science and Metabolism, University of Yaoundé I, Cameroon
| | - Noah Guy
- Laboratory of Food Science and Metabolism, University of Yaoundé I, Cameroon
| | - Sonkeng Aurelie
- Laboratory of Food Science and Metabolism, University of Yaoundé I, Cameroon
| | - Nwaga Dieudonné
- Soil Microbiology Laboratory, the Biotechnology Centre, University of Yaoundé I, Cameroon
| | - Fokou Elie
- Laboratory of Food Science and Metabolism, University of Yaoundé I, Cameroon
| |
Collapse
|
4
|
Jalal A, Oliveira CEDS, Gato IMB, Moreira VDA, de Lima BH, Bastos ADC, Iqbal B, Teixeira Filho MCM. Interaction of Mineral Nutrients and Plant Growth-Promoting Microbes for Biofortification of Different Cropping Systems. JOURNAL OF PLANT GROWTH REGULATION 2024. [DOI: 10.1007/s00344-024-11380-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 01/14/2025]
|
5
|
Jiao H, Wu S, Li J, Sun Y. Effects of Pelletized and Coated Organic Fertilizers on Flavor Compounds of Tomato Fruits and Leaves. Foods 2024; 13:1653. [PMID: 38890880 PMCID: PMC11171810 DOI: 10.3390/foods13111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The application of organic fertilizers is one of the most important agricultural measures aimed at improving the flavor and productivity of Lycopersicon esculentum, with the granulation and coating of organic fertilizers, which can reduce seepage losses of great significance to the ecosystem. In this study, Jingcai 8 tomato was selected as the test material. Headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) methods were used to investigate the effects of different pelletized organic fertilizers and various coating materials on the flavor profile of the tomatoes. The results indicated that 67 volatile organic compounds (VOCs) were identified in the tomato fruits and 62 volatile compounds were identified in the leaves under different fertilizer treatments. The volatile compound content of the fruits in the BP treatment group was 35.38 μg/g, which was higher than that in other treatment groups, and the volatile compound content of the leaves was lower. A differential compound analysis with log2|fold change| ≥ 1 and variable important in projection (VIP) > 1 highlighted styrene, 3-methyl-1-butanol, and (E, E)-2,4-hexadienal as the major up-regulated compounds and methyl salicylate as the major down-regulated compound in the tomato fruit BCK (control) vs. BP. Moreover, the α-phellandrene content decreased in the tomato leaves. In addition, an analysis of the tomato fruit differential compounds and compounds with odor activity values (OAV) of ≥ 1, considering the OAV values of characteristic aroma compounds, identified key compounds affecting the flavor of the tomato fruits under the BP treatment. These included 2-nonenal, (E)-2-pentylfuran, trans-β-ionone, 1-penten-3-one, (E, E)-2,4-hexadienal, and 3-hexenol (fruity, floral, and herbaceous odors), (E, E)-2,4-heptadienal (fatty odor), and hexanal (green odor). The combined results analysis of the volatile compound content, differential compounds, and OAV values of characteristic aroma compounds aimed to clarify that the BP treatment group, which applied pelletized, large-grain organic fertilizer with polyurethane (pozzolanic + small-grain oil-coated + 2% paraffinic + 4% polyurethane) as a coating material, proved to be most effective in influencing the flavor of the tomato fruits. This finding lays the foundation for its potential commercial application in artificial orchards.
Collapse
Affiliation(s)
- Huiying Jiao
- Faculty of Food Science and Engineering, China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 611430, China;
| | - Sijia Wu
- Faculty of Food Science and Engineering, China Agricultural University, Beijing 100091, China;
| | - Jingming Li
- Faculty of Food Science and Engineering, China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 611430, China;
- Faculty of Food Science and Engineering, China Agricultural University, Beijing 100091, China;
| | - Yanxin Sun
- Institute of Plant Nutrition, Resource and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
6
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
7
|
Carrara JE, Reddivari L, Heller WP. Inoculation of black turtle beans ( Phaseolus vulgaris) with mycorrhizal fungi increases the nutritional quality of seeds. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10128. [PMID: 38323132 PMCID: PMC10840373 DOI: 10.1002/pei3.10128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 02/08/2024]
Abstract
The use of arbuscular mycorrhizal fungi (AMF) as biofertilizers has proven successful in boosting the yield and nutritional quality of a variety of crops. AMF associate with plant roots and exchange soil nutrients for photosynthetically derived C in the form of sugars and lipids. Past research has shown that not all AMF species are equal in their benefit to nutrient uptake and crop health, and that the most beneficial AMF species appear to vary by host species. Although an important human food staple, especially in developing regions where nutrient deficiency is a prevalent threat to public health, little work has been done to test the effectiveness of AMF in enhancing the nutritional quality of common bean (Phaseolus vulgaris L.). Therefore, our objective was to determine the most beneficial AMF species for inoculation of this important crop. We inoculated black beans (Phaseolus vulgaris black turtle beans) with eight individual AMF species and one mixed species inoculum in an outdoor pot trial over 3 months and assessed the extent to which they altered yield, mineral nutrient and anthocyanin concentration of seeds and leaf tissues. Despite seeing no yield effects from inoculation, we found that across treatments percent root length colonized by AMF was positively correlated with plant tissue P, Cu, and Zn concentration. Underlying these broad benefits, seeds from plants inoculated with three AMF species, Claroideoglomus claroideum (+15%), Funneliformis mosseae (+13%), and Gigaspora rosea (+11%) had higher P concentration than non-mycorrhizal plants. C. claroideum also increased seed potassium (K) and copper (Cu), as well as leaf aluminum (Al) concentration making it a promising candidate to further test the benefit of individual AMF species on black bean growth in field trials.
Collapse
Affiliation(s)
- Joseph E. Carrara
- USDA Agricultural Research ServiceEastern Regional Research CenterWyndmoorPennsylvaniaUSA
| | | | - Wade P. Heller
- USDA Agricultural Research ServiceEastern Regional Research CenterWyndmoorPennsylvaniaUSA
| |
Collapse
|
8
|
Yang W, Yang Y, Wang L, Lv X, Li J, Cui H, Tang C, Zhao Q, Jia Y, Qin Y, Zhang J. Comparative characterization of flavor precursors and volatiles of Taihe black-boned silky fowl and Hy-line Brown yolks using multiomics and GC-O-MS-based volatilomics. Food Res Int 2023; 172:113168. [PMID: 37689921 DOI: 10.1016/j.foodres.2023.113168] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Eggs are nutritious and highly valued by consumers. However, egg flavor varies greatly among different hen breeds. The present study used gas chromatography-olfactometry-mass spectrometry-based volatilomics to identify and compare volatile compounds in Taihe black-boned silky fowl (TS) and Hy-line Brown (HL) egg yolks. In addition, the relationships between the levels of different metabolites and lipids and flavor-associated differences were investigated using multiomics. Twenty-eight odorants in total were identified; among them, the levels of 3-methyl-butanal, 1-octen-3-ol, 2-pentylfuran, and (E, E)-2,4-decadienal differed significantly (P < 0.05) between TS and HL egg yolks. The difference in flavor compounds results in TS egg yolks having a stronger overall odor and flavor and a higher acceptance level than HL egg yolks. Metabolomic analysis revealed that 112 metabolites in the egg yolks were significantly different between the two breeds. Furthermore, these different metabolites in the egg yolks of both breeds were significantly enriched in phenylalanine, tyrosine, and tryptophan biosynthesis pathways and phenylalanine metabolism, alanine, aspartate, and glutamate metabolism pathways (P < 0.05), as identified by both metabolite set enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Lipidomic analysis revealed significant differences in the lipid subclasses, lipid molecules, and fatty acid profiles between the egg yolks from the two breeds. As a result, 48 lipid molecules had variable influence in projection values > 1 based on the partial least squares regression model, which may play a role in the differences in aroma characteristics between the two breeds through oxidative degradation of fatty acids. Our study revealed the metabolite, lipid, and volatility profiles of TS and HL egg yolks and may provide an important basis for improving egg flavor to satisfy various consumer preferences.
Collapse
Affiliation(s)
- Weifang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yaxiong Jia
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Chafai W, Haddioui K, Serghini-Caid H, Labazi H, AlZain M, Noman O, Parvez M, Addi M, Khalid A. Impact of Arbuscular mycorrhizal Fungal Strains Isolated from Soil on the Growth, Yield, and Fruit Quality of Tomato Plants under Different Fertilization Regimens. HORTICULTURAE 2023; 9:973. [DOI: 10.3390/horticulturae9090973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) have emerged as a promising and environmentally friendly solution for sustainable agriculture, offering a reduction in dependence on chemical inputs. The objective of this greenhouse experiment was to assess the efficacy of a natural endomycorrhizal inoculum obtained from leek root fragments, which acted as a trap plant to capture indigenous fungal spores present in the soil of the Guercif region in Morocco. The investigation aimed to comprehensively evaluate the influence of this inoculum on various parameters related to tomato plant growth, yield, and sensory quality. Additionally, different levels of chemical fertilizers, equivalent to 50%, 75%, and 100% of the recommended dosage, were administered in combination with or without the inoculum. The findings elucidated significant advantages associated with mycorrhizal inoculation. The plants subjected to inoculation exhibited increased plant height, augmented leaf and root dry weights, and improved nutrient uptake compared to the control group. Notably, tomato plants treated with 75% of the recommended chemical fertilizer dosage yielded the highest crop production, with no statistically significant difference observed when compared to those receiving the full dosage (100%). Intriguingly, tomato plants grown in substrates receiving 50% chemical fertilizers demonstrated the highest levels of mycorrhization, exhibiting a frequency (F) of 100% and an intensity (M) of 63%. Importantly, the combination of inoculation with a reduced dose of NPK fertilizer (50% of the recommended amount) resulted in significantly elevated concentrations of calcium (Ca), potassium (K), iron (Fe), zinc (Zn), and phosphorus (P) in the plants, attributable to the heightened mycorrhizal colonization of the roots. In terms of fruit characteristics, no significant variations were detected in pH and electrical conductivity (EC) among the treatment groups. However, the inoculated plants exhibited a notable increase in the Brix index, an indicator of sweetness, compared to the control group across all fertilizer doses. Furthermore, inoculation positively influenced the levels of total carotenoids in the fruits. Remarkably, the values of these compounds in the inoculated plants subjected to 50% of the recommended fertilizer dosage surpassed those recorded in the non-inoculated plants receiving the full dosage.
