1
|
Ekumah JN, Zhong M, Sun Y, Liang Q, Rashid A, Virk MS, Qayum A, Adade SYSS, Johnson NAN, Ren X, Muhammad A. Enhancement of kudzu starch hydrogels with rutin and ferulic acid: An approach to improve cold storage stability, mechanical properties, in vitro digestibility, functional properties and consumer acceptance. Int J Biol Macromol 2025; 311:143709. [PMID: 40316103 DOI: 10.1016/j.ijbiomac.2025.143709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
This study presents an approach to addressing the challenges of pronounced syneresis, poor mechanical properties, and rapid digestibility in kudzu starch hydrogel by incorporating rutin (RN) and ferulic acid (FA) at varying concentrations of 1.0 and 2.5 mg/mL. Supplementation improved gel stability as syneresis decreased from 9.4 % (control) to 3.1 % (RN 2.5 mg/mL) and 3.8 % (FA 2.5 mg/mL). This reduction correlated with enhanced phytochemical retention (R = -0.859), indicating that lower syneresis contributed to phytochemical preservation. Structurally, relative crystallinity increasing from 5.21 % (control) to 7.90 % and 8.50 % in RN and FA supplemented gels, respectively complemented by FTIR spectroscopic peak shifts at 3300 cm-1 and 1640 cm-1, while SEM micrographs displayed a more compact and homogenous structure. The supplemented gels exhibited higher viscosity, elasticity and stability under stress. Resistant starch content also increased significantly from 4.2 % (control) to 12.8 % (RN 2.5 mg/mL) and 14.3 % (FA 2.5 mg/mL), aligning with reduced digestibility. The supplemented gels exhibited enhanced antioxidant activity and antimicrobial inhibition against Escherichia coli and Staphylococcus aureus with high consumer acceptance. These findings establish an approach to developing functional kudzu starch hydrogels with improved stability, bioactivity, and reduced digestibility, while maintaining sensory appeal for gel-based foods as healthier food options.
Collapse
Affiliation(s)
- John-Nelson Ekumah
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 202013, Jiangsu, China; Center for Agribusiness Development and Mechanization in Africa (CADMA AgriSolutions), Ho 00233, Ghana
| | - Mingming Zhong
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 202013, Jiangsu, China
| | - Yufan Sun
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 202013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 202013, Jiangsu, China
| | - Arif Rashid
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 202013, Jiangsu, China
| | - Muhammad Safiullah Virk
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 202013, Jiangsu, China
| | - Abdul Qayum
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 202013, Jiangsu, China
| | - Selorm Yao-Say Solomon Adade
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 36102, China; Center for Agribusiness Development and Mechanization in Africa (CADMA AgriSolutions), Ho 00233, Ghana
| | - Nana Adwoa Nkuma Johnson
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 36102, China; Center for Agribusiness Development and Mechanization in Africa (CADMA AgriSolutions), Ho 00233, Ghana
| | - Xiaofeng Ren
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 202013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Awais Muhammad
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 202013, Jiangsu, China
| |
Collapse
|
2
|
Wang Z, Yu W, Liu M, Wu Y, Ouyang J. Inhibitory effect of bioactive compounds from quinoa of different colors on the in vitro digestibility of starch. Int J Biol Macromol 2025; 297:139918. [PMID: 39824403 DOI: 10.1016/j.ijbiomac.2025.139918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
This study aimed to compare the bioactive compounds presented in quinoa of various colors, and investigated their inhibitory effect on α-glucosidase activity and the in vitro digestibility of starch. The primary bioactive compounds identified in quinoa included betaine and polyphenols (kaempferol, quercetin, rutin, etc.), with their contents increased as the color of quinoa darkened. The half maximal inhibitory concentration (IC50) values of quercetin, kaempferol, and rutin in inhibiting α-glucosidase activity were 0.29, 0.34, and 1.21 mg/mL, respectively, compared to the extracts from white quinoa (1.25 mg/mL), red quinoa (0.59 mg/mL), and black quinoa (0.41 mg/mL). All extracts exhibited a dose-dependent inhibitory effect on α-glucosidase, characterized by a reversible mixed noncompetitive and anti-competitive inhibition mode. The hydrolysis rate of starch in white, red, and black quinoa flours was 33.6 %, 31.7 %, 30.2 %, respectively, and these rates increased upon the removal of bioactive compounds. After in vitro digestion, the release rates of free betaine and polyphenol from quinoa flours reached 36.9 % ~ 39.9 % and 26.5 % ~ 37.4 %, respectively. This research contributes to the advancement of whole-grain and functional foods incorporating quinoa.