1
|
Akter S, Mahmud U, Shoumik BAA, Khan MZ. Although invisible, fungi are recognized as the engines of a microbial powerhouse that drives soil ecosystem services. Arch Microbiol 2025; 207:79. [PMID: 40047912 DOI: 10.1007/s00203-025-04285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Soil ecosystem services (SES) are the benefits that humans derive from soil. These services emerge from the complex interactions between biotic and abiotic processes within soil systems. They are vital for maintaining ecosystem resilience and ensuring long-term sustainability. Soil hosts a diverse group of biota, among them fungi play a crucial role in supporting and enhancing SES due to their remarkable adaptability and ability to thrive under unfavorable conditions. This review explores the multifaceted roles of fungi in SES, emphasizing their growing importance in strengthening ecosystem resilience and climate change adaptation. Fungi significantly contribute to the key ecosystem processes such as soil aggregation, organic matter (OM) decomposition, nutrients cycling, plant productivity, and carbon (C) sequestration. However, potential threats to fungal abundance and diversity could undermine these critical functions, highlighting the need for proactive measures to preserve fungal communities. The pivotal role of fungi in SES, including agricultural production and climate regulation, tailor them as indispensable microbial engines that shape and maintain ecosystem resilience. Emerging evidence suggests that soil fungal communities may become increasingly prominent under the future climate scenarios. Thus, understanding how fungal functional roles evolve in response to climate change is emergent for safeguarding SES and ensuring environmental sustainability. Furthermore, the co-occurrance of fungi with other soil organisms in supporting SES highlights the need to integrate diverse soil biota alongside fungi to promote sustainable SES. Collaborative efforts to comprehend and manage soil microbial communities are imperative for maintaining the long-term ecological stability of ecosystems.
Collapse
Affiliation(s)
- Shova Akter
- Department of Soil Science and Plant Nutrition, Ondokuz Mayis University, Samsun, 55139, Turkey
| | - Upoma Mahmud
- Department of Soil Science and Agrophysics, University of Agriculture in Krakow, Krakow, 30-120, Poland
| | | | - Md Zulfikar Khan
- French National Research Institute for Agriculture, Food and Environment (INRAE), Poitou-Charentes, Lusignan, URP3F, 86600, France.
| |
Collapse
|
2
|
Laishram B, Devi OR, Dutta R, Senthilkumar T, Goyal G, Paliwal DK, Panotra N, Rasool A. Plant-microbe interactions: PGPM as microbial inoculants/biofertilizers for sustaining crop productivity and soil fertility. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100333. [PMID: 39835267 PMCID: PMC11743900 DOI: 10.1016/j.crmicr.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Plant-microbe interactions play pivotal roles in sustaining crop productivity and soil fertility, offering promising avenues for sustainable agricultural practices. This review paper explores the multifaceted interactions between plants and various microorganisms, highlighting their significance in enhancing crop productivity, combating pathogens, and promoting soil health. Understanding these interactions is crucial for harnessing their potential in agricultural systems to address challenges such as food security and environmental sustainability. Therefore, the introduction of beneficial microbes into agricultural ecosystems by bio-augmentation reduces the negative effects of intensive, non-sustainable agriculture on the environment, society, and economy, into the mechanisms underlying the application of plant growth promoting microbes as microbial inoculants/biofertilizers; their interactions, the factors influencing their dynamics, and the implications for agricultural practices, emerging technologies and strategies that leverage plant-microbe interactions for improving crop yields, soil fertility, and overall agricultural sustainability.
Collapse
Affiliation(s)
- Bibek Laishram
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Okram Ricky Devi
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Rinjumoni Dutta
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | | | - Girish Goyal
- Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, India
| | | | - Narinder Panotra
- Institute of Biotechnology, SKUAST Jammu, Jammu and Kashmir 180009, India
| | - Akhtar Rasool
- Research Center for Chemistry - National Research and Innovation Agency (BRIN), KST BJ Habibie, Building 452, Setu, Tangerang Selatan 15314, Indonesia
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| |
Collapse
|
3
|
Yang D, Wang L. Molybdenum-mediated nitrogen accumulation and assimilation in legumes stepwise boosted by the coexistence of arbuscular mycorrhizal fungi and earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171840. [PMID: 38522544 DOI: 10.1016/j.scitotenv.2024.171840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Molybdenum (Mo) is a critical micronutrient for nitrogen (N) metabolism in legumes, yet the impact of Mo on legume N metabolism in the context of natural coexistence with soil microorganisms remains poorly understood. This study investigated the dose-dependent effect of Mo on soil N biogeochemical cycling, N accumulation, and assimilation in alfalfa under conditions simulating the coexistence of arbuscular mycorrhizal fungi (AMF) and earthworms. The findings indicated that Mo exerted a hormetic effect on alfalfa N accumulation, facilitating it at low concentrations (below 29.98 mg/kg) and inhibiting it at higher levels. This inhibition was attributed to Mo-induced constraints on C supply for nitrogen fixation. Concurrently, AMF colonization enhanced C assimilation in Mo-treated alfalfas by promoting nutrients uptake, particularly Mg, which is crucial for chlorophyll synthesis. This effect was further amplified by earthworms, which improved AMF colonization (p < 0.05). In the soil N cycle, these organisms exerted opposing effects: AMF enhanced soil nitrification and earthworms reduced soil nitrate (NO3--N) reduction to jointly increase soil phyto-available N content (p < 0.05). Their combined action improved alfalfa N assimilation by restoring the protein synthesis pathway that is compromised by high Mo concentrations, specifically the activity of glutamine synthetase. These findings underscored the potential for soil microorganisms to mitigate N metabolic stress in legumes exposed to elevated Mo levels.
