1
|
Sevanto S, Gehring CA, Ryan MG, Patterson A, Losko AS, Vogel SC, Carter KR, Dickman LT, Espy MA, Kuske CR. Benefits of symbiotic ectomycorrhizal fungi to plant water relations depend on plant genotype in pinyon pine. Sci Rep 2023; 13:14424. [PMID: 37660169 PMCID: PMC10475095 DOI: 10.1038/s41598-023-41191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
Rhizosphere microbes, such as root-associated fungi, can improve plant access to soil resources, affecting plant health, productivity, and stress tolerance. While mycorrhizal associations are ubiquitous, plant-microbe interactions can be species specific. Here we show that the specificity of the effects of microbial symbionts on plant function can go beyond species level: colonization of roots by ectomycorrhizal fungi (EMF) of the genus Geopora has opposite effects on water uptake, and stomatal control of desiccation in drought tolerant and intolerant genotypes of pinyon pine (Pinus edulis Engelm.). These results demonstrate, for the first time, that microorganisms can have significant and opposite effects on important plant functional traits like stomatal control of desiccation that are associated with differential mortality and growth in nature. They also highlight that appropriate pairing of plant genotypes and microbial associates will be important for mitigating climate change impacts on vegetation.
Collapse
Affiliation(s)
- Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA.
| | - Catherine A Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Max G Ryan
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
- Integral Ecology Group, Duncan, BC, V9L 6H1, Canada
| | - Adair Patterson
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Adrian S Losko
- Material Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Forschungs-Neutronenquelle Heinz Maier-Leibnitz, 85748, Garching, Germany
| | - Sven C Vogel
- Material Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Kelsey R Carter
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
| | - L Turin Dickman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
| | - Michelle A Espy
- Engineering Technology and Design Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Cheryl R Kuske
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
2
|
Cortese AM, Horton TR. Islands in the shade: scattered ectomycorrhizal trees influence soil inoculum and heterospecific seedling response in a northeastern secondary forest. MYCORRHIZA 2023; 33:33-44. [PMID: 36752845 PMCID: PMC9907180 DOI: 10.1007/s00572-023-01104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The eastern deciduous forest is a mix of arbuscular (AM) and ectomycorrhizal (EM) trees, but land use legacies have increased the abundance of AM trees like Acer spp. (maple). Although these legacies have not changed the abundance of some EM trees like Betula spp. (birch), EM conifers like Tsuga canadensis (hemlock), and Pinus strobus (pine) have declined. We used a soil bioassay to investigate if the microbial community near EM birch (birch soil) contains a greater abundance and diversity of EM fungal propagules compatible with T. canadensis and P. strobus compared to the community associated with the surrounding AM-dominated secondary forest matrix (maple soil). We also tested the effectiveness of inoculation with soil from a nearby EM-dominated old-growth forest as a restoration tool to reintroduce EM fungi into secondary forest soils. Finally, we examined how seedling growth responded to EM fungi associated with each treatment. Seedlings grown with birch soil were colonized by EM fungi mostly absent from the surrounding maple forest. Hemlock seedlings grown with birch soil grew larger than hemlock seedlings grown with maple soil, but pine seedling growth did not differ with soil treatment. The addition of old-growth soil inoculum increased hemlock and pine growth in both soils. Our results found that EM trees are associated with beneficial EM fungi that are mostly absent from the surrounding AM-dominated secondary forest, but inoculation with old-growth soil is effective in promoting the growth of seedlings by reintroducing native EM fungi to the AM-dominated forests.