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Wenjie Yu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mengyu Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Alla C, Ali A, Mehiou A, Salhi Y, Bouanani N, Legssyer A, Ziyyat A. Phytochemical Composition of Ziziphus lotus (L.) Lam and Its Impact on the Metabolic Syndrome: A Review. Adv Pharmacol Pharm Sci 2025; 2025:8276090. [PMID: 40035065 PMCID: PMC11873318 DOI: 10.1155/adpp/8276090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
The long-term pathological state known as metabolic syndrome is characterized by hypertension, insulin resistance diabetes, abdominal obesity, and hyperlipidemia. Seeking healthcare strategies with fewer side effects, such as herbal remedies, is preferable in terms of mitigating the negative consequences of synthetic medications. Ziziphus lotus (L.) (Rhamnaceae) or wild jujube, commonly known as "Sedra," is one of the best choices as it contains a variety of phytochemicals and biologically active compounds. Several flavonoids and stilbenes have been recognized as the primary bioactive components in wild jujube, including rutin, hyperin, isoquercitrin, and resveratrol. These polyphenols are pharmacologically active and have broad-spectrum beneficial effects for reducing the risk factors associated with metabolic syndrome. They exhibit antioxidant and anti-inflammatory properties, regulate lipid metabolism, and possess antiobesity, antihypertensive, and antidiabetic characteristics. However, there are certain limitations to their therapeutic application, such as low bioavailability. Various strategies have been proposed to enhance their pharmacokinetic profile and therapeutic potential for future use. The main goal of this review is to explore the underlying mechanisms related to the therapeutic effects of wild jujube and its active compounds in the treatment and prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Chaimae Alla
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Amanat Ali
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Afaf Mehiou
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Youssra Salhi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Nourelhouda Bouanani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| |
Collapse
|
4
|
Qin Y, Chen X, Xu F, Zhu K, Wang P, Zhang Y, Zhang Y. Pectin enhances the inhibition of α-amylase via the mixture of rutin and quercetin. Int J Biol Macromol 2024; 285:138251. [PMID: 39626819 DOI: 10.1016/j.ijbiomac.2024.138251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/08/2024]
Abstract
The human dietary system, which contains a variety of compounds such as polyphenols and polysaccharides, is very complex. Whether polysaccharides affect the inhibitory of polyphenol mixtures on α-amylase needs to be further investigated. The aim of this study was to analyze the effect and mechanism of pectin on the inhibition of α-amylase by a mixture of rutin and quercetin (R-Q). Results revealed that the inhibition and quenching affinity of R-Q for α-amylase was enhanced by pectin. The Stern-Volmer quenching constant of R-Q-α-amylase was increased by pectin from (6.08 ± 0.453) × 103 mL/mg to (9.80 ± 0.285) × 103 mL/mg. Pectin enhanced the ability of R-Q to inhibit α-amylase for two main reasons. On the one hand, it was owing to the binding of pectin to rutin, which increased the opportunity for quercetin to bind to the active center of α-amylase, thus enhancing the inhibitory effect of R-Q on α-amylase. On the other hand, pectin and quercetin simultaneously bound to different sites of α-amylase by noncovalent interactions to form the ternary complex of pectin-α-amylase-quercetin. The conformation of α-amylase and the hydrophobicity of amino acid residues were altered by the ternary complex, thereby enhancing the hydrogen bonding in the reaction system.
Collapse
Affiliation(s)
- Yajuan Qin
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; School of Forest, Northeast Forestry University, Harbin 150040, Heilongjiang, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Ping Wang
- School of Forest, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Yutong Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China; Sanya Research Institute, Chinese Academy of Tropical Agriculture Science, Sanya 572025, China.