Collapse
Affiliation(s)
- Dongguang Yang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Corrêa A, Ferrol N, Cruz C. Testing the trade-balance model: resource stoichiometry does not sufficiently explain AM effects. THE NEW PHYTOLOGIST 2024; 242:1561-1575. [PMID: 38009528 DOI: 10.1111/nph.19432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023]
Abstract
Variations in arbuscular mycorrhizae (AM) effects on plant growth (MGR) are commonly assumed to result from cost : benefit balances, with C as the cost and, most frequently, P as the benefit. The trade-balance model (TBM) adopts these assumptions and hypothesizes that mycorrhizal benefit depends on C : N : P stoichiometry. Although widely accepted, the TBM has not been experimentally tested. We isolated the parameters included in the TBM and tested these assumptions using it as framework. Oryza sativa plants were supplied with different N : P ratios at low light level, establishing different C : P and C : N exchange rates, and C, N or P limitation. MGR and effects on nutrient uptake, %M, ERM, photosynthesis and shoot starch were measured. C distribution to AM fungi played no role in MGR, and N was essential for all AM effects, including on P nutrition. C distribution to AM and MGR varied with the limiting nutrient (N or P), and evidence of extensive interplay between N and P was observed. The TBM was not confirmed. The results agreed with the exchange of surplus resources and source-sink regulation of resource distribution among plants and AMF. Rather than depending on exchange rates, resource exchange may simply obey both symbiont needs, not requiring further regulation.
Collapse
Affiliation(s)
- Ana Corrêa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Nuria Ferrol
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
5
|
Han R, Yang Z, Wang C, Zhu S, Tang G, Shen X, Duanmu D, Cao Y, Huang R. Wild species rice OsCERK1DY-mediated arbuscular mycorrhiza symbiosis boosts yield and nutrient use efficiency in rice breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:22. [PMID: 38435473 PMCID: PMC10907559 DOI: 10.1007/s11032-024-01459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Meeting the ever-increasing food demands of a growing global population while ensuring resource and environmental sustainability presents significant challenges for agriculture worldwide. Arbuscular mycorrhizal symbiosis (AMS) has emerged as a potential solution by increasing the surface area of a plant's root system and enhancing the absorption of phosphorus, nitrogen nutrients, and water. Consequently, there is a longstanding hypothesis that rice varieties exhibiting more efficient AMS could yield higher outputs at reduced input costs, paving the way for the development of Green Super Rice (GSR). Our prior research study identified a variant, OsCERK1DY, derived from Dongxiang wild-type rice, which notably enhanced AMS efficiency in the rice cultivar "ZZ35." This variant represents a promising gene for enhancing yield and nutrient use efficiency in rice breeding. In this study, we conducted a comparative analysis of biomass, crop growth characteristics, yield attributes, and nutrient absorption at varying soil nitrogen levels in the rice cultivar "ZZ35" and its chromosome single-segment substitution line, "GJDN1." In the field, GJDN1 exhibited a higher AM colonization level in its roots compared with ZZ35. Notably, GJDN1 displayed significantly higher effective panicle numbers and seed-setting rates than ZZ35. Moreover, the yield of GJDN1 with 75% nitrogen was 14.27% greater than the maximum yield achieved using ZZ35. At equivalent nitrogen levels, GJDN1 consistently outperformed ZZ35 in chlorophyll (Chl) content, dry matter accumulation, major nutrient element accumulation, N agronomic efficiency (NAE), N recovery efficiency (NRE), and N partial factor productivity (NPFP). The performance of OsCERK1DY overexpression lines corroborated these findings. These results support a model wherein the heightened level of AMS mediated by OsCERK1DY contributes to increased nitrogen, phosphorus, and potassium accumulation. This enhancement in nutrient utilization promotes higher fertilizer efficiency, dry matter accumulation, and ultimately, rice yield. Consequently, the OsCERK1DY gene emerges as a robust candidate for improving yield, reducing fertilizer usage, and facilitating a transition towards greener, lower-carbon agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01459-8.
Collapse
Affiliation(s)
- Ruicai Han
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| | - Zhou Yang
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| | - Chunquan Wang
- Jiangxi Biotech Vocational College, Nanchang, 330200 People’s Republic of China
| | - Shan Zhu
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| | - Guoping Tang
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| | - Xianhua Shen
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| | - Deqiang Duanmu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Renliang Huang
- Nanchang Subcenter of National Research Center for Rice Engineering, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, 330200 People’s Republic of China
| |
Collapse
|
6
|
Carrara JE, Reddivari L, Heller WP. Inoculation of black turtle beans ( Phaseolus vulgaris) with mycorrhizal fungi increases the nutritional quality of seeds. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10128. [PMID: 38323132 PMCID: PMC10840373 DOI: 10.1002/pei3.10128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 02/08/2024]
Abstract
The use of arbuscular mycorrhizal fungi (AMF) as biofertilizers has proven successful in boosting the yield and nutritional quality of a variety of crops. AMF associate with plant roots and exchange soil nutrients for photosynthetically derived C in the form of sugars and lipids. Past research has shown that not all AMF species are equal in their benefit to nutrient uptake and crop health, and that the most beneficial AMF species appear to vary by host species. Although an important human food staple, especially in developing regions where nutrient deficiency is a prevalent threat to public health, little work has been done to test the effectiveness of AMF in enhancing the nutritional quality of common bean (Phaseolus vulgaris L.). Therefore, our objective was to determine the most beneficial AMF species for inoculation of this important crop. We inoculated black beans (Phaseolus vulgaris black turtle beans) with eight individual AMF species and one mixed species inoculum in an outdoor pot trial over 3 months and assessed the extent to which they altered yield, mineral nutrient and anthocyanin concentration of seeds and leaf tissues. Despite seeing no yield effects from inoculation, we found that across treatments percent root length colonized by AMF was positively correlated with plant tissue P, Cu, and Zn concentration. Underlying these broad benefits, seeds from plants inoculated with three AMF species, Claroideoglomus claroideum (+15%), Funneliformis mosseae (+13%), and Gigaspora rosea (+11%) had higher P concentration than non-mycorrhizal plants. C. claroideum also increased seed potassium (K) and copper (Cu), as well as leaf aluminum (Al) concentration making it a promising candidate to further test the benefit of individual AMF species on black bean growth in field trials.