Collapse
Affiliation(s)
- Wissame Chafai
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| | - Kaoutar Haddioui
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| | - Hana Serghini-Caid
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| | - Hicham Labazi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Mashail AlZain
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11451, Saudi Arabia
| | - Omar Noman
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Mohammad Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed Addi
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| | - Ahmed Khalid
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco
| |
Collapse
|
10
|
Arbuscular Mycorrhizal Fungi Enhance Biomass Growth, Mineral Content, and Antioxidant Activity in Tomato Plants under Drought Stress. J FOOD QUALITY 2023. [DOI: 10.1155/2023/2581608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are symbiotically associated with crops. They increase biomass production, nutritional elements, and antioxidant activities in food and vegetable crops grown in soil under stress conditions. The present study focused on the effects of AMF (Acaulospora morrowiae, Paraglomus occultum, Funneliformis mosseae, Rhizophagus clarus, and Rhizophagus intraradices) on biomass growth and yield, contents of chlorophyll and carotenoids, activities of catalase (CAT) and ascorbate peroxidase (APX), and contents of hydrogen peroxide (H2O2), malondialdehyde (MDA), and minerals (Na, K, Ca, Mg, and Fe) in Unnayan, LT896, and Minto super tomato (Solanum lycopersicum L.) varieties grown in soil under drought stress (<10% moisture). The results showed that root length and shoot mass in plants treated with R. clarus and P. occultum were significantly higher than those of the control (non-AMF) in Minto super tomato. Compared to the control, the shoot’s dry weight and yield were enhanced by 28% and 20% with AMF-treated tomatoes. The CAT activity in P. occultum-treated plants was statistically higher than that of the control in Unnayan tomatoes. H2O2 content was detected higher in the control than R. clarus-treated LT896 tomatoes. In plants treated with A. morrowiae and R. clarus, APX activity was significantly higher than that of the control in the Unnayan tomatoes. CAT and APX activity increased by 42% and 66% in AMF-treated leaves of tomatoes compared to non-AMF. Treatment with AMF reduced the content of MDA and H2O2 (ROS) in the leaves of tomato plants by 50% and 2% compared to the control, respectively. Potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe) of tomato fruits increased by 2%, 13%, 24%, and 37% with AMF treatment compared to the control. These results suggested that biomass growth, yield, photosynthetic pigments, antioxidant enzyme activity, and mineral contents could be enhanced by AMF in food crops grown under drought stress. It is concluded that AMF might be used for the development of AMF-enriched biofertilizers that will improve the nutritional quality of food crops grown under stress conditions.
Collapse
|
11
|
Ganugi P, Fiorini A, Tabaglio V, Capra F, Zengin G, Bonini P, Caffi T, Puglisi E, Trevisan M, Lucini L. The Functional Profile and Antioxidant Capacity of Tomato Fruits Are Modulated by the Interaction between Microbial Biostimulants, Soil Properties, and Soil Nitrogen Status. Antioxidants (Basel) 2023; 12:antiox12020520. [PMID: 36830078 PMCID: PMC9951999 DOI: 10.3390/antiox12020520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The application of microbial biostimulants to plants has revealed positive effects related to nutrients uptake, stress tolerance, root development and phenological growth. However, little information is available exploiting the potential synergistic biostimulant action of microbes on the functional quality of the yields. The current research elucidated the effect of single or coupled action of biostimulants, associated with either optimal or reduced nitrogen application, on the functional quality of tomato fruits. Chemical assays and untargeted metabolomics were applied to investigate Rhizoglomus irregulare and Funneliformis mosseae administration (both being arbuscular mycorrhiza, AMF), under optimal or low N input conditions, alone or coupled to Trichoderma atroviride application. The coupling of AMF and Trichoderma fungal inoculations resulted in a synergistic biostimulant effect on tomato fruits under sub-optimal fertility, revealing improved concentrations of carotenoid compounds-B-carotene (0.647 ± 0.243 mg/100 g), Z-carotene (0.021 ± 0.021 mg/100 g), 13-z-lycopene (0.145 ± 0.052 mg/100 g) and all-trans-lycopene (12.586 ± 1.511 mg/100 g), and increased values for total phenolic content (12.9 ± 2.9 mgGAE/g), total antioxidant activity (phosphomolybdenum, 0.9 ± 0.2 mmolTE/g), radical scavenging activity (DPPH, 3.4 ± 3.7 mgTE/g), reducing power (FRAP, 23.6 ± 6.3 mgTE/g and CUPRAC, 37.4 ± 7.6 mg TE/g), and enzyme inhibitory activity (AChE, 2.4 ± 0.1 mg GALAE/g), when compared to control. However, evidence of carotenoid and bioactive compounds were exclusively observed under the sub-optimal fertility and no significant differences could be observed between the biostimulant treatment and control under optimal fertility.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Federico Capra
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya Campus, 8300 Konya, Turkey
| | | | - Tito Caffi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- Correspondence:
| |
Collapse
|
12
|
Funneliformis constrictum modulates polyamine metabolism to enhance tolerance of Zea mays L. to salinity. Microbiol Res 2022; 266:127254. [DOI: 10.1016/j.micres.2022.127254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/11/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
|
13
|
Fusco GM, Nicastro R, Rouphael Y, Carillo P. The Effects of the Microbial Biostimulants Approved by EU Regulation 2019/1009 on Yield and Quality of Vegetable Crops. Foods 2022; 11:2656. [PMID: 36076841 PMCID: PMC9455239 DOI: 10.3390/foods11172656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/04/2022] Open
Abstract
The use of microbial biostimulants such as plant growth-promoting rhizobacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) has gained popularity in recent years as a sustainable approach to boost yield as well as the quality of produce. The beneficial effects of microbial biostimulants have been reported numerous times. However, information is missing concerning quantitative assessment of the overall impact of microbial biostimulants on the yield and quality of vegetable crops. Here we provide for the first time a comprehensive, semi-systematic review of the effects of microbial biostimulants allowed by Regulation (EU) 2019/1009, including microorganisms belonging to the AMF (phylum Glomeromycota), or to Azospirillum, Azotobacter and Rhizobium genera, on vegetable crops' quality and yield, with rigorous inclusion and exclusion criteria based on the PRISMA method. We identified, selected and critically evaluated all the relevant research studies from 2010 onward in order to provide a critical appraisal of the most recent findings related to these EU-allowed microbial biostimulants and their effects on vegetable crops' quality and yield. Moreover, we highlighted which vegetable crops received more beneficial effects from specific microbial biostimulants and the protocols employed for plant inoculation. Our study is intended to draw more attention from the scientific community to this important instrument to produce nutrient-dense vegetables in a sustainable manner. Finally, our semi-systematic review provides important microbial biostimulant application guidelines and gives extension specialists and vegetable growers insights into achieving an additional benefit from microbial biostimulant application.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
14
|
Felföldi Z, Vidican R, Stoian V, Roman IA, Sestras AF, Rusu T, Sestras RE. Arbuscular Mycorrhizal Fungi and Fertilization Influence Yield, Growth and Root Colonization of Different Tomato Genotype. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131743. [PMID: 35807693 PMCID: PMC9269228 DOI: 10.3390/plants11131743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are beneficial for plant development and help absorb water and minerals from the soil. The symbiosis between these fungi and plant roots is extremely important and could limit crop dependence on fertilizers. The aim of this study was to evaluate the influence of AMF on tomatoes (Solanum lycopersicum L.), based on important agronomic traits of vegetative biomass, production, and fruits. The experiment was conducted in high tunnels, using 12 tomato genotypes under three different treatments: T1, control, without fertilizer and mycorrhizae colonization; T2, fertigation, without mycorrhizae colonization; and T3, arbuscular mycorrhizal fungi (AMF), seedling roots being inoculated with specialized soil-borne fungi. Plant growth, yield and fruit parameters indicated better results under mycorrhizal treatment. Root colonization with fungi varied significantly depending on the treatment and genotype, with a variation of 6.0-80.3% for frequency and 2.6-24.6% for intensity. For a majority of characteristics, the mycorrhization (T3) induced significant differences compared with the T1 and T2 treatments. In addition, AMF treatment induced a different response among the genotypes. Among the elements analyzed in the soil, significant differences were observed in phosphorous levels between planting the seedlings and after tomato harvesting and clearing of the plants. The results suggest that reducing fertilizers and promoting the symbiotic relationships of plants with soil microorganisms may have beneficial consequences for tomato crops.
Collapse
Affiliation(s)
- Zoltán Felföldi
- Department of Horticulture and Landscape, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Manastur St., 400372 Cluj-Napoca, Romania; (Z.F.); (R.E.S.)