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China.
| |
Collapse
|
5
|
Ononamadu CJ, Seidel V. Exploring the Antidiabetic Potential of Salvia officinalis Using Network Pharmacology, Molecular Docking and ADME/Drug-Likeness Predictions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2892. [PMID: 39458839 PMCID: PMC11510882 DOI: 10.3390/plants13202892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
A combination of network pharmacology, molecular docking and ADME/drug-likeness predictions was employed to explore the potential of Salvia officinalis compounds to interact with key targets involved in the pathogenesis of T2DM. These were predicted using the SwissTargetPrediction, Similarity Ensemble Approach and BindingDB databases. Networks were constructed using the STRING online tool and Cytoscape (v.3.9.1) software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis and molecular docking were performed using DAVID, SHINEGO 0.77 and MOE suite, respectively. ADME/drug-likeness parameters were computed using SwissADME and Molsoft L.L.C. The top-ranking targets were CTNNB1, JUN, ESR1, RELA, NR3C1, CREB1, PPARG, PTGS2, CYP3A4, MMP9, UGT2B7, CYP2C19, SLCO1B1, AR, CYP19A1, PARP1, CYP1A2, CYP1B1, HSD17B1, and GSK3B. Apigenin, caffeic acid, oleanolic acid, rosmarinic acid, hispidulin, and salvianolic acid B showed the highest degree of connections in the compound-target network. Gene enrichment analysis identified pathways involved in insulin resistance, adherens junctions, metabolic processes, IL-17, TNF-α, cAMP, relaxin, and AGE-RAGE in diabetic complications. Rosmarinic acid, caffeic acid, and salvianolic acid B showed the most promising interactions with PTGS2, DPP4, AMY1A, PTB1B, PPARG, GSK3B and RELA. Overall, this study enhances understanding of the antidiabetic activity of S. officinalis and provides further insights for future drug discovery purposes.
Collapse
Affiliation(s)
- Chimaobi J. Ononamadu
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Natural Product Research Group, Department of Biochemistry and Forensic Science, Nigeria Police Academy, Wudil P.M.B. 3474, Kano, Nigeria
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
6
|
Gevrenova R, Zengin G, Balabanova V, Szakiel A, Zheleva-Dimitrova D. Pelargonium graveolens: Towards In-Depth Metabolite Profiling, Antioxidant and Enzyme-Inhibitory Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:2612. [PMID: 39339589 PMCID: PMC11434692 DOI: 10.3390/plants13182612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Pelargonium graveolens L'Hèr. (Geraniaceae) is renowned for its traditional use as a flavor, ornamental and medicinal plant. This work aimed at an in-depth study of the phytochemical profiling and in vitro antioxidant and enzyme inhibition assessment of a methanol-aqueous extract from P. graveolens leaves. A UHPLC-HRMS analysis revealed more than 110 secondary metabolites, including 8 acyltartaric and 11 acylcitric/acylisocitric acids; 8 gallotannins; 36 flavonols, flavanones and methoxylated flavonoids together with 17 phenolic and aliphatic acids; and 21 phenolic acid glycosides. For the first time, acylcitric acids along with feruloyl- and coumaroyltartaric acids are reported in the species. The leaf extract actively scavenged 2,2-diphenyl-1-picrylhydrazyl DPPH (273.45 mg trolox equivalent (TE/g)) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radicals (531.97 mgTE/g) and showed a high reducing power: 431.32 mg TE/g Cupric reducing antioxidant capacity (CUPRAC) and 292.21 mg TE/g Ferric reducing antioxidant power (FRAP). It possessed a metal chelating capacity (13.44 ethylenediaminetetraacetic acid equivalent (EDTAE)/g) and contained 2.71 mmol TE/g in the phosphomolybdenum assay. The rose geranium extract exhibited high inhibition towards acetyl- and butyrylcholinesterase (2.80 and 2.20 mg galantamine equivalent (GALAE)/g, respectively) and tyrosinase (75.49 mg kojic acid equivalent (KAE)/g). It inhibited α-glucosidase and α-amylase (3.75 mmol and 0.79 acarbose equivalent (ACAE)/g, respectively) and lipase (28.91 mg orlistat equivalent (OE)/g). This study sheds light into the future potential application of the rose geranium in pharmaceutical and nutraceutical products.
Collapse
Affiliation(s)
- Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (V.B.); (D.Z.-D.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (V.B.); (D.Z.-D.)