Collapse
Affiliation(s)
- Joseph E. Carrara
- USDA Agricultural Research ServiceEastern Regional Research CenterWyndmoorPennsylvaniaUSA
| | | | - Wade P. Heller
- USDA Agricultural Research ServiceEastern Regional Research CenterWyndmoorPennsylvaniaUSA
| |
Collapse
|
7
|
Huangfu C, Wang B, Hu W. Mycorrhizal colonization had little effect on growth of Carex thunbergii but inhibited its nitrogen uptake under deficit water supply. ANNALS OF BOTANY 2023; 132:217-227. [PMID: 37464876 PMCID: PMC10583201 DOI: 10.1093/aob/mcad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND AND AIMS Plant nitrogen (N) acquisition via arbuscular mycorrhizal fungi (AMF) serves as a dominant pathway in the N nutrition of many plants, but the functional impact of AMF in acquisition of N by wetland plants has not been well quantified. Subtropical lake-wetland ecosystems are characterized by seasonal changes in the water table and low N availability in soil. Yet, it is unclear whether and how AMF alters the N acquisition pattern of plants for various forms of N and how this process is influenced by soil water conditions. METHODS We performed a pot study with Carex thunbergii that were either colonized by AMF or not colonized and also subjected to different water conditions. We used 15N labelling to track plant N uptake. KEY RESULTS Colonization by AMF had little effect on the biomass components of C. thunbergii but did significantly affect the plant functional traits and N acquisition in ways that were dependent on the soil water conditions. The N uptake rate of AMF-colonized plants was significantly lower than that of the non-colonized plants in conditions of low soil water. A decreased NO3- uptake rate in AMF-colonized plants reduced the N:P ratio of the plants. Although C. thunbergii predominantly took up N in the form of NO3-, higher water availability increased the proportion of N taken up as NH4+, irrespective of the inoculation status. CONCLUSIONS These results emphasize the importance of AMF colonization in controlling the N uptake strategies of plants and can improve predictions of N budget under the changing water table conditions in this subtropical wetland ecosystem.
Collapse
Affiliation(s)
- Chaohe Huangfu
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Beibei Wang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Wuqiong Hu
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
8
|
Chen K, Zhang J, Muneer MA, Xue K, Niu H, Ji B. Plant community and soil available nutrients drive arbuscular mycorrhizal fungal community shifts during alpine meadow degradation. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Arbuscular mycorrhiza alters the nutritional requirements in Salvia miltiorrhiza and low nitrogen enhances the mycorrhizal efficiency. Sci Rep 2022; 12:19633. [PMID: 36385104 PMCID: PMC9668911 DOI: 10.1038/s41598-022-17121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Salvia miltiorrhiza Bunge (danshen in Chinese) is one of the most important medicinal cash crops in China. Previously, we showed that arbuscular mycorrhizal fungi (AMF) can promote S. miltiorrhiza growth and the accumulation of bioactive compounds. Fertilization may affect mycorrhizal efficiency, and appropriate doses of phosphate (P) and nitrogen (N) fertilizers are key factors for obtaining mycorrhizal benefits. However, the optimal fertilization amount for mycorrhizal S. miltiorrhiza remains unclear. In this study, we studied the effects of AMF on the growth and bioactive compounds of S. miltiorrhiza under different doses (low, medium, and high) of P and N fertilizer. The results showed that the mycorrhizal growth response (MGR) and mycorrhizal response of bioactive compounds (MBC) decreased gradually with increasing P addition. Application of a low (N25) dose of N fertilizer significantly increased the MGR of mycorrhizal S. miltiorrhiza, and a medium (N50) dose of N fertilizer significantly increased the MBC of phenolic acids, but decreased the MBC of tanshinones. Our results also showed that the existence of arbuscular mycorrhiza changes nutrient requirement pattern of S. miltiorrhiza. P is the limiting nutrient of non-mycorrhizal plants whereas N is the limiting nutrient of mycorrhizal plants.
Collapse
|
10
|
Arbuscular Mycorrhiza and Nitrification: Disentangling Processes and Players by Using Synthetic Nitrification Inhibitors. Appl Environ Microbiol 2022; 88:e0136922. [PMID: 36190238 PMCID: PMC9599619 DOI: 10.1128/aem.01369-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both plants and their associated arbuscular mycorrhizal (AM) fungi require nitrogen (N) for their metabolism and growth. This can result in both positive and negative effects of AM symbiosis on plant N nutrition. Either way, the demand for and efficiency of uptake of mineral N from the soil by mycorrhizal plants are often higher than those of nonmycorrhizal plants. In consequence, the symbiosis of plants with AM fungi exerts important feedbacks on soil processes in general and N cycling in particular. Here, we investigated the role of the AM symbiosis in N uptake by Andropogon gerardii from an organic source (15N-labeled plant litter) that was provided beyond the direct reach of roots. In addition, we tested if pathways of 15N uptake from litter by mycorrhizal hyphae were affected by amendment with different synthetic nitrification inhibitors (dicyandiamide [DCD], nitrapyrin, or 3,4-dimethylpyrazole phosphate [DMPP]). We observed efficient acquisition of 15N by mycorrhizal plants through the mycorrhizal pathway, independent of nitrification inhibitors. These results were in stark contrast to 15N uptake by nonmycorrhizal plants, which generally took up much less 15N, and the uptake was further suppressed by nitrapyrin or DMPP amendments. Quantitative real-time PCR analyses showed that bacteria involved in the rate-limiting step of nitrification, ammonia oxidation, were suppressed similarly by the presence of AM fungi and by nitrapyrin or DMPP (but not DCD) amendments. On the other hand, abundances of ammonia-oxidizing archaea were not strongly affected by either the AM fungi or the nitrification inhibitors. IMPORTANCE Nitrogen is one of the most important elements for all life on Earth. In soil, N is present in various chemical forms and is fiercely competed for by various microorganisms as well as plants. Here, we address competition for reduced N (ammonia) between ammonia-oxidizing prokaryotes and arbuscular mycorrhizal fungi. These two functionally important groups of soil microorganisms, participating in nitrification and plant mineral nutrient acquisition, respectively, have often been studied in separation in the past. Here, we showed, using various biochemical and molecular approaches, that the fungi systematically suppress ammonia-oxidizing bacteria to an extent similar to that of some widely used synthetic nitrification inhibitors, whereas they have only a limited impact on abundance of ammonia-oxidizing archaea. Competition for free ammonium is a plausible explanation here, but it is also possible that the fungi produce some compounds acting as so-called biological nitrification inhibitors.