- Private Research Station Agrosel, 268 Laminoriștilor St., 400500 Câmpia Turzii, Romania
| | - Roxana Vidican
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Manastur St., 400372 Cluj-Napoca, Romania; (R.V.); (V.S.)
| | - Vlad Stoian
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Manastur St., 400372 Cluj-Napoca, Romania; (R.V.); (V.S.)
| | - Ioana A. Roman
- Department of Transversal Competences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3–5 Manastur St., 400372 Cluj-Napoca, Romania;
| | - Adriana F. Sestras
- Department of Horticulture and Landscape, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Manastur St., 400372 Cluj-Napoca, Romania; (Z.F.); (R.E.S.)
| | - Teodor Rusu
- Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Manastur St., 400372 Cluj-Napoca, Romania;
| | - Radu E. Sestras
- Department of Horticulture and Landscape, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Manastur St., 400372 Cluj-Napoca, Romania; (Z.F.); (R.E.S.)
| |
Collapse
|
15
|
Tran CTK, Watts-Williams SJ, Smernik RJ, Cavagnaro TR. Arbuscular mycorrhizas increased tomato biomass and nutrition but did not affect local soil P availability or 16S bacterial community in the field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152620. [PMID: 35007577 DOI: 10.1016/j.scitotenv.2021.152620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
While interest in arbuscular mycorrhizal (AM) fungal effects on soil phosphorus (P) have recently increased, field experiments on this topic are lacking. While microcosm studies provided valuable insights, the lack of field studies represents a knowledge gap. Here, we present a field study in which we grew a mycorrhiza-defective tomato (Solanum lycopersicum L.) genotype (named rmc) and its mycorrhizal wild-type progenitor (named 76R) with and without additional fertiliser, using a drip-irrigation system to examine the impacts of the AM symbiosis on soil P availability and plant growth and nutrition. AM effects on fruit biomass and nutrients, soil nutrient availability, soil moisture and the soil bacterial community were examined. At the time of harvest, the AM tomato plants without fertiliser had the same early season fruit biomass and fruit nutrient concentrations as plants that received fertiliser. The presence of roots reduced the concentration of available soil P, ammonium and soil moisture in the top 10 cm soil layer. Arbuscular mycorrhizas did not significantly affect soil P availability, soil moisture, or 16S bacterial community composition. These findings suggest an indirect role for AM fungi in tomato production but not necessarily a direct role in determining soil physicochemical traits, during the one season that this experiment was conducted. While longer-term field studies may be required in the future, the present study provides new insights into impacts of AM fungi on P availability and uptake in a field soil system.
Collapse
Affiliation(s)
- Cuc T K Tran
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Stephanie J Watts-Williams
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia.
| | - Ronald J Smernik
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Timothy R Cavagnaro
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
16
|
Abstract
As an endophytic fungus, the growth-promoting effects of Piriformospora indica have been widely confirmed in many of its host plants. In this study, we investigated the influences of P. indica colonization on the growth of the daughter plants of two strawberry cultivars, ‘Benihoppe’ and ‘Sweet Charlie.’ The results showed that the fungus colonization significantly promoted the growth of the daughter plants of both of the two strawberry varieties. Its colonization greatly improved almost all of the growth parameters of the ‘Benihoppe’ daughter plants, including the above-ground fresh weight, above-ground dry weight, root fresh weight, root dry weight, plant height, petiole length, leaf area, number of roots and chlorophyll content. However, the fungus colonization showed significant improving effects on only the above-ground fresh weight, root fresh weight and root dry weight of ‘Sweet Charlie.’ Surprisingly, the average root length of ‘Benihoppe’ and ‘Sweet Charlie’ was suppressed by about 14.3% and 24.6%, respectively, by P. indica. Moreover, after P. indica colonization, the leaf nitrate reductase activity and root activity upregulated by 30.12% and 12.74%, and 21.85% and 21.16%, respectively, for the ‘Benihoppe’ and ‘Sweet Charlie’ daughter plants. Our study indicated that P. indica could promote the growth of strawberry daughter plants by improving rooting, strengthening photosynthetic pigments production and nutrient absorption and accelerating biomass accumulation. The fungus shows great potential to be used in the strawberry industry, especially in the breeding of daughter plants.
Collapse
|
17
|
Wang L, Chen X, Du Y, Zhang D, Tang Z. Nutrients Regulate the Effects of Arbuscular Mycorrhizal Fungi on the Growth and Reproduction of Cherry Tomato. Front Microbiol 2022; 13:843010. [PMID: 35464967 PMCID: PMC9024412 DOI: 10.3389/fmicb.2022.843010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) colonize the rhizosphere of plants and form a symbiotic association with plants. Mycorrhizal symbionts have diversified ecological roles and functions which are affected by soil conditions. Understanding the effects of different AMF inoculation on plants under varied nutritional conditions is of great significance for further understanding the effects of the external environment regulating mycorrhizal symbiosis on plant phenotypic traits. In this study, the effects of four AMF inoculation treatments on the growth and reproductive performance of cherry tomato (Solanum lycopersicum var. cerasiforme) were investigated under three nutrient levels by pot experiment. It was found that the growth-promoting effect of AMF on cherry tomato decreased with nutrient reduction, and the effects of the same AMF inoculation treatment on cherry tomato were different at different nutrient levels. Nutrient levels and AMF had interactive effects on flower characteristics, fruit yield, resource allocation, and seed germination of the cherry tomato. In addition, AMF could promote sexual reproductive investment. Nutrient levels and AMF also affected the accumulation of nitrogen and phosphorus in cherry tomato, and there were significant differences among different AMF inoculation treatments. The results indicated that nutrient differences could affect the symbiosis between AMF and plants, and confirmed that there were differences in the effects of the four AMF inoculation treatments on the growth and reproductive traits of plants. The differences in growth and reproduction characteristics of cherry tomato between different AMF inoculation treatments at different nutrient levels indicated that the effects of AMF mycorrhizal on the traits of cherry tomato were regulated by nutrients.
Collapse
|
18
|
Aguilera P, Becerra N, Alvear M, Ortiz N, Turrini A, Azcón-Aguilar C, López-Gómez M, Romero JK, Massri M, Seguel A, Mora MDLL, Borie F. Arbuscular mycorrhizal fungi from acidic soils favors production of tomatoes and lycopene concentration. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2352-2358. [PMID: 34636032 DOI: 10.1002/jsfa.11573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tomato is widely consumed throughout the world for its flavor and nutritional value. This functional food largely depends on the implementation of new strategies to maintain the nutraceutical value, e.g. lycopene concentration, and overcome the challenges of sustainable production and food security. The use of arbuscular mycorrhizal fungi (AMF)-based biostimulants represents one of the most promising tools for sustainable management of agricultural soils, being fundamental for organic food production, reducing fertilizers and pesticides use, and decreasing environmental damage. This study aimed at elucidating whether native arbuscular mycorrhizal fungi (AMF) could positively affect tomato yield and lycopene concentration. RESULTS Native AMF inoculum consisted of two inoculum types: the single species Claroideoglomus claroideum, and a mix of Scutellospora calospora, Acaulospora laevis, Claroideoglomus claroideum, and Claroideoglomus etunicatum. At the end of the study up to 78% of the root system was colonized by single inoculum. Tomato diameters in single and mix mycorrhizal plants showed increases of 80% and 35% respectively. Fresh weights were 84% and 38% higher with single and mix inocula compared with the controls, respectively. The lycopene concentration in tomato fruits of plants with single and mix inoculum was higher than controls. The lycopene concentration was 124.5% and 113.9% greater in single and mix than non-inoculated plants. CONCLUSION Tomato diameters, fresh weight and lycopene concentration was significantly higher in plants colonized by AMF compared with uninoculated plants. Results suggest that the role of single species Claroideoglomus claroideum could generate better plant performance due to its high production of extraradical mycelium. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paula Aguilera
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Ninozhka Becerra
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Marysol Alvear
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Nancy Ortiz
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Alessandra Turrini
- Department of Agriculture Food and Environment, University of Pisa, Pisa, Italy
| | - Concepción Azcón-Aguilar
- Departamento de Microbiología del suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Miguel López-Gómez
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan K Romero
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Mariajosé Massri
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Alex Seguel
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - María de La Luz Mora
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Fernando Borie
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
- Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
19
|
Aspects, problems and utilization of Arbuscular Mycorrhizal (AM) Application as Bio-fertilizer in sustainable Agriculture. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100107. [PMID: 35169758 PMCID: PMC8829076 DOI: 10.1016/j.crmicr.2022.100107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
|
20
|
Hamzah Saleem M, Usman K, Rizwan M, Al Jabri H, Alsafran M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:1033092. [PMID: 36275511 PMCID: PMC9586378 DOI: 10.3389/fpls.2022.1033092] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 05/13/2023]
Abstract
Zinc (Zn), which is regarded as a crucial micronutrient for plants, and is considered to be a vital micronutrient for plants. Zn has a significant role in the biochemistry and metabolism of plants owing to its significance and toxicity for biological systems at specific Zn concentrations, i.e., insufficient or harmful above the optimal range. It contributes to several cellular and physiological activities of plants and promotes plant growth, development, and yield. Zn is an important structural, enzymatic, and regulatory component of many proteins and enzymes. Consequently, it is essential to understand the interplay and chemistry of Zn in soil, its absorption, transport, and the response of plants to Zn deficiency, as well as to develop sustainable strategies for Zn deficiency in plants. Zn deficiency appears to be a widespread and prevalent issue in crops across the world, resulting in severe production losses that compromise nutritional quality. Considering this, enhancing Zn usage efficiency is the most effective strategy, which entails improving the architecture of the root system, absorption of Zn complexes by organic acids, and Zn uptake and translocation mechanisms in plants. Here, we provide an overview of various biotechnological techniques to improve Zn utilization efficiency and ensure the quality of crop. In light of the current status, an effort has been made to further dissect the absorption, transport, assimilation, function, deficiency, and toxicity symptoms caused by Zn in plants. As a result, we have described the potential information on diverse solutions, such as root structure alteration, the use of biostimulators, and nanomaterials, that may be used efficiently for Zn uptake, thereby assuring sustainable agriculture.