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 11 Warsaw, Poland;
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (V.B.); (D.Z.-D.)
| |
Collapse
|
7
|
Rahman SS, Klamrak A, Nopkuesuk N, Nabnueangsap J, Janpan P, Choowongkomon K, Daduang J, Daduang S. Impacts of Plu kaow ( Houttuynia cordata Thunb.) Ethanolic Extract on Diabetes and Dyslipidemia in STZ Induced Diabetic Rats: Phytochemical Profiling, Cheminformatics Analyses, and Molecular Docking Studies. Antioxidants (Basel) 2024; 13:1064. [PMID: 39334723 PMCID: PMC11428413 DOI: 10.3390/antiox13091064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing prevalence of diabetes and dyslipidemia poses significant health challenges, impacting millions of people globally and leading to high rates of illness and death. This study aimed to explore the potential antidiabetic and hypolipidemic effects of Plu kaow (Houttuynia cordata Thunb.) ethanolic extract (PK) in streptozotocin (STZ) induced diabetic rats, focusing on its molecular mechanisms. Diabetes was induced in fasting Long Evans rats using streptozotocin (65 mg/kg b. w.), with glibenclamide (5 mg/kg/day) used as the standard experimental drug. The treated groups received oral supplementation of PK (500 mg/kg/day) for 28 days. The study evaluated blood glucose levels, lipid status, body weight, liver, kidney, and heart function biomarkers, antioxidant activity, and histological examination of various organs. Additionally, untargeted metabolomics, cheminformatics, and molecular docking were employed to elucidate the probable mechanisms of action of PK. Based on metabolomic profiling data, the PK was found to contain various putative antidiabetic agents such as kaempferol 7-neohesperidoside, isochlorogenic acid C, rutin, datiscin, and diosmin and they have been proposed to significantly (p < 0.001) reduce blood glucose levels and modulated hyperlipidemia. PK also improved the tested liver, kidney, and heart function biomarkers and reversed damage to normal pancreatic, liver, kidney, and heart cells in histological analysis. In conclusion, PK shows promise as a potential treatment or management option for diabetes and hyperlipidemia, as well as their associated complications in diabetic rats.
Collapse
Affiliation(s)
- Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Napapuch Nopkuesuk
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
Beyaoui A, Kaplan M, Saidi I, Jalouli M, Ceyhan Goren A, Halim Harrath A, Ben Jannet H. Phenolic Profile, Bioactivities and In Silico Analysis of the Trunk Bark of Acacia Cyanophylla Lindl. Chem Biodivers 2024; 21:e202401061. [PMID: 38963913 DOI: 10.1002/cbdv.202401061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024]
Abstract
In the current investigation, total phenolics and flavonoids of the methanolic extract obtained from the trunk bark of Acacia cyanophylla Lindl. were quantified by LC-HRMS technique. DPPH and ABTS reagents were employed to assay the antioxidant potential. The anti-tyrosinase and anti-α-amylase potentials were also assayed. The findings revealed that thirteen polyphenolic compounds were detected in the methanolic extract with trans-taxifolin (23.2 g/kg), as the major constituent. A. cyanophylla extract displayed a higher activity with DPPH test (IC50=10.14±1.00 μg/mL) than with ABTS (IC50=15.27±2.09 μg/mL). The same extract also exhibited interesting α-amylase inhibitory action (IC50 value of 4.00±0.17 μg/mL). Moreover, methanolic trunk bark extract exerted strong anti-tyrosinase capacity with an IC50 of 5.12±0.41 μg/mL in comparison to kojic acid (IC50=10.22±0.85 μg/mL) used as positive control. The antioxidant, anti-tyrosinase and anti-α-amylase potentials of the methanolic extract of A. cyanophylla trunk bark were reinforced by in silico molecular docking analyses, which confirmed the results of the in vitro tests.