Collapse
|
11
|
Hui J, An X, Li Z, Neuhäuser B, Ludewig U, Wu X, Schulze WX, Chen F, Feng G, Lambers H, Zhang F, Yuan L. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. THE PLANT CELL 2022; 34:4066-4087. [PMID: 35880836 PMCID: PMC9516061 DOI: 10.1093/plcell/koac225] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.
Collapse
Affiliation(s)
- Jing Hui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Xia An
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zhibo Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Benjamin Neuhäuser
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Xuna Wu
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Gu Feng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Hans Lambers
- School of Biological Science and Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | | |
Collapse
|
12
|
Kowal J, Arrigoni E, Jarvis S, Zappala S, Forbes E, Bidartondo MI, Suz LM. Atmospheric pollution, soil nutrients and climate effects on Mucoromycota arbuscular mycorrhizal fungi. Environ Microbiol 2022; 24:3390-3404. [PMID: 35641308 PMCID: PMC9544493 DOI: 10.1111/1462-2920.16040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Fine root endophyte mycorrhizal fungi in the Endogonales (Mucoromycota arbuscular mycorrhizal fungi, M‐AMF) are now recognized as at least as important globally as Glomeromycota AMF (G‐AMF), yet little is known about the environmental factors which influence M‐AMF diversity and colonization, partly because they typically only co‐colonize plants with G‐AMF. Wild populations of Lycopodiella inundata predominantly form mycorrhizas with M‐AMF and therefore allow focussed study of M‐AMF environmental drivers. Using microscopic examination and DNA sequencing we measured M‐AMF colonization and diversity over three consecutive seasons and modelled interactions between these response variables and environmental data. Significant relationships were found between M‐AMF colonization and soil S, P, C:N ratio, electrical conductivity, and the previously overlooked micronutrient Mn. Estimated N deposition was negatively related to M‐AMF colonization. Thirty‐nine Endogonales Operational Taxonomic Units (OTUs) were identified in L. inundata roots, a greater diversity than previously recognized in this plant. Endogonales OTU richness correlated negatively with soil C:N while community composition was mostly influenced by soil P. This study provides first evidence that M‐AMF have distinct ecological preferences in response to edaphic variables also related to air pollution. Future studies require site‐level atmospheric pollution monitoring to guide critical load policy for mycorrhizal fungi in heathlands and grasslands.
Collapse
Affiliation(s)
- J Kowal
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - E Arrigoni
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - S Jarvis
- UK Centre for Ecology & Hydrology, Lancaster, UK
| | - S Zappala
- Joint Nature Conservation Committee, Peterborough, UK
| | - E Forbes
- Joint Nature Conservation Committee, Peterborough, UK
| | - M I Bidartondo
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK.,Imperial College London, London, UK
| | - L M Suz
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| |
Collapse
|
13
|
Irving TB, Chakraborty S, Ivanov S, Schultze M, Mysore KS, Harrison MJ, Ané JM. KIN3 impacts arbuscular mycorrhizal symbiosis and promotes fungal colonisation in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:513-528. [PMID: 35080285 DOI: 10.1111/tpj.15685] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal fungi help their host plant in the acquisition of nutrients, and this association is itself impacted by soil nutrient levels. High phosphorus levels inhibit the symbiosis, whereas high nitrogen levels enhance it. The genetic mechanisms regulating the symbiosis in response to soil nutrients are poorly understood. Here, we characterised the symbiotic phenotypes in four Medicago truncatula Tnt1-insertion mutants affected in arbuscular mycorrhizal colonisation. We located their Tnt1 insertions and identified alleles for two genes known to be involved in mycorrhization, RAM1 and KIN3. We compared the effects of the kin3-2 and ram1-4 mutations on gene expression, revealing that the two genes alter the expression of overlapping but not identical gene sets, suggesting that RAM1 acts upstream of KIN3. Additionally, KIN3 appears to be involved in the suppression of plant defences in response to the fungal symbiont. KIN3 is located on the endoplasmic reticulum of arbuscule-containing cortical cells, and kin3-2 mutants plants hosted significantly fewer arbuscules than the wild type. KIN3 plays an essential role in the symbiotic response to soil nitrogen levels, as, contrary to wild-type plants, the kin3-2 mutant did not exhibit increased root colonisation under high nitrogen.
Collapse
Affiliation(s)
- Thomas B Irving
- Crop Science Centre, University of Cambridge, Cambridge, CB3 0LE, UK
| | - Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sergey Ivanov
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14850, USA
| | - Michael Schultze
- Department of Biology (Ret.), University of York, York, YO10 5DD, UK
| | | | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14850, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
14
|
de Vries J, Evers JB, Kuyper TW, van Ruijven J, Mommer L. Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. THE NEW PHYTOLOGIST 2021; 231:1171-1182. [PMID: 33930184 PMCID: PMC8361744 DOI: 10.1111/nph.17435] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/14/2021] [Indexed: 05/23/2023]
Abstract
Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in addition to the classical fast-slow 'conservation' axis. This collaboration axis spans from thin and highly branched roots that employ a 'do-it-yourself' strategy to thick and sparsely branched roots that 'outsource' nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional-structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.