Collapse
Affiliation(s)
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | | | - Hareb Al Jabri
- Center for Sustainable Development (CSD), College of Arts and Sciences, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
- Central Laboratories Unit (CLU), Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
- *Correspondence: Mohammed Alsafran,
| |
Collapse
|
21
|
Pokluda R, Ragasová L, Jurica M, Kalisz A, Komorowska M, Niemiec M, Sekara A. Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions. PLoS One 2021; 16:e0259380. [PMID: 34731216 PMCID: PMC8565787 DOI: 10.1371/journal.pone.0259380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Plant growth-promoting microbes (PGPM) play vital roles in maintaining crop fitness and soil health in stressed environments. Research have included analysis-based cultivation of soil-microbial-plant relationships to clarify microbiota potential. The goal of the research was to (i) evaluate the symbiotic microorganism effects on tomato seedling fitness under stressed conditions simulating a fragile soil susceptible to degradation; (ii) compare the plant-microbial interactions after inoculation with microbial isolates and fungi-bacteria consortia; (iii) develop an effective crop-microbial network, which improves soil and plant status. The experimental design included non-inoculated treatments with peat and sand at ratios of 50:50, 70:30, 100:0 (v:v), inoculated treatments with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ) using the aforementioned peat:sand ratios; and treatment with peat co-inoculated with AMF and Saccharothrix tamanrassetensis (S). AMF + AZ increased root fresh weight in peat substrate compared to the control (4.4 to 3.3 g plant–1). An increase in shoot fresh weight was detected in the AMF + AZ treatment with a 50:50 peat:sand ratio (10.1 to 8.5 g plant-1). AMF + AZ reduced antioxidant activity (DPPH) (18–34%) in leaves, whereas AMF + S had the highest DPPH in leaves and roots (45%). Total leaf phenolic content was higher in control with a decreased proportion of peat. Peroxidase activity was enhanced in AMF + AZ and AMF + S treatments, except for AMF + AZ in peat. Microscopic root assays revealed the ability of AMF to establish strong fungal-tomato symbiosis; the colonization rate was 78–89%. AMF + AZ accelerated K and Mg accumulation in tomato leaves in treatments reflecting soil stress. To date, there has been no relevant information regarding the successful AMF and Saccharothrix co-inoculation relationship. This study confirmed that AMF + S could increase the P, S, and Fe status of seedlings under high organic C content conditions. The improved tomato growth and nutrient acquisition demonstrated the potential of PGPM colonization under degraded soil conditions.
Collapse
Affiliation(s)
- Robert Pokluda
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
- * E-mail:
| | - Lucia Ragasová
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
| | - Miloš Jurica
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
| | - Andrzej Kalisz
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Komorowska
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Marcin Niemiec
- Faculty of Agriculture and Economics, Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Krakow, Poland
| | - Agnieszka Sekara
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
22
|
Noceto PA, Bettenfeld P, Boussageon R, Hériché M, Sportes A, van Tuinen D, Courty PE, Wipf D. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. MYCORRHIZA 2021; 31:655-669. [PMID: 34633544 DOI: 10.1007/s00572-021-01054-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 05/14/2023]
Abstract
Modern agriculture is currently undergoing rapid changes in the face of the continuing growth of world population and many ensuing environmental challenges. Crop quality is becoming as important as crop yield and can be characterised by several parameters. For fruits and vegetables, quality descriptors can concern production cycle (e.g. conventional or organic farming), organoleptic qualities (e.g. sweet taste, sugar content, acidity) and nutritional qualities (e.g. mineral content, vitamins). For other crops, however, the presence of secondary metabolites such as anthocyanins or certain terpenes in the targeted tissues is of interest as well, especially for their human health properties. All plants are constantly interacting with microorganisms. These microorganisms include arbuscular mycorrhizal fungi as well as certain soil bacteria that provide ecosystem services related to plant growth, nutrition and quality parameters. This review is an update of current research on the single and combined (co-inoculation) use of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in crop production, with a focus on their positive impacts on crop quality traits (e.g. nutritional value, organoleptic properties). We also highlight the need to dissect mechanisms regulating plant-symbionts and symbiont-symbiont interactions, to develop farming practices and to study a broad range of interactions to optimize the symbiotic potential of root-associated microorganisms.
Collapse
Affiliation(s)
- Pierre-Antoine Noceto
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pauline Bettenfeld
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire Résistance Induite Et Bioprotection Des Plantes EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Raphael Boussageon
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Mathilde Hériché
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Antoine Sportes
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
23
|
Mayer AMB, Trenchard L, Rayns F. Historical changes in the mineral content of fruit and vegetables in the UK from 1940 to 2019: a concern for human nutrition and agriculture. Int J Food Sci Nutr 2021; 73:315-326. [PMID: 34651542 DOI: 10.1080/09637486.2021.1981831] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Micronutrient malnutrition is widespread and is linked with diets low in fruit and vegetables. However, during the twentieth century, declines in essential minerals in fruits and vegetables were reported in the UK and elsewhere. A new analysis of long-term trends of the mineral content of fruits and vegetables from three editions of the UK's Composition of Foods Tables (1940, 1991 and 2019) was undertaken. All elements except P declined in concentrations between 1940 and 2019 - the greatest overall reductions during this 80-year period were Na (52%), Fe (50%), Cu (49%) and Mg (10%); water content increased (1%). There could be many reasons for these reductions, including changes in crop varieties and agronomic factors associated with the industrialisation of agriculture. Increases in carbon dioxide could also play a role. We call for a thorough investigation of these reductions and steps to be taken to address the causes that could contribute to global malnutrition.
Collapse
Affiliation(s)
| | - Liz Trenchard
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK
| | - Francis Rayns
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK
| |
Collapse
|
24
|
Li N, Wang J, Wang B, Huang S, Hu J, Yang T, Asmutola P, Lan H, Qinghui Y. Identification of the Carbohydrate and Organic Acid Metabolism Genes Responsible for Brix in Tomato Fruit by Transcriptome and Metabolome Analysis. Front Genet 2021; 12:714942. [PMID: 34539743 PMCID: PMC8446636 DOI: 10.3389/fgene.2021.714942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Background Sugar and organic acids not only contribute to the formation of soluble solids (Brix) but also are an essential factor affecting the overall flavor intensity. However, the possible metabolic targets and molecular synthesis mechanisms remain to be further clarified. Methods UHPLC-HRMS (ultrahigh-performance liquid chromatography and high-resolution mass spectrometry) combined with comparative transcriptome analysis were performed in fruits at green ripe (S1), turning-color (S2), and red ripe (S3) stages of two tomato genotypes TM-1 (Solanum galapagense L., LA0436) and TM-38 (S. lycopersicum L. cultivar M82, LA3475) that vary in fruit Brix. Results The fruit Brix of TM-1 was nearly twice that of TM-38 at S3. Nevertheless, TM-1 accumulated 1.84- and 2.77-fold the L-malic acid and citric acid in red ripe fruit (S3) compared with TM-38, respectively. D-glucose and D-fructose in TM-1 and TM-38 fruits tended to be similar at S3. Concomitantly, the sugar/organic acid ratio of TM-38 fruits were 23. 08-, 4. 38-, and 2.59-fold higher than that of TM-1 fruits at S1, S2, and S3, respectively. Among starch and sucrose (carbohydrate, CHO) metabolism (ko00500) genes, SUS (Solyc07g042550.3) and BAM (Solyc08g077530.3) were positively (r = 0.885–0.931) correlated with the sugar/organic acid ratio. Besides, INV (Solyc09g010080.3 and Solyc09g010090.5.1), AAM (Solyc04g082090.3), 4-α-GTase (Solyc02g020980.2.1), BGL2 (Solyc06g073750.4, Solyc06g073760.3, and Solyc01g081170.3), TPS (Solyc01g005210.2 and Solyc07g006500.3), and TPP (Solyc08g079060.4) were negatively (r = −0.823 to −0.918) correlated with the sugar/organic acid ratio. The organic acid (TCA cycle) metabolism (ko00020) gene ALMT (Solyc01g096140.3) was also negatively (r = −0.905) correlated with the sugar/organic acid ratio. Conclusion Citric acid may play a more dominant role in the sugar/organic acid ratio of the tomato fruit, and the contribution of both L-malic acid and citric acid to the fruit Brix was much greater than that of D-glucose and D-fructose. Genes involved in CHO and TCA metabolism, which have a significant correlation with the sugar/organic acid ratio were considered to be the contributing factors of fruit Brix.
Collapse
Affiliation(s)
- Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shaoyong Huang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Jiahui Hu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Patiguli Asmutola
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yu Qinghui
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
25
|
Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. PLANTS 2021; 10:plants10081533. [PMID: 34451578 PMCID: PMC8400793 DOI: 10.3390/plants10081533] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/09/2023]
Abstract
An increasing need for a more sustainable agriculturally-productive system is required in order to preserve soil fertility and reduce soil biodiversity loss. Microbial biostimulants are innovative technologies able to ensure agricultural yield with high nutritional values, overcoming the negative effects derived from environmental changes. The aim of this review was to provide an overview on the research related to plant growth promoting microorganisms (PGPMs) used alone, in consortium, or in combination with organic matrices such as plant biostimulants (PBs). Moreover, the effectiveness and the role of microbial biostimulants as a biological tool to improve fruit quality and limit soil degradation is discussed. Finally, the increased use of these products requires the achievement of an accurate selection of beneficial microorganisms and consortia, and the ability to prepare for future agriculture challenges. Hence, the implementation of the microorganism positive list provided by EU (2019/1009), is desirable.
Collapse
Affiliation(s)
- Adele M. Castiglione
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Green Has Italia S.P.A, 12043 Canale, Italy;
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
| | | | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Correspondence: ; Tel.: +39-0116706361
| | - Andrea Ertani
- Department of Agricultural Forest and Food Sciences, University of Torino, 10095 Turin, Italy;
| |
Collapse
|
26
|
Pasković I, Soldo B, Goreta Ban S, Radić T, Lukić M, Urlić B, Mimica M, Brkić Bubola K, Colla G, Rouphael Y, Major N, Šimpraga M, Ban D, Palčić I, Franić M, Grozić K, Lukić I. Fruit quality and volatile compound composition of processing tomato as affected by fertilisation practices and arbuscular mycorrhizal fungi application. Food Chem 2021; 359:129961. [PMID: 33945985 DOI: 10.1016/j.foodchem.2021.129961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
The effects of different fertilisation treatments with arbuscular mycorrhizal fungi (AMF) inoculation on AMF root colonisation, fruit yield, nutrient and total phenol contents, volatile compound composition, and sensory attributes of tomato (Solanum lycopersicum L.) were investigated. Mineral, organic, and mineral + organic fertiliser application positively affected tomato yield (35%-50%) and phosphorus concentration (24%-29%) compared with controls. AMF application had a significant impact on the total nitrogen (+9%), manganese (+12%), and hydrophilic phenol (+8%) contents in the fruit. Volatile compounds were affected by the interactive effects of fertilisation and AMF application. The response of tomato fruit sensory quality indicators was relatively modest, with only a few sensory characteristics affected to a lesser extent. Although tomato showed susceptibility to field-native AMF, particular combinations of fertilisation and AMF inoculation were more effective at improving the quality parameters of tomatoes under field conditions applied in this study.