Collapse
Affiliation(s)
- Ahlem Beyaoui
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, 5019, Monastir, Tunisia
| | - Muammer Kaplan
- TUBITAK Marmara Research Centre, Institute of Chemical Technology, 41470, Gebze, Kocaeli, Turkiye
| | - Ilyes Saidi
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, 5019, Monastir, Tunisia
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Ahmet Ceyhan Goren
- Gebze Technical University, Faculty of Basic Sciences, Department of Chemistry, Gebze, Kocaeli, Turkiye
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hichem Ben Jannet
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, 5019, Monastir, Tunisia
| |
Collapse
|
9
|
Saeed R, Ahmed D. RSM-based optimization of antidiabetic multi-component formula and gastric simulation effect with promising implications for type-2 diabetes treatment. RESULTS IN CHEMISTRY 2024; 9:101665. [DOI: 10.1016/j.rechem.2024.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
10
|
Bouyahya A, Balahbib A, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Hermansyah A, Ming LC, Goh KW, El Omari N. Clinical applications and mechanism insights of natural flavonoids against type 2 diabetes mellitus. Heliyon 2024; 10:e29718. [PMID: 38694079 PMCID: PMC11061711 DOI: 10.1016/j.heliyon.2024.e29718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Diabetes is a complex disease that affects a large percentage of the world's population, and it is associated with several risk factors. Self-management poses a significant challenge, but natural sources have shown great potential in providing effective glucose reducing solutions. Flavonoids, a class of bioactive substances found in different natural sources including medicinal plants, have emerged as promising candidates in this regard. Indeed, several flavonoids, including apigenin, arbutin, catechins, and cyanidin, have demonstrated remarkable anti-diabetic properties. The clinical effectiveness of these flavonoids is linked to their potential to decrease blood glucose concentration and increase insulin concentration. Thus, the regulation of certain metabolic pathways such as glycolysis and neoglycogenesis has also been demonstrated. In vitro and in vivo investigations revealed different mechanisms of action related to flavonoid compounds at subcellular, cellular, and molecular levels. The main actions reside in the activation of glycolytic signaling pathways and the inhibition of signaling that promotes glucose synthesis and storage. In this review, we highlight the clinical efficiency of natural flavonoids as well as the molecular mechanisms underlying this effectiveness.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum-11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
11
|
La Torre C, Loizzo MR, Frattaruolo L, Plastina P, Grisolia A, Armentano B, Cappello MS, Cappello AR, Tundis R. Chemical Profile and Bioactivity of Rubus idaeus L. Fruits Grown in Conventional and Aeroponic Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:1115. [PMID: 38674524 PMCID: PMC11053529 DOI: 10.3390/plants13081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Raspberry (Rubus idaeus L.) is a fruit of great interest due to its aroma, nutritional properties, and the presence of many bioactive compounds. However, differences among cultivation systems can affect its composition and, consequently, its potential bioactivity. Herein, for the first time, raspberries grown in an aeroponic system were investigated for their chemical profile and antioxidant and anti-inflammatory activity, as well as their enzyme (α-glucosidase and pancreatic lipase) inhibitory properties in comparison to wild and conventionally cultivated fruits. High-performance liquid chromatography coupled with diode array detection (HPLC-DAD) analyses revealed the presence of gallic acid, caffeic acid, chlorogenic acid, p-coumaric acid, ferulic acid, rutin, and catechin in all the samples. The extracts exhibited in vitro anti-inflammatory activity (inhibition of nitric oxide production) regardless of the cultivation method. Of particular interest is the ability of raspberries to inhibit pancreatic lipase. With the exception of the β-carotene bleaching test, the raspberries grown in conventional and aeroponic systems were more active in terms of antioxidants than wild fruits, as evidenced by the ABTS (IC50 in the range 1.6-3.4 μg/mL), DPPH (IC50 in the range 8.9-28.3 μg/mL), and FRAP tests (24.6-44.9 μM Fe(II)/g). The raspberries from aeroponic cultivation were generally able to exert the same bioactivity as those obtained from both conventionally cultivated and wild fruits, supporting the consideration that in the future, this technology could reshape agriculture by mitigating resource constraints, fostering sustainable practices and increasing yields.