Collapse
Affiliation(s)
- Jorad de Vries
- Centre for Crop System AnalysisWageningen UniversityPO Box 430Wageningen6700 AKthe Netherlands
- Institute for Integrative BiologyETH ZürichZürich8092Switzerland
| | - Jochem B. Evers
- Centre for Crop System AnalysisWageningen UniversityPO Box 430Wageningen6700 AKthe Netherlands
| | - Thomas W. Kuyper
- Soil Biology GroupWageningen UniversityPO Box 47Wageningen6700 AAthe Netherlands
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation GroupWageningen UniversityPO Box 47Wageningen6700 AAthe Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupWageningen UniversityPO Box 47Wageningen6700 AAthe Netherlands
| |
Collapse
|
15
|
Ingraffia R, Saia S, Giovino A, Amato G, Badagliacca G, Giambalvo D, Martinelli F, Ruisi P, Frenda AS. Addition of high C:N crop residues to a P-limited substrate constrains the benefits of arbuscular mycorrhizal symbiosis for wheat P and N nutrition. MYCORRHIZA 2021; 31:441-454. [PMID: 33893547 PMCID: PMC8266712 DOI: 10.1007/s00572-021-01031-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/07/2021] [Indexed: 05/18/2023]
Abstract
Many aspects concerning the role of arbuscular mycorrhizal (AM) fungi in plant nutrient uptake from organic sources remain unclear. Here, we investigated the contribution of AM symbiosis to N and P uptake by durum wheat after the addition of a high C:N biomass to a P-limited soil. Plants were grown in pots in the presence or absence of a multispecies AM inoculum, with (Org) or without (Ctr) the addition of 15N-labelled organic matter (OM). A further treatment, in which 15N was applied in mineral form (Ctr+N) in the same amount as that supplied in the Org treatment, was also included. Inoculation with AM had positive effects on plant growth in both control treatments (Ctr and Ctr+N), mainly linked to an increase in plant P uptake. The addition of OM, increasing the P available in the soil for the plants, resulted in a marked decrease in the contribution of AM symbiosis to plant growth and nutrient uptake, although the percentage of mycorrhization was higher in the Org treatment than in the controls. In addition, mycorrhization drastically reduced the recovery of 15N from the OM added to the soil whereas it slightly increased the N recovery from the mineral fertiliser. This suggests that plants and AM fungi probably exert a differential competition for different sources of N available in the soil. On the whole, our results provide a contribution to a better understanding of the conditions under which AM fungi can play an effective role in mitigating the negative effects of nutritional stresses in plants.
Collapse
Affiliation(s)
- Rosolino Ingraffia
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Sergio Saia
- Department of Veterinary Sciences, University of Pisa, Via delle Piagge 2, 56124, Pisa, Italy
| | - Antonio Giovino
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification (CREA-DC), SS 113 km 245.500, 90011, Bagheria (PA), Italy
| | - Gaetano Amato
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Giuseppe Badagliacca
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Feo di Vito, 89124, Reggio Calabria, Italy
| | - Dario Giambalvo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Federico Martinelli
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy
| | - Paolo Ruisi
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy.
| | - Alfonso S Frenda
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| |
Collapse
|
16
|
Arbuscular Mycorrhizal Fungi: Interactions with Plant and Their Role in Agricultural Sustainability. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Jerbi M, Labidi S, Lounès-Hadj Sahraoui A, Chaar H, Ben Jeddi F. Higher temperatures and lower annual rainfall do not restrict, directly or indirectly, the mycorrhizal colonization of barley (Hordeum vulgare L.) under rainfed conditions. PLoS One 2020; 15:e0241794. [PMID: 33152013 PMCID: PMC7644023 DOI: 10.1371/journal.pone.0241794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022] Open
Abstract
Whereas the role of arbuscular mycorrhizal fungi (AMF) in plant growth improvement has been well described in agroecosystems, little is known about the effect of environmental factors on AMF root colonization status of barley, the fourth most important cereal crop all over the world. In order to understand the influence of environmental factors, such as climatic and soil physico-chemical properties, on the spontaneous mycorrhizal ability of barley (Hordeum vulgare L.), a field investigation was conducted in 31 different sites in sub-humid, upper and middle semi-arid areas of Northern Tunisia. Mycorrhizal root colonization of H. vulgare varied considerably among sites. Principal component analysis showed that barley mycorrhization is influenced by both climatic and edaphic factors. A partial least square structural equation modelling (PLS-SEM) revealed that 39% (R²) of the total variation in AMF mycorrhizal rate of barley roots was mainly explained by chemical soil properties and climatic characteristics. Whereas barley root mycorrhizal rates were inversely correlated with soil organic nitrogen (ON), available phosphorus amounts (P), altitude (Z), average annual rainfall (AAR), they were directly correlated with soil pH and temperature. Our results indicated that AMF root colonization of barley was strongly related to climatic characteristics than chemical soil properties. The current study highlights the importance of the PLS-SEM to understand the interactions between climate, soil properties and AMF symbiosis of barley in field conditions.