Collapse
Affiliation(s)
- Andrew M Cortese
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA.
| | - Thomas R Horton
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| |
Collapse
|
3
|
Dietrich P, Ferlian O, Huang Y, Luo S, Quosh J, Eisenhauer N. Tree diversity effects on productivity depend on mycorrhizae and life strategies in a temperate forest experiment. Ecology 2023; 104:e3896. [PMID: 36215064 DOI: 10.1002/ecy.3896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 02/03/2023]
Abstract
Tree species are known to predominantly interact either with arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. However, there is a knowledge gap regarding whether these mycorrhizae differently influence biodiversity-ecosystem functioning (BEF) relationships and whether a combination of both can increase community productivity. In 2015, we established a tree-diversity experiment by growing tree communities with varying species richness levels (one, two, or four species) and either with AM or EM tree species or a combination of both. We investigated basal area and annual basal area increment from 2015 to 2020 as proxies for community productivity. We found significant positive relationships between tree species richness and community productivity, which strengthened over time. Further, AM and EM tree species differently influenced productivity; however, there was no overyielding when AM and EM trees grew together. EM tree communities were characterized by low productivity in the beginning but an increase of increment over time and showed overall strong biodiversity effects. For AM tree communities the opposite was true. Although young trees did not benefit from the presence of the other mycorrhizal type, dissimilar mechanisms underlying BEF relationships in AM and EM trees indicate that maximizing tree and mycorrhizal diversity may increase ecosystem functioning in the long run.
Collapse
Affiliation(s)
- Peter Dietrich
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Olga Ferlian
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Yuanyuan Huang
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Shan Luo
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Julius Quosh
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| |
Collapse
|
4
|
Yang Q, Yue K, Wu F, Heděnec P, Ni X, Wang D, Yuan J, Yu J, Peng Y. Global patterns and drivers of initial plant litter ash concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154702. [PMID: 35339550 DOI: 10.1016/j.scitotenv.2022.154702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Ash is a fundamental component of plant litter and plays a vital role in regulating litter decomposition. However, to date, global patterns and underlying mechanisms of initial litter ash concentrations remain unclear. Here, we used 570 observations collected from 104 independent publications to assess the global patterns of initial plant litter ash concentrations and evaluated the effects of mycorrhizal association [arbuscular mycorrhiza (AM) vs. ectomycorrhiza (ECM)], taxon group (gymnosperm vs. angiosperm), life form (tree vs. shrub vs. herb), leaf type (broadleaf vs. needle), and environmental factors such as climate and soil properties on initial litter ash concentration. The results showed that (1) global average ash concentrations varied significantly among different plant tissues and were 7.3, 4.5, 3.7, 3.5, 3.1, 2.4, and 1.5% in leaf, root, bark, reproductive tissue (flower and fruit), branch, stem, and wood litter, respectively; (2) in leaf litter, the initial ash concentrations of AM plants and species associated with both AM and ECM fungi were higher than those of ECM plants, and those of the tree species were lower than those of the herbs and shrubs; in root litter, the initial ash concentrations of the AM plants were lower than those of the species associated with both AM and ECM fungi but higher than those of the ECM plants; in both leaf and root litter, the initial ash concentrations of the angiosperms and broadleaf trees were higher than those of the gymnosperms and needle trees, respectively, while the effect of plant traits on branch litter was not obvious; and (3) the initial ash concentration of leaf litter was predominantly driven by mycorrhizal association and taxon group, while that of root litter tended to be driven by mycorrhizal association well as soil organic carbon. Our study clearly assessed the global patterns and underlying mechanisms of initial plant litter ash concentrations, which could help in better understanding the role of ash in litter decomposition and the related processes of carbon and nutrient cycling.