Collapse
Affiliation(s)
- Igor Pasković
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia
| | - Barbara Soldo
- University of Split, Faculty of Science, Department of Chemistry, R. Boškovića 33, 21000 Split, Croatia
| | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia.
| | - Tomislav Radić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Marina Lukić
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia
| | - Branimir Urlić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Matea Mimica
- University of Split, Faculty of Science, Department of Chemistry, R. Boškovića 33, 21000 Split, Croatia
| | - Karolina Brkić Bubola
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia
| | - Giuseppe Colla
- University of Tuscia, Department of Agricultural and Forestry Sciences, 01100 Viterbo, Italy
| | - Youssef Rouphael
- University of Naples Federico II, Department of Agricultural Sciences, 80055 Portici, Italy
| | - Nikola Major
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia
| | - Maja Šimpraga
- Faculty of Bioscience Engineering, Department of Plants and Crops, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| | - Dean Ban
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Igor Palčić
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Mario Franić
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Kristina Grozić
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia
| | - Igor Lukić
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Chandrasekaran M, Boopathi T, Manivannan P. Comprehensive Assessment of Ameliorative Effects of AMF in Alleviating Abiotic Stress in Tomato Plants. J Fungi (Basel) 2021; 7:303. [PMID: 33921098 PMCID: PMC8071382 DOI: 10.3390/jof7040303] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Population growth and food necessity envisaged the dire need for supplementation to a larger community balance in food production. With the advent of the green revolution, agriculture witnessed the insurrection of horticultural fruit crops and field crops in enormous modes. Nevertheless, chemical fertilizer usage foresees soil pollution and fertility loss. Utilization of biocontrol agents and plant growth promotion by microbial colonization enrooted significant restoration benefits. Constant reliability for healthy foods has been emancipated across the globe stressing high nutritive contents among indigenous field crops like tomato (Solanum lycopersicum). However, stress tolerance mechanisms and efficient abatement require deeper insights. The applicability of arbuscular mycorrhizal fungi (AMF) poses as an ultimate strategy to minimize the deleterious consequences of abiotic stress such as salt, drought, temperature and heavy metal stress sustainably. The rational modality employing the application of AMF is one of significant efforts to lessen cell damages under abiotic stress. The novelty of the compilation can be redressed to cohesive literature for combating stress. The literature review will provide agricultural scientists worldwide in providing a rational approach that can have possible implications in not only tomato but also other vegetable crops.
Collapse
Affiliation(s)
| | - T. Boopathi
- Department of Biology, Gandhigram Rural Institute, Tamilnadu 624302, India;
| | | |
Collapse
|
28
|
Bhantana P, Rana MS, Sun XC, Moussa MG, Saleem MH, Syaifudin M, Shah A, Poudel A, Pun AB, Bhat MA, Mandal DL, Shah S, Zhihao D, Tan Q, Hu CX. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00756-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Balestrini R, Brunetti C, Cammareri M, Caretto S, Cavallaro V, Cominelli E, De Palma M, Docimo T, Giovinazzo G, Grandillo S, Locatelli F, Lumini E, Paolo D, Patanè C, Sparvoli F, Tucci M, Zampieri E. Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. Int J Mol Sci 2021; 22:2887. [PMID: 33809189 PMCID: PMC7999214 DOI: 10.3390/ijms22062887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Cecilia Brunetti
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Maria Cammareri
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Sofia Caretto
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Valeria Cavallaro
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Eleonora Cominelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Monica De Palma
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Teresa Docimo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Giovanna Giovinazzo
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Silvana Grandillo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Franca Locatelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Erica Lumini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Dario Paolo
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Cristina Patanè
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Francesca Sparvoli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Marina Tucci
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Elisa Zampieri
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| |
Collapse
|
30
|
Sarmiento-López LG, López-Meyer M, Sepúlveda-Jiménez G, Cárdenas L, Rodríguez-Monroy M. Arbuscular mycorrhizal symbiosis in Stevia rebaudiana increases trichome development, flavonoid and phenolic compound accumulation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Liu J, Liu X, Zhang Q, Li S, Sun Y, Lu W, Ma C. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. AMB Express 2020; 10:200. [PMID: 33141419 PMCID: PMC7609620 DOI: 10.1186/s13568-020-01137-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is an important forage legume in farming and animal husbandry systems. This study assessed the effects of arbuscular mycorrhizal fungi (AMF) and phosphate-solubilizing bacteria (PSB) on alfalfa growth under different phosphorus application levels. In this experiment, a complete randomized block design was used. The following four bacterial applications were used: inoculation of Funneliformis mosseae (Fm), inoculation of Bacillus megaterium (Bm), inoculation of mixed species (Fm × Bm) and noninoculation treatment (CK). Phosphorus (P) treatment was applied at the following four levels: 0 mg kg−1 (P0), 50 mg kg−1 (P1), 100 mg kg−1 (P2) and 150 mg P kg−1 (P3). The results showed that with the increase in phosphorus application, each index increased first and then decreased. The J2 treatment was significantly greater than the J0 treatment (P < 0.05) under the same bacterial treatment. In each cropping period the difference in each index to alfalfa was extremely significant under J, P treatment and J × P interactive treatment (P < 0.01). The indexes were compared by membership function. The priority order was as follows: J3P2 > J1P2 > J3P1 treatment. Therefore, when phosphorus was applied at 100 mg kg−1, the mixed inoculation of Fm × Bm was optimal, benefitting mycorrhiza growth and the production performance of alfalfa.
Collapse
|
32
|
Hallasgo AM, Spangl B, Steinkellner S, Hage-Ahmed K. The Fungal Endophyte Serendipita williamsii Does Not Affect Phosphorus Status but Carbon and Nitrogen Dynamics in Arbuscular Mycorrhizal Tomato Plants. J Fungi (Basel) 2020; 6:E233. [PMID: 33086650 PMCID: PMC7711999 DOI: 10.3390/jof6040233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Some members of the root endophytic Serendipitaceae were observed to frequently coexist with arbuscular mycorrhizal fungi (AMF), but their interactions and potential synergistic effects in plants have not yet been well elucidated. Here, we inoculated three-week-old tomato seedlings with Serendipita indica or Serendipita williamsii alone or in combination with the arbuscular mycorrhizal fungus Funneliformis mosseae and cultivated the plants in a greenhouse until the late vegetative stage. Our data show that the simultaneous presence of Serendipita spp. did not affect root colonization by AMF, proving the feasibility of their combination for future agronomic uses. The photosynthetic performance was enhanced in AM tomato plants, although growth remained unresponsive following single or dual inoculation with Serendipita spp. and AMF. With regard to nutrient status under dual inoculation, AMF-induced phosphorus increases remained unaffected, but nitrogen and carbon dynamics were highly altered. Specifically, the application of S. williamsii to mycorrhizal tomato plants significantly enhanced nitrogen concentration in the shoots, but this effect was also compensated with a carbon cost. Our findings indicate that S. williamsii performs differently from S. indica when co-inoculated with AMF, and this suggests an unknown mechanism that needs more detailed investigation.
Collapse
Affiliation(s)
- Anna M. Hallasgo
- Department of Crop Sciences, Institute of Crop Protection, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria; (A.M.H.); (S.S.)
| | - Bernhard Spangl
- Department of Landscape, Institute of Statistics, Spatial and Infrastructure Sciences, University of Natural Resources and Life Sciences, Vienna, 1180 Vienna, Austria;
| | - Siegrid Steinkellner
- Department of Crop Sciences, Institute of Crop Protection, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria; (A.M.H.); (S.S.)
| | - Karin Hage-Ahmed
- Department of Crop Sciences, Institute of Crop Protection, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria; (A.M.H.); (S.S.)
| |
Collapse
|
33
|
Schubert R, Werner S, Cirka H, Rödel P, Tandron Moya Y, Mock HP, Hutter I, Kunze G, Hause B. Effects of Arbuscular Mycorrhization on Fruit Quality in Industrialized Tomato Production. Int J Mol Sci 2020; 21:E7029. [PMID: 32987747 PMCID: PMC7582891 DOI: 10.3390/ijms21197029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Industrialized tomato production faces a decrease in flavors and nutritional value due to conventional breeding. Moreover, tomato production heavily relies on nitrogen and phosphate fertilization. Phosphate uptake and improvement of fruit quality by arbuscular mycorrhizal (AM) fungi are well-studied. We addressed the question of whether commercially used tomato cultivars grown in a hydroponic system can be mycorrhizal, leading to improved fruit quality. Tomato plants inoculated with Rhizophagus irregularis were grown under different phosphate concentrations and in substrates used in industrial tomato production. Changes in fruit gene expression and metabolite levels were checked by RNAseq and metabolite determination, respectively. The tests revealed that reduction of phosphate to 80% and use of mixed substrate allow AM establishment without affecting yield. By comparing green fruits from non-mycorrhizal and mycorrhizal plants, differentially expressed genes (DEGs) were found to possibly be involved in processes regulating fruit maturation and nutrition. Red fruits from mycorrhizal plants showed a trend of higher BRIX values and increased levels of carotenoids in comparison to those from non-mycorrhizal plants. Free amino acids exhibited up to four times higher levels in red fruits due to AM, showing the potential of mycorrhization to increase the nutritional value of tomatoes in industrialized production.