Collapse
Affiliation(s)
- Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| | - Antonio Grisolia
- Azienda Agricola Grisolia A., Contrada Campotenese sn, 87016 Morano Calabro, Italy;
| | - Biagio Armentano
- Azienda Agricola Armentano F., Contrada Campotenese, n. 64, 87016 Morano Calabro, Italy;
| | - Maria Stella Cappello
- Institute of Science of Food Production (ISPA), Italian National Research Council, 73100 Lecce, Italy;
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| |
Collapse
|
12
|
van Aken GA. Computer modeling of digestive processes in the alimentary tract and their physiological regulation mechanisms: closing the gap between digestion models and in vivo behavior. Front Nutr 2024; 11:1339711. [PMID: 38606020 PMCID: PMC11007706 DOI: 10.3389/fnut.2024.1339711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction A model has been developed for in silico simulation of digestion and its physiological feedback mechanisms. Methods The model is based on known physiology described in the literature and is able to describe the complexity of many simultaneous processes related to food digestion. Results Despite the early stage of development of the model, it already encompasses a large number of processes that occur simultaneously, enabling the prediction of a large number of post-prandial physiological markers, which can be highly functional in combination with in vitro, organ-on-a-chip and digital twin models purposed to measure the physiological properties of organs and to predict the effect of adjusted food composition in normal and diseased states. Discussion Input from and collaboration between science fileds is needed to further develop and refine the model and to connect with in vitro, in vivo, and ex vivo (organ-on-a-chip) models.
Collapse
|
13
|
Oliveira AD, Moreira TFM, Paes Silva B, Oliveira G, Teixeira VMC, Watanabe LS, Lucy Nixdorf S, Eloísa Leal L, Pessoa LGA, Seixas FAV, Gonçalves OH, Paula Peron A, Sá-Nakanishi AB, Leimann FV, Bracht A, Bracht L, Comar JF. Characterization and bioactivities of coffee husks extract encapsulated with polyvinylpyrrolidone. Food Res Int 2024; 178:113878. [PMID: 38309896 DOI: 10.1016/j.foodres.2023.113878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 02/05/2024]
Abstract
Coffee processing generates large amounts of residues of which a portion still has bioactive properties due to their richness in phenolic compounds. This study aimed to obtain a coffee husks extract (CHE) and to encapsulate it (ECHE) with polyvinylpyrrolidone using a one-step procedure of solid dispersion. The extraction and encapsulation yields were 9.1% and 92%, respectively. Thermal analyses revealed that the encapsulation increased the thermal stability of CHE and dynamic light scattering analyses showed a bimodal distribution of size with 81% of the ECHE particles measuring approximately 711 nm. Trigonelline and caffeine were the main alkaloids and quercetin the main phenolic compound in CHE, and the encapsulation tripled quercetin extraction. The total phenolics content and the antioxidant activity of ECHE, assayed with three different procedures, were higher than those of CHE. The antioxidant activity and the bioaccessibility of the phenolic compounds of ECHE were also higher than those of CHE following simulated gastrointestinal digestion (SGID). Both CHE and ECHE were not toxic against Alliumcepa cells and showed similar capacities for inhibiting the pancreatic α-amylase in vitro. After SGID, however, ECHE became a 1.9-times stronger inhibitor of the α-amylase activity in vitro (IC50 = 8.5 mg/mL) when compared to CHE. Kinetic analysis revealed a non-competitive mechanism of inhibition and in silico docking simulation suggests that quercetin could be contributing significantly to the inhibitory action of both ECHE and CHE. In addition, ECHE (400 mg/kg) was able to delay by 50% the increases of blood glucose in vivo after oral administration of starch to rats. This finding shows that ECHE may be a candidate ingredient in dietary supplements used as an adjuvant for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Thaysa F M Moreira
- Post-Graduation Program of Food Technology, Federal University of Technology (UTFPR), Campo Mourão, PR, Brazil
| | | | - Grazielle Oliveira
- Department of Chemical Engineering, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Lycio S Watanabe
- Department of Chemistry, State University of Londrina, PR, Brazil
| | | | | | | | | | - Odinei H Gonçalves
- Department of Textile Engineering, Federal University of Santa Catarina, Blumenau, SC, Brazil
| | - Ana Paula Peron
- Department of Biodiversity and Nature Conservation, Federal University of Technology (UTFPR), Campo Mourão, PR, Brazil
| | | | - Fernanda V Leimann
- Post-Graduation Program of Food Technology, Federal University of Technology (UTFPR), Campo Mourão, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | - Lívia Bracht
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringá, PR, Brazil.