Collapse
Affiliation(s)
- Qiao Yang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Petr Heděnec
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Xiangyin Ni
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Dingyi Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Ji Yuan
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Jimei Yu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yan Peng
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
5
|
Liu D, Zheng K, Wang Y, Zhang Y, Lao R, Qin Z, Li T, Zhao Z. Harnessing an arbuscular mycorrhizal fungus to improve the adaptability of a facultative metallophytic poplar (Populus yunnanensis) to cadmium stress: Physiological and molecular responses. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127430. [PMID: 34678563 DOI: 10.1016/j.jhazmat.2021.127430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/24/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Populus yunnanensis Dode, a facultative metallophytic poplar, exhibits afforestation potential in barren mine tailing areas. However, the interactions and functional roles of arbuscular mycorrhizal fungus (AMF) in P. yunnanensis adaptability to heavy metal stress remain unclear. Physiological and molecular responses of P. yunnanensis plantlets to AMF (Funneliformis mosseae) under cadmium (Cd) stress (50 mg kg-1) were investigated. Results showed attenuation of Cd phytotoxicity effects on cell organelles upon AMF inoculation, which also reduced the Cd concentration in the poplar leaves, stems, and roots. Under Cd stress, AMF-blocking of metal transporter (e.g., Ca2+ channel) activity occurred, decreasing root cell Cd influx by reducing H+ efflux. Bioaugmentation of rhizosphere sediments by AMF to stabilize metals with a decreasing DTPA-extractable Cd also occurred. The AMF inoculation promoted Cd conversion into inactive, less phytotoxic forms, and helped to maintain ion homeostasis and relieve nutritional ion (e.g., Ca, Mg) disorders caused by excessive Cd. Leaf enzyme and non-enzyme antioxidant systems were triggered. Root and leaf physiological response patterns differed. The AMF regulated the poplar functional genes, and nine metal-responsive gene clusters were identified. We suggest that AMF is a functional component of P. yunnanensis phenotype extension, contributing to strong adaptability to unfavorable mine tailings conditions.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Kuanyu Zheng
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, PR China
| | - Yue Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Yan Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Ruimin Lao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Zhiyang Qin
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China.
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
6
|
Prada CM, Turner BL, Dalling JW. Growth responses of ectomycorrhizal and arbuscular mycorrhizal seedlings to low soil nitrogen availability in a tropical montane forest. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Cecilia M. Prada
- Department of Plant Biology University of Illinois Urbana Illinois USA
| | - Benjamin L. Turner
- Soil and Water Science Department University of Florida Gainesville Florida USA
| | - James W. Dalling
- Department of Plant Biology University of Illinois Urbana Illinois USA
- Smithsonian Tropical Research Institute Balboa Republic of Panama
| |
Collapse
|
7
|
Andrino A, Guggenberger G, Kernchen S, Mikutta R, Sauheitl L, Boy J. Production of Organic Acids by Arbuscular Mycorrhizal Fungi and Their Contribution in the Mobilization of Phosphorus Bound to Iron Oxides. FRONTIERS IN PLANT SCIENCE 2021; 12:661842. [PMID: 34335645 PMCID: PMC8320662 DOI: 10.3389/fpls.2021.661842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 05/22/2023]
Abstract
Most plants living in tropical acid soils depend on the arbuscular mycorrhizal (AM) symbiosis for mobilizing low-accessible phosphorus (P), due to its strong bonding by iron (Fe) oxides. The roots release low-molecular-weight organic acids (LMWOAs) as a mechanism to increase soil P availability by ligand exchange or dissolution. However, little is known on the LMWOA production by AM fungi (AMF), since most studies conducted on AM plants do not discriminate on the LMWOA origin. This study aimed to determine whether AMF release significant amounts of LMWOAs to liberate P bound to Fe oxides, which is otherwise unavailable for the plant. Solanum lycopersicum L. plants mycorrhized with Rhizophagus irregularis were placed in a bicompartmental mesocosm, with P sources only accessible by AMF. Fingerprinting of LMWOAs in compartments containing free and goethite-bound orthophosphate (OP or GOE-OP) and phytic acid (PA or GOE-PA) was done. To assess P mobilization via AM symbiosis, P content, photosynthesis, and the degree of mycorrhization were determined in the plant; whereas, AM hyphae abundance was determined using lipid biomarkers. The results showing a higher shoot P content, along with a lower N:P ratio and a higher photosynthetic capacity, may be indicative of a higher photosynthetic P-use efficiency, when AM plants mobilized P from less-accessible sources. The presence of mono-, di-, and tricarboxylic LMWOAs in compartments containing OP or GOE-OP and phytic acid (PA or GOE-PA) points toward the occurrence of reductive dissolution and ligand exchange/dissolution reactions. Furthermore, hyphae grown in goethite loaded with OP and PA exhibited an increased content of unsaturated lipids, pointing to an increased membrane fluidity in order to maintain optimal hyphal functionality and facilitate the incorporation of P. Our results underpin the centrality of AM symbiosis in soil biogeochemical processes, by highlighting the ability of the AMF and accompanying microbiota in releasing significant amounts of LMWOAs to mobilize P bound to Fe oxides.