Collapse
Affiliation(s)
- Maroua Jerbi
- Laboratoire des Sciences Horticoles LR13AGR01, Université de Carthage, Institut National Agronomique de Tunisie, Tunis, Mahrajène, Tunisia
| | - Sonia Labidi
- Laboratoire des Sciences Horticoles LR13AGR01, Université de Carthage, Institut National Agronomique de Tunisie, Tunis, Mahrajène, Tunisia
| | - Anissa Lounès-Hadj Sahraoui
- Université du Littoral Côte d′Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), SFR Condorcet FR CNRS 3417, Calais, France
| | - Hatem Chaar
- Laboratoire des Grandes Cultures LR16INRAT02, Université de Carthage, Institut National Agronomique de Tunisie, Tunis, Mahrajène, Tunisia
| | - Faysal Ben Jeddi
- Laboratoire des Sciences Horticoles LR13AGR01, Université de Carthage, Institut National Agronomique de Tunisie, Tunis, Mahrajène, Tunisia
| |
Collapse
|
18
|
Kullu B, Patra DK, Acharya S, Pradhan C, Patra HK. AM fungi mediated bioaccumulation of hexavalent chromium in Brachiaria mutica-a mycorrhizal phytoremediation approach. CHEMOSPHERE 2020; 258:127337. [PMID: 32947656 DOI: 10.1016/j.chemosphere.2020.127337] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 05/04/2023]
Abstract
The experiment was designed to evaluate the roles of Rhizophagus irregularis on chlorophyll fluorescence and chromium bioaccumulation in a grass species (Brachiaria mutica) by supplementing Cr+6 at different concentrations. Arbuscular Mycorrhizal Fungi (AMF) association facilitated lessening of chromium level in contaminated soil and enhanced chromium bioavailability in Brachiaria mutica. The mycorrhizal inoculated increased the chlorophyll (0.925 mg/g), carotenoid (0.127 mg/g), protein (2.883 mg/g), proline (0.889 mg/g) contents and activities of antioxidant enzymes like catalase, ascorbate peroxidase and glutathione peroxidase. The mycorrhizal inoculated plants also showed enhanced overall photosynthetic performance (PIϕ = 2.473) and enhanced PS-II to PS-I electron transport as evident from yield parameter (0.712) and TR0/RC (2.419) for 60 mg/kg Cr+6 treatment. The observations suggest that AMF association could defend the plants from chromium stress by elevating the number of antioxidants in plants. Rhizophagus irregularis was found to maintain a successful symbiotic relationship with Brachiaria mutica in chromium contaminated soil. The observations recommended that Rhizophagus irregularis in association with Brachiaria mutica would be an innovative approach for decontamination of Cr+6.
Collapse
Affiliation(s)
- Bandana Kullu
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Deepak Kumar Patra
- Department of Botany, Nimapara Autonomous College, Nimapara, Puri, 752106, Odisha, India
| | - Srinivas Acharya
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Chinmay Pradhan
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| | - Hemanta Kumar Patra
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| |
Collapse
|
19
|
Ingraffia R, Amato G, Sosa-Hernández MA, Frenda AS, Rillig MC, Giambalvo D. Nitrogen Type and Availability Drive Mycorrhizal Effects on Wheat Performance, Nitrogen Uptake and Recovery, and Production Sustainability. FRONTIERS IN PLANT SCIENCE 2020; 11:760. [PMID: 32636854 PMCID: PMC7318877 DOI: 10.3389/fpls.2020.00760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/13/2020] [Indexed: 05/23/2023]
Abstract
Plant performance is strongly dependent on nitrogen (N), and thus increasing N nutrition is of great relevance for the productivity of agroecosystems. The effects of arbuscular mycorrhizal (AM) fungi on plant N acquisition are debated because contradictory results have been reported. Using 15N-labeled fertilizers as a tracer, we evaluated the effects of AM fungi on N uptake and recovery from mineral or organic sources in durum wheat. Under sufficient N availability, AM fungi had no effects on plant biomass but increased N concentrations in plant tissue, plant N uptake, and total N recovered from the fertilizer. In N-deficient soil, AM fungi led to decreased aboveground biomass, which suggests that plants and AM fungi may have competed for N. When the organic source had a low C:N ratio, AM fungi favored both plant N uptake and N recovery. In contrast, when the organic source had a high C:N ratio, a clear reduction in N recovery from the fertilizer was observed. Overall, the results indicate an active role of arbuscular mycorrhizae in favoring plant N-related traits when N is not a limiting factor and show that these fungi help in N recovery from the fertilizer. These results hold great potential for increasing the sustainability of durum wheat production.
Collapse
Affiliation(s)
- Rosolino Ingraffia
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Gaetano Amato
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Moisés A Sosa-Hernández
- Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Alfonso S Frenda
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Matthias C Rillig
- Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Dario Giambalvo
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
20
|
|
21
|
Ruytinx J, Kafle A, Usman M, Coninx L, Zimmermann SD, Garcia K. Micronutrient transport in mycorrhizal symbiosis; zinc steals the show. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:1068. [PMID: 31608075 PMCID: PMC6761482 DOI: 10.3389/fpls.2019.01068] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Abiotic stresses hamper plant growth and productivity. Climate change and agricultural malpractices like excessive use of fertilizers and pesticides have aggravated the effects of abiotic stresses on crop productivity and degraded the ecosystem. There is an urgent need for environment-friendly management techniques such as the use of arbuscular mycorrhizal fungi (AMF) for enhancing crop productivity. AMF are commonly known as bio-fertilizers. Moreover, it is widely believed that the inoculation of AMF provides tolerance to host plants against various stressful situations like heat, salinity, drought, metals, and extreme temperatures. AMF may both assist host plants in the up-regulation of tolerance mechanisms and prevent the down-regulation of key metabolic pathways. AMF, being natural root symbionts, provide essential plant inorganic nutrients to host plants, thereby improving growth and yield under unstressed and stressed regimes. The role of AMF as a bio-fertilizer can potentially strengthen plants' adaptability to changing environment. Thus, further research focusing on the AMF-mediated promotion of crop quality and productivity is needed. The present review provides a comprehensive up-to-date knowledge on AMF and their influence on host plants at various growth stages, their advantages and applications, and consequently the importance of the relationships of different plant nutrients with AMF.
Collapse
Affiliation(s)
- Naheeda Begum
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Cheng Qin
- College of Life Sciences, Northwest A&F University, Yangling, China
| | | | - Sajjad Raza
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | | | | | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohi-Ud-Din Islamic University Azad Jammu and Kashmir, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
23
|
Munzi S, Cruz C, Corrêa A. When the exception becomes the rule: An integrative approach to symbiosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:855-861. [PMID: 30978547 DOI: 10.1016/j.scitotenv.2019.04.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Symbiosis, mainly due to the advances in -omics technology and to the microbiome revolution, is being increasingly acknowledged as fundamental to explain any aspect of life existence. Previously considered an exception, a peculiar characteristic of few systems like lichens, corals and mycorrhizas, symbiosis is nowadays recognized as the rule, with the microbiome being part of all living entities and systems. However, our knowledge of the ecological meaning and functioning of many symbiotic systems is still limited. Here, we discuss a new, integrative approach based on current findings that looks at commonalities among symbiotic systems to produce theoretical models and conceptual knowledge that would allow a more efficient exploitation of symbiosis-based biotechnologies. The microbiome recruitment and assemblage processes are indicated as one of the potential targets where a holistic approach could bring advantages. Finally, we reflect on the potential socio-economic and environmental consequences of a symbiotic view of the world, where co-dependence is the matrix of life.