Collapse
Affiliation(s)
- Ramona Schubert
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, 06120 Halle, Germany; (R.S.); (S.W.)
| | - Stephanie Werner
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, 06120 Halle, Germany; (R.S.); (S.W.)
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, 06484 Quedlinburg, Germany
| | - Hillary Cirka
- INOQ GmbH, 29465 Schnega, Germany; (H.C.); (P.R.); (I.H.)
| | - Philipp Rödel
- INOQ GmbH, 29465 Schnega, Germany; (H.C.); (P.R.); (I.H.)
| | - Yudelsy Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (Y.T.M.); (H.-P.M.); (G.K.)
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (Y.T.M.); (H.-P.M.); (G.K.)
| | - Imke Hutter
- INOQ GmbH, 29465 Schnega, Germany; (H.C.); (P.R.); (I.H.)
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (Y.T.M.); (H.-P.M.); (G.K.)
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, 06120 Halle, Germany; (R.S.); (S.W.)
| |
Collapse
|
34
|
Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiol Res 2020; 239:126569. [PMID: 32771873 DOI: 10.1016/j.micres.2020.126569] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022]
Abstract
Associations between plants and microorganisms exist in nature, and they can either be beneficial or detrimental to host plants. Promoting beneficial plant-microbe interaction for increased crop yield and quality is one pathway to eco-friendly and sustainable crop production. Arbuscular mycorrhizal fungi (AMF) and plant growth promoting bacteria (PGPB) are microorganisms that are beneficial to horticultural crops. Arbuscular mycorrhizal fungi establish symbioses with plant roots which help to improve nutrient uptake by the host plant and alter its physiology to withstand external abiotic factors and pathogens. Plant growth promoting bacteria promote plant growth either directly by aiding resource acquisition and controlling the levels of plant hormones or indirectly by reducing the inhibitory effects of phytopathogens. Co-inoculation of both organisms combines the benefits of each for increased crop productivity. Even though the co-inoculation of PGPB and AMF have been shown to enhance the yield and quality of crops, its benefits have fully not been exploited for horticultural crops. In this review, the response of horticultural crops to co-inoculation with PGPB and AMF with particular interest to the impact on the yield and crop quality was discussed. We explained some of the mechanisms responsible for the synergy between AMF and PGPB in plant growth promotion. Finally, suggestions on areas that need to be researched further to exploit and improve the effects of these organisms were highlighted.
Collapse
|
35
|
Massa N, Bona E, Novello G, Todeschini V, Boatti L, Mignone F, Gamalero E, Lingua G, Berta G, Cesaro P. AMF communities associated to Vitis vinifera in an Italian vineyard subjected to integrated pest management at two different phenological stages. Sci Rep 2020; 10:9197. [PMID: 32514032 PMCID: PMC7280190 DOI: 10.1038/s41598-020-66067-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/14/2020] [Indexed: 11/10/2022] Open
Abstract
Vitis vinifera L. is an economically important crop that can be influenced by soil microorganisms, including arbuscular mycorrhizal fungi (AMF), that establish symbiotic associations with its roots. AMF have beneficial effects on grapevine performance improving water use efficiency and replant success. Most grapevine varieties are susceptible to various diseases, and integrated pest management (IPM) is one of the emerging approaches to perform pest control. In the present study, we examined the AMF communities present in the soil associated to the roots of V. vinifera cv. Pinot Noir (comparing them to those present in a soil not affected by grapevine roots), in a vineyard subjected to IPM at two different phenological stages, using 454 Roche sequencing technology. We proposed a new approach to analyze sequencing data. Most of the taxa were included in the family Glomeraceae. In particular, Glomus sp. Rhizophagus sp. and Septoglomus viscosum were present. The family Archeosporaceae was represented only by the genus Archeospora sp. Different AMF communities were found in the two soils and the importance of the phenological stage in regulating AMF biodiversity was assessed.
Collapse
Affiliation(s)
- N Massa
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - E Bona
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Piazza San Eusebio 5, 13100, Vercelli, Italy
| | - G Novello
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - V Todeschini
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Piazza San Eusebio 5, 13100, Vercelli, Italy
| | - L Boatti
- SmartSeq s.r.l., spin-off of the Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - F Mignone
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
- SmartSeq s.r.l., spin-off of the Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - E Gamalero
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - G Lingua
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - G Berta
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - P Cesaro
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy.
| |
Collapse
|
36
|
Deja-Sikora E, Kowalczyk A, Trejgell A, Szmidt-Jaworska A, Baum C, Mercy L, Hrynkiewicz K. Arbuscular Mycorrhiza Changes the Impact of Potato Virus Y on Growth and Stress Tolerance of Solanum tuberosum L. in vitro. Front Microbiol 2020; 10:2971. [PMID: 32010078 PMCID: PMC6974554 DOI: 10.3389/fmicb.2019.02971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
Under the field conditions crop plants interact with diverse microorganisms. These include beneficial (symbiotic) and phytopathogenic microorganisms, which jointly affect growth and productivity of the plants. In last decades, production of potato (Solanum tuberosum L.) suffers from increased incidence of potato virus Y (PVY), which is one of most important potato pests. Arbuscular mycorrhizal fungi (AMF) are common symbionts of potato, however the impact of mycorrhizal symbiosis on the progression of PVY-induced disease is scarcely known. Therefore, in the present study we investigated the effect of joint PVY infection and mycorrhizal colonization by Rhizophagus irregularis on growth traits of the host potato plant (cv. Pirol). The tested PVY isolate belonged to N-Wilga strain group, which is considered to be predominant in Europe and many other parts of the world. The viral particles were concentrated in the leaves, but decreased the root growth. Furthermore, the infection with PVY evoked prolonged oxidative stress reflected by increased level of endogenous H2O2. AMF alleviated oxidative stress in PVY-infected host plants by a substantial decrease in the level of shoot- and root-derived H2O2, but still caused asymptomatic growth depression. It was assumed that mycorrhizal symbiosis of potato might mask infection by PVY in field observations.
Collapse
Affiliation(s)
- Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Anita Kowalczyk
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Alina Trejgell
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Adriana Szmidt-Jaworska
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Christel Baum
- Chair of Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | | | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
37
|
The Effects of a Microorganisms-Based Commercial Product on the Morphological, Biochemical and Yield of Tomato Plants under Two Different Water Regimes. Microorganisms 2019; 7:microorganisms7120706. [PMID: 31888271 PMCID: PMC6955974 DOI: 10.3390/microorganisms7120706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/01/2023] Open
Abstract
The practice of organic agriculture represents an essential requirement for conserving natural resources and for providing the food necessary for a growing population, on a sustainable basis. Tomatoes are considered to be one of the most important crops worldwide. In this context, the organic production of tomatoes should be taken into more consideration. The use of microorganisms-based commercial products is an alternative to chemical fertilizers. Anyway, the results of their use are still variable because of various factors. The aim of this study was to test the effect of inoculation with AMF, PGPR and fungi-based products (Rizotech plus®) on the morphological (length of the plants), biochemical (lycopen, polyphenols, antioxidant activity), and number of fruits and yields of four tomato cultivars (Siriana F1, HTP F1, Minaret F1, Inima de Bou) in two different water regimes used for irrigation (200 m3 or 300 m3 of water/hectare) under a protected area. The results showed that the efficiency of Rizotech plus® application is dependent on the cultivar and the amount of water used. Also, it was clearly demonstrated that the microorganism inoculation significantly increased the yield of Minaret F1, Siriana F1 and HTP F1 cultivars as compared to the uninoculated plants, regardless of the water amount used in the experiment. Moreover, it was observed that for the irrigation of all four cultivars, inoculated with Rizotech plus®, a lower amount of water (200 m3·ha−1) can be used to get the same length of plants, number of fruits and yield as in the case of a higher amount of water (300 m3·ha−1). In the case of lycopene, polyphenols and antioxidant activity, the results varied with the cultivar and the water amount used. This study gives new information about the functionality and performance of the microorganisms from Rizotech plus® product when applied to different tomato cultivars grown in a tunnel, in the condition of two different water regimes, contributing to a better characterization of it and maybe to a more efficient use in agriculture to achieve optimum results.
Collapse
|
38
|
Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:1068. [PMID: 31608075 PMCID: PMC6761482 DOI: 10.3389/fpls.2019.01068] [Citation(s) in RCA: 426] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Abiotic stresses hamper plant growth and productivity. Climate change and agricultural malpractices like excessive use of fertilizers and pesticides have aggravated the effects of abiotic stresses on crop productivity and degraded the ecosystem. There is an urgent need for environment-friendly management techniques such as the use of arbuscular mycorrhizal fungi (AMF) for enhancing crop productivity. AMF are commonly known as bio-fertilizers. Moreover, it is widely believed that the inoculation of AMF provides tolerance to host plants against various stressful situations like heat, salinity, drought, metals, and extreme temperatures. AMF may both assist host plants in the up-regulation of tolerance mechanisms and prevent the down-regulation of key metabolic pathways. AMF, being natural root symbionts, provide essential plant inorganic nutrients to host plants, thereby improving growth and yield under unstressed and stressed regimes. The role of AMF as a bio-fertilizer can potentially strengthen plants' adaptability to changing environment. Thus, further research focusing on the AMF-mediated promotion of crop quality and productivity is needed. The present review provides a comprehensive up-to-date knowledge on AMF and their influence on host plants at various growth stages, their advantages and applications, and consequently the importance of the relationships of different plant nutrients with AMF.