Collapse
Affiliation(s)
- Alberto Andrino
- Institute of Soil Science, Leibniz Universität Hannover, Hanover, Germany
| | - Georg Guggenberger
- Institute of Soil Science, Leibniz Universität Hannover, Hanover, Germany
| | - Sarmite Kernchen
- Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Robert Mikutta
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Leopold Sauheitl
- Institute of Soil Science, Leibniz Universität Hannover, Hanover, Germany
| | - Jens Boy
- Institute of Soil Science, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
8
|
Rubin JA, Görres JH. Potential for Mycorrhizae-Assisted Phytoremediation of Phosphorus for Improved Water Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E7. [PMID: 33374981 PMCID: PMC7792571 DOI: 10.3390/ijerph18010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022]
Abstract
During this 6th Great Extinction, freshwater quality is imperiled by upland terrestrial practices. Phosphorus, a macronutrient critical for life, can be a concerning contaminant when excessively present in waterways due to its stimulation of algal and cyanobacterial blooms, with consequences for ecosystem functioning, water use, and human and animal health. Landscape patterns from residential, industrial and agricultural practices release phosphorus at alarming rates and concentrations threaten watershed communities. In an effort to reconcile the anthropogenic effects of phosphorus pollution, several strategies are available to land managers. These include source reduction, contamination event prevention and interception. A total of 80% of terrestrial plants host mycorrhizae which facilitate increased phosphorus uptake and thus removal from soil and water. This symbiotic relationship between fungi and plants facilitates a several-fold increase in phosphorus uptake. It is surprising how little this relationship has been encouraged to mitigate phosphorus for water quality improvement. This paper explores how facilitating this symbiosis in different landscape and land-use contexts can help reduce the application of fertility amendments, prevent non-point source leaching and erosion, and intercept remineralized phosphorus before it enters surface water ecosystems. This literature survey offers promising insights into how mycorrhizae can aid ecological restoration to reconcile humans' damage to Earth's freshwater. We also identify areas where research is needed.
Collapse
Affiliation(s)
- Jessica A. Rubin
- Plant and Soil Science, University of Vermont, Burlington, VT 05405, USA;
| | | |
Collapse
|
9
|
Teste FP, Jones MD, Dickie IA. Dual-mycorrhizal plants: their ecology and relevance. THE NEW PHYTOLOGIST 2020; 225:1835-1851. [PMID: 31514244 DOI: 10.1111/nph.16190] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Dual-mycorrhizal plants are capable of associating with fungi that form characteristic arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) structures. Here, we address the following questions: (1) How many dual-mycorrhizal plant species are there? (2) What are the advantages for a plant to host two, rather than one, mycorrhizal types? (3) Which factors can provoke shifts in mycorrhizal dominance (i.e. mycorrhizal switching)? We identify a large number (89 genera within 32 families) of confirmed dual-mycorrhizal plants based on observing arbuscules or coils for AM status and Hartig net or similar structures for EM status within the same plant species. We then review the possible nutritional benefits and discuss the possible mechanisms leading to net costs and benefits. Cost and benefits of dual-mycorrhizal status appear to be context dependent, particularly with respect to the life stage of the host plant. Mycorrhizal switching occurs under a wide range of abiotic and biotic factors, including soil moisture and nutrient status. The relevance of dual-mycorrhizal plants in the ecological restoration of adverse sites where plants are not carbon limited is discussed. We conclude that dual-mycorrhizal plants are underutilized in ecophysiological-based experiments, yet are powerful model plant-fungal systems to better understand mycorrhizal symbioses without confounding host effects.