Collapse
Affiliation(s)
- Silvana Munzi
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Ana Corrêa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
24
|
Field KJ, Pressel S. Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. THE NEW PHYTOLOGIST 2018; 220:996-1011. [PMID: 29696662 DOI: 10.1111/nph.15158] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/06/2018] [Indexed: 05/16/2023]
Abstract
Contents Summary 996 I. Introduction 996 II. An ancient, and diverse, symbiosis 998 III. Structural diversity in ancient plant-fungal partnerships 1000 IV. Mycorrhizal unity in host plant nutrition 1002 V. Plant-to-fungus carbon transfer 1003 VI. From individuals to networks 1003 VII. Diverse responses of mycorrhizal functioning to dynamic environments 1006 VIII. Summary of future research direction 1007 Acknowledgements 1006 References 1006 SUMMARY: Mycorrhizal symbiosis is an ancient and widespread mutualism between plants and fungi that facilitated plant terrestrialisation > 500 million years ago, with key roles in ecosystem functioning at multiple scales. Central to the symbiosis is the bidirectional exchange of plant-fixed carbon for fungal-acquired nutrients. Within this unifying role of mycorrhizas, considerable diversity in structure and function reflects the diversity of the partners involved. Early diverging plants form mutualisms not only with arbuscular mycorrhizal Glomeromycotina fungi, but also with poorly characterised Mucoromycotina, which may also colonise the roots of 'higher' plants as fine root endophytes. Functional diversity in these symbioses depends on both fungal and plant life histories and is influenced by the environment. Recent studies have highlighted the roles of lipids/fatty acids in plant-to-fungus carbon transport and potential contributions of Glomeromycotina fungi to plant nitrogen nutrition. Together with emerging appreciation of mycorrhizal networks as multi-species resource-sharing systems, these insights are broadening our views on mycorrhizas and their roles in nutrient cycling. It is crucial that the diverse array of biotic and abiotic factors that together shape the dynamics of carbon-for-nutrient exchange between plants and fungi are integrated, in addition to embracing the unfolding and potentially key role of Mucoromycotina fungi in these processes.
Collapse
Affiliation(s)
- Katie J Field
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
25
|
Contribution of different arbuscular mycorrhizal fungal inoculum to Elymus nutans under nitrogen addition. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1375-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Wang C, Reid JB, Foo E. The Art of Self-Control - Autoregulation of Plant-Microbe Symbioses. FRONTIERS IN PLANT SCIENCE 2018; 9:988. [PMID: 30042780 PMCID: PMC6048281 DOI: 10.3389/fpls.2018.00988] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/19/2018] [Indexed: 05/07/2023]
Abstract
Plants interact with diverse microbes including those that result in nutrient-acquiring symbioses. In order to balance the energy cost with the benefit gained, plants employ a systemic negative feedback loop to control the formation of these symbioses. This is particularly well-understood in nodulation, the symbiosis between legumes and nitrogen-fixing rhizobia, and is known as autoregulation of nodulation (AON). However, much less is understood about the autoregulation of the ancient arbuscular mycorrhizal symbioses that form between Glomeromycota fungi and the majority of land plants. Elegant physiological studies in legumes have indicated there is at least some overlap in the genes and signals that regulate these two symbioses but there are major gaps in our understanding. In this paper we examine the hypothesis that the autoregulation of mycorrhizae (AOM) pathway shares some elements with AON but that there are also some important differences. By reviewing the current knowledge of the AON pathway, we have identified important directions for future AOM studies. We also provide the first genetic evidence that CLV2 (an important element of the AON pathway) influences mycorrhizal development in a non-legume, tomato and review the interaction of the autoregulation pathway with plant hormones and nutrient status. Finally, we discuss whether autoregulation may play a role in the relationships plants form with other microbes.
Collapse
Affiliation(s)
| | | | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
27
|
Effects of Arbuscular Mycorrhizal Fungi on the Vegetative Vigor of Ailanthus altissima (Mill.) Swingle Seedlings under Sustained Pot Limitation. FORESTS 2018. [DOI: 10.3390/f9070409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Chen A, Gu M, Wang S, Chen J, Xu G. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis. Semin Cell Dev Biol 2018. [DOI: 10.1016/j.semcdb.2017.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Drechsler N, Courty PE, Brulé D, Kunze R. Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice. MYCORRHIZA 2018; 28:93-100. [PMID: 28993893 DOI: 10.1007/s00572-017-0802-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/04/2017] [Indexed: 05/17/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) colonize up to 90% of all land plants and facilitate the acquisition of mineral nutrients by their hosts. Inorganic orthophosphate (Pi) and nitrogen (N) are the major nutrients transferred from the fungi to plants. While plant Pi transporters involved in nutrient transfer at the plant-fungal interface have been well studied, the plant N transporters participating in this process are largely unknown except for some ammonium transporters (AMT) specifically assigned to arbuscule-colonized cortical cells. In plants, many nitrate transporter 1/peptide transporter family (NPF) members are involved in the translocation of nitrogenous compounds including nitrate, amino acids, peptides and plant hormones. Whether NPF members respond to AMF colonization, however, is not yet known. Here, we investigated the transcriptional regulation of 82 rice (Oryza sativa) NPF genes in response to colonization by the AMF Rhizophagus irregularis in roots of plants grown under five different nutrition regimes. Expression of the four OsNPF genes NPF2.2/PTR2, NPF1.3, NPF6.4 and NPF4.12 was strongly induced in mycorrhizal roots and depended on the composition of the fertilizer solution, nominating them as interesting candidates for nutrient signaling and exchange processes at the plant-fungal interface.