Collapse
Affiliation(s)
- Naheeda Begum
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Cheng Qin
- College of Life Sciences, Northwest A&F University, Yangling, China
| | | | - Sajjad Raza
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | | | | | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohi-Ud-Din Islamic University Azad Jammu and Kashmir, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
39
|
Szczałba M, Kopta T, Gąstoł M, Sękara A. Comprehensive insight into arbuscular mycorrhizal fungi, Trichoderma spp. and plant multilevel interactions with emphasis on biostimulation of horticultural crops. J Appl Microbiol 2019; 127:630-647. [PMID: 30844108 DOI: 10.1111/jam.14247] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/22/2019] [Accepted: 03/02/2019] [Indexed: 02/04/2023]
Abstract
Sustainability and a more environment-friendly approach is an emerging issue relevant to crop production. Abiotic stresses like drought, salinity, heat, cold or heavy metal pollution can severely compromise yields, and in this respect, plant protection practices should be highly efficient as well as safe for the environment and people. Among the many ways to achieve high productivity of healthy, safe and tasty food, the use of beneficial micro-organisms as biostimulants is the most promising one. Two types of soil fungi can be considered efficient natural plants stimulants: arbuscular mycorrhizal fungi (AMF) and Trichoderma spp. (TR). Generally, most investigations indicated AMF and TR were effective, as well as safe, for use as natural biopreparations dedicated to horticultural crops, although some reports pointed to their negative impact on plants. This review focuses on the mutual interaction of AMF and TR, as well as complex relationships with plants analysed on a multidimensional level: biochemical, morphological, ecological and agrotechnical. AMF and TR were found to be effective elicitors of root system development, nutrient uptake, plant stress response and production of secondary metabolites. As natural plant stimulants, beneficial fungi are compatible with modern trends of crop management, environmental conservation and functional food production. Herein, we demonstrate the advantages and disadvantages of AMF and TR use in horticulture and their prospects, as well as the points that need further exploring.
Collapse
Affiliation(s)
- M Szczałba
- Department of Vegetable and Medicinal Plants, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - T Kopta
- Department of Vegetable Growing and Floriculture, Faculty of Horticulture, Mendel University in Brno, Brno, Czech Republic
| | - M Gąstoł
- Department of Pomology and Apiculture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - A Sękara
- Department of Vegetable and Medicinal Plants, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
40
|
Watts-Williams SJ, Jewell N, Brien C, Berger B, Garnett T, Cavagnaro TR. Using High-Throughput Phenotyping to Explore Growth Responses to Mycorrhizal Fungi and Zinc in Three Plant Species. PLANT PHENOMICS (WASHINGTON, D.C.) 2019; 2019:5893953. [PMID: 33313531 PMCID: PMC7718633 DOI: 10.34133/2019/5893953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/21/2019] [Indexed: 05/14/2023]
Abstract
There are many reported benefits to plants of arbuscular mycorrhizal fungi (AMF), including positive plant biomass responses; however, AMF can also induce biomass depressions in plants, and this response receives little attention in the literature. High-throughput phenotyping (HTP) technology permits repeated measures of an individual plant's aboveground biomass. We examined the effect on AMF inoculation on the shoot biomass of three contrasting plant species: a vegetable crop (tomato), a cereal crop (barley), and a pasture legume (Medicago). We also considered the interaction of mycorrhizal growth responses with plant-available soil zinc (Zn) and phosphorus (P) concentrations. The appearance of a depression in shoot biomass due to inoculation with AMF occurred at different times for each plant species; depressions appeared earliest in tomato, then Medicago, and then barley. The usually positive-responding Medicago plants were not responsive at the high level of soil available P used. Mycorrhizal growth responsiveness in all three species was also highly interactive with soil Zn supply; tomato growth responded negatively to AMF inoculation in all soil Zn treatments except the toxic soil Zn treatment, where it responded positively. Our results illustrate how context-dependent mycorrhizal growth responses are and the value of HTP approaches to exploring the complexity of mycorrhizal responses.
Collapse
Affiliation(s)
- S. J. Watts-Williams
- The School of Agriculture, Food and Wine, and The Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Adelaide, Glen Osmond, SA, Australia
| | - N. Jewell
- The School of Agriculture, Food and Wine, and The Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - C. Brien
- The School of Agriculture, Food and Wine, and The Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - B. Berger
- The School of Agriculture, Food and Wine, and The Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - T. Garnett
- The School of Agriculture, Food and Wine, and The Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - T. R. Cavagnaro
- The School of Agriculture, Food and Wine, and The Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
41
|
El Mujtar V, Muñoz N, Prack Mc Cormick B, Pulleman M, Tittonell P. Role and management of soil biodiversity for food security and nutrition; where do we stand? GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2019. [DOI: 10.1016/j.gfs.2019.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Xiang XL, Jin GF, Gouda M, Jin YG, Ma MH. Characterization and classification of volatiles from different breeds of eggs by SPME-GC-MS and chemometrics. Food Res Int 2019; 116:767-777. [PMID: 30717006 DOI: 10.1016/j.foodres.2018.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/21/2018] [Accepted: 09/08/2018] [Indexed: 12/26/2022]
Abstract
Volatiles of shell eggs were identified by SPME-GC-MS to characterize and discriminate white Leghorn (W), Hy-line brown (H) and Jing fen (J) hatching eggs with comparison, principal components (PC), partial least squares (PLS), random forest classification (RFC) and canonical discriminant (CD) analyses. DVB/CAR/PDMS fiber and extraction 60 min were suited to analyze the volatiles emitted from eggs. A total of 17 or 18 volatile compounds were identified in raw shell hatching eggs, namely, nonanal, decanal and 6-methly-5-hepten-2-one were the main volatile components with contributions that over 70%. The composition and/or profile of volatile compounds from W and H eggs were much more similar than J eggs. Hexanal, decanal, 6-methly-5-hepten-2-one, heptanal, etc. have greatly contributed to the distinction of W, H and J eggs in sparse (S)-PLS and orthogonal (O)-PLS models. The accuracy of RFC and CD model were 100%, 100% (initial) and 83.3% (cross-validation), respectively. Heptanal, 6-methly-5-hepten-2-one, octanal, etc. were contributed positively to the classification of W, H, J eggs in RFC, especially for heptanal.
Collapse
Affiliation(s)
- Xiao-le Xiang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Guo-Feng Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Mostafa Gouda
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Department of human nutrition & food science, National Research Centre, Dokki, Cairo, Egypt
| | - Yong-Guo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| | - Mei-Hu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|
43
|
Understanding Changes in Tomato Cell Walls in Roots and Fruits: The Contribution of Arbuscular Mycorrhizal Colonization. Int J Mol Sci 2019; 20:ijms20020415. [PMID: 30669397 PMCID: PMC6359600 DOI: 10.3390/ijms20020415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/03/2019] [Accepted: 01/16/2019] [Indexed: 01/16/2023] Open
Abstract
Modifications in cell wall composition, which can be accompanied by changes in its structure, were already reported during plant interactions with other organisms, such as the mycorrhizal fungi. Arbuscular mycorrhizal (AM) fungi are among the most widespread soil organisms that colonize the roots of land plants, where they facilitate mineral nutrient uptake from the soil in exchange for plant-assimilated carbon. In AM symbiosis, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. In addition, to improve host nutrition and tolerance/resistance to environmental stresses, AM symbiosis was shown to modulate fruit features. In this study, Comprehensive Microarray Polymer Profiling (CoMMP) technique was used to verify the impact of the AM symbiosis on the tomato cell wall composition both at local (root) and systemic level (fruit). Multivariate data analyses were performed on the obtained datasets looking for the effects of fertilization, inoculation with AM fungi, and the fruit ripening stage. Results allowed for the discernment of cell wall component modifications that were correlated with mycorrhizal colonization, showing a different tomato response to AM colonization and high fertilization, both at the root and the systemic level.
Collapse
|
44
|
Todeschini V, AitLahmidi N, Mazzucco E, Marsano F, Gosetti F, Robotti E, Bona E, Massa N, Bonneau L, Marengo E, Wipf D, Berta G, Lingua G. Impact of Beneficial Microorganisms on Strawberry Growth, Fruit Production, Nutritional Quality, and Volatilome. FRONTIERS IN PLANT SCIENCE 2018; 9:1611. [PMID: 30505312 PMCID: PMC6250784 DOI: 10.3389/fpls.2018.01611] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/17/2018] [Indexed: 05/24/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) colonize the roots of most terrestrial plant species, improving plant growth, nutrient uptake and biotic/abiotic stress resistance and tolerance. Similarly, plant growth promoting bacteria (PGPB) enhance plant fitness and production. In this study, three different AMF (Funneliformis mosseae, Septoglomus viscosum, and Rhizophagus irregularis) were used in combination with three different strains of Pseudomonas sp. (19Fv1t, 5Vm1K and Pf4) to inoculate plantlets of Fragaria × ananassa var. Eliana F1. The effects of the different fungus/bacterium combinations were assessed on plant growth parameters, fruit production and quality, including health-promoting compounds. Inoculated and uninoculated plants were maintained in a greenhouse for 4 months and irrigated with a nutrient solution at two different phosphate levels. The number of flowers and fruits were recorded weekly. At harvest, fresh and dry weights of roots and shoots, mycorrhizal colonization and concentration of leaf photosynthetic pigments were measured in each plant. The following fruit parameters were recorded: pH, titratable acids, concentration of organic acids, soluble sugars, ascorbic acids, and anthocyanidins; volatile and elemental composition were also evaluated. Data were statistically analyzed by ANOVA and PCA/PCA-DA. Mycorrhizal colonization was higher in plants inoculated with R. irregularis, followed by F. mosseae and S. viscosum. In general, AMF mostly affected the parameters associated with the vegetative portion of the plant, while PGPB were especially relevant for fruit yield and quality. The plant physiological status was differentially affected by inoculations, resulting in enhanced root and shoot biomass. Inoculation with Pf4 bacterial strain increased flower and fruit production per plant and malic acid content in fruits, while decreased the pH value, regardless of the used fungus. Inoculations affected fruit nutritional quality, increasing sugar and anthocyanin concentrations, and modulated pH, malic acid, volatile compounds and elements. In the present study, we show for the first time that strawberry fruit concentration of some elements and/or volatiles can be affected by the presence of specific beneficial soil microorganisms. In addition, our results indicated that it is possible to select the best plant-microorganism combination for field applications, and improving fruit production and quality, also in terms of health promoting properties.