Collapse
Affiliation(s)
- François P Teste
- Grupo de Estudios Ambientales, IMASL-CONICET & Universidad Nacional de San Luis, Av. Ejercito de los Andes 950 (5700), San Luis, Argentina
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA, 6009, Australia
| | - Melanie D Jones
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Ian A Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
10
|
Soil Microbial Biomass and Community Composition Relates to Poplar Genotypes and Environmental Conditions. FORESTS 2020. [DOI: 10.3390/f11030262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Poplars, known for their diversity, are trees that can develop symbiotic relationships with several groups of microorganisms. The genetic diversity of poplars and different abiotic factors influence the properties of the soil and may shape microbial communities. Our study aimed to analyse the impact of poplar genotype on the biomass and community composition of the microbiome of four poplar genotypes grown under different soil conditions and soil depths. Of the three study sites, established in the mid-1990s, one was near a copper smelter, whereas the two others were situated in unpolluted regions, but were differentiated according to the physicochemical traits of the soil. The whole-cell fatty acid analysis was used to determine the biomass and proportions of gram-positive, gram-negative and actinobacteria, arbuscular fungi (AMF), other soil fungi, and protozoa in the whole microbial community in the soil. The results showed that the biomass of microorganisms and their contributions to the community of organisms in the soil close to poplar roots were determined by both factors: the tree-host genotype and the soil environment. However, each group of microorganisms was influenced by these factors to a different degree. In general, the site effect played the main role in shaping the microbial biomass (excluding actinobacteria), whereas tree genotype determined the proportions of the fungal and bacterial groups in the microbial communities and the proportion of AMF in the fungal community. Bacterial biomass was influenced more by site factors, whereas fungal biomass more by tree genotype. With increasing soil depth, a decrease in the biomass of all microorganisms was observed; however, the proportions of the different microorganisms within the soil profile were the result of interactions between the host genotype and soil conditions. Despite the predominant impact of soil conditions, our results showed the important role of poplar genotype in shaping microorganism communities in the soil.
Collapse
|
11
|
Calderón‐Sanou I, Ríos LD, Cascante‐Marín A, Barrantes G, Fuchs EJ. The effect of conspecific density, herbivory, and bamboo on seedling dynamics of a dominant oak in a Neotropical highland forest. Biotropica 2019. [DOI: 10.1111/btp.12714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Luis Diego Ríos
- Escuela de Biología Universidad de Costa Rica San José Costa Rica
| | | | | | - Eric J. Fuchs
- Escuela de Biología Universidad de Costa Rica San José Costa Rica
| |
Collapse
|
12
|
Song J, Chen L, Chen F, Ye J. Edaphic and host plant factors are linked to the composition of arbuscular mycorrhizal fungal communities in the root zone of endangered Ulmus chenmoui Cheng in China. Ecol Evol 2019; 9:8900-8910. [PMID: 31410288 PMCID: PMC6686299 DOI: 10.1002/ece3.5446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Despite the importance of arbuscular mycorrhizal fungi (AMF) within deciduous forest ecosystems, we know little about how natural AMF communities are structured in the root zone of the endangered elm species Ulmus chenmoui. In this study, three U. chenmoui sampling sites, differing with respect to plant health, age, and growth status, were selected in Anhui Province, China. AMF biodiversity in the root zones of individual U. chenmoui trees was investigated using high-throughput sequencing. In total, 61 AMF operational taxonomic units were detected. Five genera, namely Glomus (62.82%), Paraglomus (17.82%), Rhizophagus (4.29%), Septoglomus (4.06%) and Funneliformis (2.35%), and 29 species of AMF were identified. Correlation analysis indicated that available soil phosphorus and potassium concentrations were the main edaphic factors influencing AMF community structure. There was a difference in AMF species richness among the three U. chenmoui stands. Our study showed that soil nutrient concentrations and plant health, age, and growth status can exert a selective effect on the composition of the AMF population in the soil in the root zones of U. chenmoui trees.