Collapse
Affiliation(s)
- Navina Drechsler
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Daphnée Brulé
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Reinhard Kunze
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
30
|
Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:48-56. [PMID: 28969802 DOI: 10.1016/j.plantsci.2017.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 05/21/2023]
Abstract
Nitrogen cycling in agroecosystems is heavily dependent upon arbuscular mycorrhizal fungi (AMF) present in the soil microbiome. These fungi develop obligate symbioses with various host plant species, thus increasing their ability to acquire nutrients. However, AMF are particularly sensitive to physical, chemical and biological disturbances caused by human actions that limit their establishment. For a more sustainable agriculture, it will be necessary to further investigate which agricultural practices could be favorable to maximize the benefits of AMF to improve crop nitrogen use efficiency (NUE), thus reducing nitrogen (N) fertilizer usage. Direct seeding, mulch-based cropping systems prevent soil mycelium disruption and increase AMF propagule abundance. Such cropping systems lead to more efficient root colonization by AMF and thus a better establishment of the plant/fungal symbiosis. In addition, the use of continuous cover cropping systems can also enhance the formation of more efficient interconnected hyphal networks between mycorrhizae colonized plants. Taking into account both fundamental and agronomic aspects of mineral nutrition by plant/AMF symbioses, we have critically described, how improving fungal colonization through the reduction of soil perturbation and maintenance of an ecological balance could be helpful for increasing crop NUE.
Collapse
Affiliation(s)
- Julien Verzeaux
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| | - Bertrand Hirel
- Intitut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, RD10, F-78026 Versailles Cedex, France.
| | - Frédéric Dubois
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Thierry Tétu
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| |
Collapse
|
31
|
Rydlová J, Püschel D, Dostálová M, Janoušková M, Frouz J. Nutrient limitation drives response of Calamagrostis epigejos to arbuscular mycorrhiza in primary succession. MYCORRHIZA 2016; 26:757-767. [PMID: 27260187 DOI: 10.1007/s00572-016-0712-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/27/2016] [Indexed: 06/05/2023]
Abstract
Little is known about the functioning of arbuscular mycorrhizal (AM) symbiosis over the course of primary succession, where soil, host plants, and AM fungal communities all undergo significant changes. Over the course of succession at the studied post-mining site, plant cover changes from an herbaceous community to the closed canopy of a deciduous forest. Calamagrostis epigejos (Poaceae) is a common denominator at all stages, and it dominates among AM host species. Its growth response to AM fungi was studied at four distinctive stages of natural succession: 12, 20, 30, and 50 years of age, each represented by three spatially separated sites. Soils obtained from all 12 studied sites were γ-sterilized and used in a greenhouse experiment in which C. epigejos plants were (1) inoculated with a respective community of native AM fungi, (2) inoculated with reference AM fungal isolates from laboratory collection, or (3) cultivated without AM fungi. AM fungi strongly boosted plant growth during the first two stages but not during the latter two, where the effect was neutral or even negative. While plant phosphorus (P) uptake was generally increased by AM fungi, no contribution of mycorrhizae to nitrogen (N) uptake was recorded. Based on N:P in plant biomass, we related the turn from a positive to a neutral/negative effect of AM fungi on plant growth, observed along the chronosequence, to a shift in relative P and N availability. No functional differences were found between native and reference inocula, yet root colonization by the native AM fungi decreased relative to the reference inoculum in the later succession stages, thereby indicating shifts in the composition of AM fungal communities reflected in different functional characteristics of their members.
Collapse
Affiliation(s)
- Jana Rydlová
- Institute of Botany of the Czech Academy of Sciences, 252 43, Průhonice, Czech Republic.
| | - David Püschel
- Institute of Botany of the Czech Academy of Sciences, 252 43, Průhonice, Czech Republic
| | - Magdalena Dostálová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, 128 00, Praha 2, Czech Republic
| | - Martina Janoušková
- Institute of Botany of the Czech Academy of Sciences, 252 43, Průhonice, Czech Republic
| | - Jan Frouz
- Institute for Environmental Studies, Faculty of Sciences, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| |
Collapse
|
32
|
|
33
|
Macronutrient Exchange Between the Asian Weaver Ant Oecophylla smaragdina and Their Host Plant. Ecosystems 2016. [DOI: 10.1007/s10021-016-0013-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Courty PE, Wipf D. Editorial: Transport in Plant Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:809. [PMID: 27375662 PMCID: PMC4896956 DOI: 10.3389/fpls.2016.00809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Affiliation(s)
| | - Daniel Wipf
- UMR 1347 Agroécologie, BP 86510, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University of Bourgogne Franche-ComtéDijon, France
| |
Collapse
|
35
|
Role of Arbuscular Mycorrhizal Fungi in the Nitrogen Uptake of Plants: Current Knowledge and Research Gaps. AGRONOMY-BASEL 2015. [DOI: 10.3390/agronomy5040587] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Walder F, van der Heijden MGA. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. NATURE PLANTS 2015; 1:15159. [PMID: 27251530 DOI: 10.1038/nplants.2015.159] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/25/2015] [Indexed: 05/10/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are one of the most important groups of plant symbionts. These fungi provide mineral nutrients to plants in exchange for carbon. Although substantial amounts of resources are exchanged, the factors that regulate trade in the AM symbiosis are poorly understood. Recent evidence for the reciprocally regulated exchange of resources by AM fungi and plants has led to the suggestion that these symbioses operate according to biological market dynamics, in which interactions are viewed from an economic perspective, and the most beneficial partners are favoured. Here we present five arguments that challenge the importance of reciprocally regulated exchange, and thereby market dynamics, for resource exchange in the AM symbiosis, and suggest that such reciprocity is only found in a subset of symbionts, under specific conditions. We instead propose that resource exchange in the AM symbiosis is determined by competition for surplus resources, functional diversity and sink strength.
Collapse
Affiliation(s)
- Florian Walder
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, 8046 Zürich, Switzerland
| | - Marcel G A van der Heijden
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, 8046 Zürich, Switzerland
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland
- Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|