Collapse
Affiliation(s)
- Valeria Todeschini
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Vercelli, Italy
| | - Nassima AitLahmidi
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Eleonora Mazzucco
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy
| | - Francesco Marsano
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy
| | - Fabio Gosetti
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy
| | - Elisa Robotti
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy
| | - Elisa Bona
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Vercelli, Italy
| | - Nadia Massa
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy
| | - Laurent Bonneau
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Emilio Marengo
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Graziella Berta
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy
| | - Guido Lingua
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy
| |
Collapse
|
45
|
Avio L, Turrini A, Giovannetti M, Sbrana C. Designing the Ideotype Mycorrhizal Symbionts for the Production of Healthy Food. FRONTIERS IN PLANT SCIENCE 2018; 9:1089. [PMID: 30154803 PMCID: PMC6102486 DOI: 10.3389/fpls.2018.01089] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
The new paradigm in agriculture, sustainable intensification, is focusing back onto beneficial soil microorganisms, for the role played in reducing the input of chemical fertilizers and pesticides and improving plant nutrition and health. Worldwide, more and more attention is deserved to arbuscular mycorrhizal fungi (AMF), which establish symbioses with the roots of most land plants and facilitate plant nutrient uptake, by means of a large network of extraradical hyphae spreading from colonized roots to the surrounding soil and functioning as a supplementary absorbing system. AMF protect plants from biotic and abiotic stresses and are able to modulate the activity of antioxidant enzymes and the biosynthesis of secondary metabolites (phytochemicals), such as polyphenols, anthocyanins, phytoestrogens and carotenoids, that play a fundamental role in promoting human health. An increasing number of studies focused on the use of AMF symbionts for the production of functional food, with enhanced nutritional and nutraceutical value. Yet, while several plant species were investigated, only few AMF were utilized, thus limiting the full exploitation of their wide physiological and genetic diversity. Here, we will focus on AMF effects on the biosynthesis of plant secondary metabolites with health-promoting activity, and on the criteria for a finely tuned, targeted selection of the best performing symbionts, to be utilized as sustainable biotechnological tools for the production of safe and healthy plant foods.
Collapse
Affiliation(s)
- Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Cristiana Sbrana
- Institute of Agricultural Biology and Biotechnology, C.N.R., UOS Pisa, Pisa, Italy
| |
Collapse
|
46
|
Torres N, Antolín MC, Goicoechea N. Arbuscular Mycorrhizal Symbiosis as a Promising Resource for Improving Berry Quality in Grapevines Under Changing Environments. FRONTIERS IN PLANT SCIENCE 2018; 9:897. [PMID: 30008729 PMCID: PMC6034061 DOI: 10.3389/fpls.2018.00897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/07/2018] [Indexed: 05/13/2023]
Abstract
Climate change and their resulting impacts are becoming a concern for winegrowers due to the high socioeconomic relevance of the winemaking sector worldwide. In fact, the projected climate change is expected to have detrimental impacts on the yield of grapevines, as well as on the quality and properties of grapes and wine. It is well known that arbuscular mycorrhizal fungi (AMF) can improve the nutritional quality of edible parts of crops and play essential roles in the maintenance of host plant fitness under stressed environments, including grapevines. The future scenarios of climate change may also modify the diversity and the growth of AMF in soils as well as the functionality of the mycorrhizal symbiosis. In this review, we summarize recent research progress on the effects of climate change on grapevine metabolism, paying special attention to the secondary compounds involved in the organoleptic properties of grapes and wines and to the levels of the phytohormones implied in the control of berry development and fruit ripening. In this context, the potential role of AMF for maintaining fruit quality in future climate change scenarios is discussed.
Collapse
Affiliation(s)
| | | | - Nieves Goicoechea
- Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Facultades de Ciencias y Farmacia y Nutrición, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
47
|
Rillig MC, Lehmann A, Lehmann J, Camenzind T, Rauh C. Soil Biodiversity Effects from Field to Fork. TRENDS IN PLANT SCIENCE 2018; 23:17-24. [PMID: 29146430 DOI: 10.1016/j.tplants.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Our knowledge of soil biodiversity in agriculture in general is currently increasing rapidly. However, almost all studies have stopped with the quantification of soil biodiversity effects on crops at harvest time, ignoring subsequent processes along the agrifood chain until food arrives on our plates. Here we develop a conceptual framework for the study of such postharvest effects. We present the main mechanisms (direct and indirect) via which soil biodiversity can influence crop quality aspects and give examples of how effects at harvest time may become attenuated through postharvest operations and how biodiversity may also affect some of these operations (i.e., storage) themselves. Future research with a broader focus has the potential to unveil how soil biodiversity may benefit from what ends up on our forks.
Collapse
Affiliation(s)
- Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, D-14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany.
| | - Anika Lehmann
- Freie Universität Berlin, Institut für Biologie, D-14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Johannes Lehmann
- Cornell University, College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - Tessa Camenzind
- Freie Universität Berlin, Institut für Biologie, D-14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Cornelia Rauh
- Technische Universität Berlin, Department of Food Biotechnology and Food Process Engineering, D-14195 Berlin, Germany
| |
Collapse
|
48
|
Kong Z, Hart M, Liu H. Paving the Way From the Lab to the Field: Using Synthetic Microbial Consortia to Produce High-Quality Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:1467. [PMID: 30344529 PMCID: PMC6182091 DOI: 10.3389/fpls.2018.01467] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/14/2018] [Indexed: 05/14/2023]
Affiliation(s)
- Zhaoyu Kong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Miranda Hart
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Hongguang Liu
- Jiangxi Provincial Key Laboratory of Soil Erosion and Prevision, Jiangxi Institute of Soil and Water Conservation, Nanchang, China
- *Correspondence: Hongguang Liu
| |
Collapse
|
49
|
Pistelli L, Ulivieri V, Giovanelli S, Avio L, Giovannetti M, Pistelli L. Arbuscular mycorrhizal fungi alter the content and composition of secondary metabolites in Bituminaria bituminosa L. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:926-933. [PMID: 28749560 DOI: 10.1111/plb.12608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/24/2017] [Indexed: 05/09/2023]
Abstract
Secondary metabolites may be affected by arbuscular mycorrhizal fungi (AMF), which are beneficial symbionts associated with the roots of most plant species. Bituminaria bituminosa (L.) C.H.Stirt is known as a source of several phytochemicals and therefore used in folk medicine as a vulnerary, cicatrising, disinfectant agent. Characteristic metabolites found in B. bituminosa are furanocoumarins and pterocarpans, which are used in cosmetics and as chemotherapeutic agents. Here we address the question whether AMF inoculation might affect positively the synthesis of these phytochemicals. B. bituminosa plants were inoculated with different AMF and several metabolites were assessed during full vegetative stage and flowering phase. Pigments (chlorophylls and carotenoids), polyphenols and flavonoids were spectrophotometrically determined; specific isoflavones (genistein), furanocoumarins (psoralene and angelicin), pterocarpans (bitucarpin A and erybraedin C) and plicatin B were assessed with HPLC; leaf volatile organic compounds were analysed using SPME and identified by GC-MS. During the vegetative stage, the inoculated plants had a high amount of furanocoumarins (angelicin and psoralen) and pterocarpans (erybraedin C and bitucarpin A). The analysis of volatile organic compounds of inoculated plants showed different chemical composition compared with non-mycorrhizal plants. Given the important potential role played by furanocoumarins and pterocarpans in the pharmaceutical industry, AMF inoculation of B. bituminosa plants may represent a suitable biotechnological tool to obtain higher amounts of such metabolites for pharmaceutical and medicinal purposes.
Collapse
Affiliation(s)
- L Pistelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood - Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - V Ulivieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - S Giovanelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - L Avio
- Institute of Agricultural Biology and Biotechnology, CNR, Milan, Italy
| | - M Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood - Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - L Pistelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood - Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| |
Collapse
|
50
|
Liu H, Wang Y, Chen H, Tang M. Influence of Rhizoglomus irregulare on nutraceutical quality and regeneration of Lycium barbarum leaves under salt stress. Can J Microbiol 2017; 63:365-374. [PMID: 28177791 DOI: 10.1139/cjm-2016-0597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whether arbuscular mycorrhizal fungi augment the nutraceutical quality of crops under salt stress is critical as a potential agronomic practice in salinized farmland. To evaluate the effect of Rhizoglomus irregulare on the nutraceutical quality of Lycium barbarum leaves under salt stress, we analyzed growth parameters and the rutin, polysaccharide, acidic polysaccharide, and amino acids contents of 2 harvests. Inoculation of R. irregulare significantly increased the regenerated bud number (partial eta squared (PES) = 0.577, P < 0.0001) and rutin concentration (PES = 0.544, P < 0.001) of L. barbarum leaves, with and without salt stress. The biomass of the 2nd harvest (PES = 0.355, P = 0.0091) and acidic polysaccharide (PES = 0.518, P = 0.001) of L. barbarum leaves were notably enhanced by R. irregulare under 200 mmol/L salt level. Rhizoglomus irregulare had insignificant effect on polysaccharide (PES = 0.092, P = 0.221) and amino acids levels (PES = 0.263, P = 0.130) in the leaves of L. barbarum. However, inoculation by R. irregulare decreased proline level (PES = 0.761, P = 0.001) in the leaves of L. barbarum when subjected to salt stress. Taken together, these results indicate that R. irregulare significantly improved the nutraceutical quality and facilitated the sustainable production of L. barbarum leaves exposed to salt stress.
Collapse
Affiliation(s)
- Hongguang Liu
- a State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China.,b College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yajun Wang
- c National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China
| | - Hui Chen
- d College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Ming Tang
- d College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| |
Collapse
|