Collapse
Affiliation(s)
- Juan Song
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Institute of Forest Protection, College of ForestryNanjing Forestry UniversityNanjingChina
| | - Long Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Institute of Forest Protection, College of ForestryNanjing Forestry UniversityNanjingChina
| | - Fengmao Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Institute of Forest Protection, College of ForestryNanjing Forestry UniversityNanjingChina
| | - Jianren Ye
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Institute of Forest Protection, College of ForestryNanjing Forestry UniversityNanjingChina
| |
Collapse
|
13
|
Tedersoo L, Bahram M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol Rev Camb Philos Soc 2019; 94:1857-1880. [PMID: 31270944 DOI: 10.1111/brv.12538] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
Mycorrhizal fungi benefit plants by improved mineral nutrition and protection against stress, yet information about fundamental differences among mycorrhizal types in fungi and trees and their relative importance in biogeochemical processes is only beginning to accumulate. We critically review and synthesize the ecophysiological differences in ectomycorrhizal, ericoid mycorrhizal and arbuscular mycorrhizal symbioses and the effect of these mycorrhizal types on soil processes from local to global scales. We demonstrate that guilds of mycorrhizal fungi display substantial differences in genome-encoded capacity for mineral nutrition, particularly acquisition of nitrogen and phosphorus from organic material. Mycorrhizal associations alter the trade-off between allocation to roots or mycelium, ecophysiological traits such as root exudation, weathering, enzyme production, plant protection, and community assembly as well as response to climate change. Mycorrhizal types exhibit differential effects on ecosystem carbon and nutrient cycling that affect global elemental fluxes and may mediate biome shifts in response to global change. We also note that most studies performed to date have not been properly replicated and collectively suffer from strong geographical sampling bias towards temperate biomes. We advocate that combining carefully replicated field experiments and controlled laboratory experiments with isotope labelling and -omics techniques offers great promise towards understanding differences in ecophysiology and ecosystem services among mycorrhizal types.
Collapse
Affiliation(s)
- Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, 50411 Tartu, Estonia.,Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411 Tartu, Estonia
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411 Tartu, Estonia.,Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden
| |
Collapse
|
14
|
Shaaban M, Van Zwieten L, Bashir S, Younas A, Núñez-Delgado A, Chhajro MA, Kubar KA, Ali U, Rana MS, Mehmood MA, Hu R. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:429-440. [PMID: 30243078 DOI: 10.1016/j.jenvman.2018.09.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 05/14/2023]
Abstract
Application of biochar to soil can play a significant role in the alteration of nutrients dynamics, soil contaminants as well as microbial functions. Therefore, strategic biochar application to soil may provide agronomic, environmental and economic benefits. Key environmental outcomes may include reduced availability of toxic metals and organic pollutants, reduced soil N losses and longer-term storage of carbon in soil. The use of biochar can certainly address key soil agronomic constraints to crop production including Al toxicity, low soil pH and may improve nutrient use efficiency. Biochar application has also demerits to soil properties and attention should be paid when using a specific biochar for a specific soil property improvement. This review provides a concise assessment and addresses impacts of biochar on soil properties.
Collapse
Affiliation(s)
- Muhammad Shaaban
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lukas Van Zwieten
- New South Wales Department of Primary Industries, Wollongbar, NSW 2477, Australia
| | - Saqib Bashir
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Aneela Younas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ., 27002 Lugo, Univ. Santiago de Compostela, Spain
| | - Muhammad Afzal Chhajro
- Department of Soil Science, Sindh Agriculture University, Tandojam 70060, Sindh, Pakistan
| | - Kashif Ali Kubar
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Umeed Ali
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shoaib Rana
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza Abid Mehmood
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Liang JF, An J, Gao JQ, Zhang XY, Yu FH. Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying-rewetting cycles. PLoS One 2018; 13:e0191999. [PMID: 29377943 PMCID: PMC5788386 DOI: 10.1371/journal.pone.0191999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/15/2018] [Indexed: 11/26/2022] Open
Abstract
The frequency of soil drying-rewetting cycles is predicted to increase under future global climate change, and arbuscular mycorrhizal fungi (AMF) are symbiotic with most plants. However, it remains unknown how AMF affect plant growth under different frequencies of soil drying-rewetting cycles. We subjected a clonal wetland plant Phragmites australis to three frequencies of drying-rewetting cycles (1, 2, or 4 cycles), two nutrient treatments (with or without), and two AMF treatments (with or without) for 64 days. AMF promoted the growth of P. australis, especially in the 2 cycles of the drying-rewetting treatment. AMF had a significant positive effect on leaf mass and number of ramets in the 2 cycles of the drying-rewetting treatment with nutrient addition. In the 2 cycles of drying-rewetting treatment without nutrient addition, AMF increased leaf area and decreased belowground to aboveground biomass ratio. These results indicate that AMF may assist P. australis in coping with medium frequency of drying-rewetting cycles, and provide theoretical guidance for predicting how wetland plants respond to future global climate change.
Collapse
Affiliation(s)
- Jin-Feng Liang
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jing An
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jun-Qin Gao
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiao-Ya Zhang
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fei-Hai Yu
- School of Nature Conservation, Beijing Forestry University, Beijing, China
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
16
|
Li Q, Xiong C, Li X, Jin X, Huang W. Ectomycorrhization of Tricholoma matsutake with Quercus aquifolioides affects the endophytic microbial community of host plant. J Basic Microbiol 2018; 58:238-246. [PMID: 29359810 DOI: 10.1002/jobm.201700506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/19/2017] [Accepted: 12/30/2017] [Indexed: 11/10/2022]
Abstract
Tricholoma matsutake (S. Ito et Imai) is an ectomycorrhizal basidiomycete associated with Pinaceae and Fagaceae trees in the Northern Hemisphere. It is still unknown whether the symbiotic relationship with this ectomycorrhiza could affect the host plant's endophytic microbial community. In this study, we used high throughput sequencing to analyze the endophytic microbial communities of different Quercus aquifolioides tissues with or without T. matsutake partner. About 35,000 clean reads were obtained per sample, representing 34 bacterial phyla and 7 fungal phyla. We observed 3980 operational taxonomic units (OTUs) of bacteria and 457 OTUs of fungi at a 97% similarity level. Three bacterial phyla, Proteobacteria, Cyanobacteria, and Bacteroidetes, and the fungal phylum Ascomycota were dominant in all tissues. The relative abundance of these taxa differed significantly between Q. aquifolioides tissues with and without T. matsutake partner (p < 0.05). The bacterial genus Pseudomonas and the fungal genus Cryptosporiopsis were more abundant in mycorrhized roots than in control roots. This study showed that the community structure and dominant species of endophytic microbial communities in Q. aquifolioides tissues might be altered by colonization with T. matsutake. This work provides a new insight into the interactions between ectomycorrhizal fungus and host plant.
Collapse
Affiliation(s)
- Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, P. R. China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, P. R. China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, P. R. China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, P. R. China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, P. R. China
| |
Collapse
|
17
|
Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia 2017; 186:195-204. [DOI: 10.1007/s00442-017-3987-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 10/14/2017] [Indexed: 11/25/2022]
|