| |
Collapse
|
14
|
Djaoudene O, Bachir-Bey M, Schisano C, Djebari S, Tenore GC, Romano A. A Sustainable Extraction Approach of Phytochemicals from Date ( Phoenix dactylifera L.) Fruit Cultivars Using Ultrasound-Assisted Deep Eutectic Solvent: A Comprehensive Study on Bioactivity and Phenolic Variability. Antioxidants (Basel) 2024; 13:181. [PMID: 38397779 PMCID: PMC10886234 DOI: 10.3390/antiox13020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The present study aimed to evaluate the efficacy of natural deep eutectic solvents (NADESs) on the extraction of phytochemicals from eight Algerian date fruit cultivars (Phoenix dactylifera L.). In this study, lactic acid/sucrose-based NADESs were used as an alternative to conventional chemical solvents using the ultrasound-assisted extraction (UAE) method. The obtained extracts were assessed for the determination of bioactive compound contents, phenolic composition, antioxidant activity, and enzyme inhibitory potential. The results showed a considerable variation in phytochemical compositions and related activities between cultivars, where the greatest contents of total phenolics (1288.7 mg GAE/100 g), total flavonoids (53.8 mg QE/100 g), proanthocyanidins (179.5 mg CE/g), and total triterpenoids (12.88 mg OAE/100 g) were detected in the fruits of the Ourous cultivar. The same cultivar displayed the highest antioxidant capacity against DPPH• free radical (595 mg AAE/100 g), ABTS•+ cation radical (839 mg TE/100 g), and ferric reducing antioxidant potential (704 mg AAE/100 g). All extracts manifested moderate antioxidant activities tested by phosphomolybdenum, NO•, and linoleic acid lipid peroxidation assays. These extracts also exhibited interesting levels of in vitro enzyme inhibition; the Ourous cultivar gave the best inhibitory activity against α-amylase and acetylcholinesterase with 45 and 37%, respectively. HPLC-DAD-MS detected a total of five compounds, with phenolic acids and flavonoids being the main phenolics identified in the extract. The phenolic composition exhibited significant variability among cultivars. Notably, the highest amounts were revealed in the Tazizaout cultivar, with the predominance of gallic acid. The results confirmed that the combination of UAE and NADESs provides a novel and important alternative to chemical solvents for sustainable and environmentally friendly extraction and can represent a good alternative in food and pharmaceutical industry applications.
Collapse
Affiliation(s)
- Ouarda Djaoudene
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, Bejaia 06000, Algeria
| | - Mostapha Bachir-Bey
- Laboratory of Applied Biochemistry, Department of Food Sciences, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| | - Connie Schisano
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (C.S.); (G.C.T.)
| | - Sabrina Djebari
- Laboratory of Biomathematic, Biophysic, Biochemistry and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (C.S.); (G.C.T.)
| | - Anabela Romano
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|
15
|
Soliman MO, El-Kamel AH, Shehat MG, Bakr BA, El-Moslemany RM. Lactoferrin decorated bilosomes for the oral delivery of quercetin in type 2 diabetes: In vitro and in vivo appraisal. Int J Pharm 2023; 647:123551. [PMID: 37884217 DOI: 10.1016/j.ijpharm.2023.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Despite its tremendous potential for type 2 diabetes management, quercetin (QRC) suffers poor gastric stability, poor bioavailability, and extensive first pass metabolism. Drug encapsulation into bilosomes (BSL) has proven enhanced properties in-vitro and in-vivo. Herein, this work endeavoured to evaluate efficacy of QRC-encapsulated bilosomes capped with lactoferrin (LF); a milk protein with antidiabetic potential, for type 2 diabetes oral treatment. The optimized formulation (LF-QRC-BSL) was evaluated in-vitro on α-amylase enzyme inhibition and insulin resistant HepG2 cell model and in vivo on streptozocin/high fat diet induced diabetes in rats. LF-QRC-BSL showed a small size (68.1 nm), a narrow PDI (0.18) and a -25.5 mV zeta potential. A high entrapment efficiency (94 %) with sustained release were also observed. LF-QRC-BSL displayed 100 % permeation through excised diabetic rat intestines after 6 h, 70.2 % inhibition of α-amylase enzyme in-vitro and an augmented recovery of glucose uptake in insulin resistant cells. In diabetic rats, LF-QRC-BSL resulted in significant decrease in blood glucose level, improved lipid profile and tissue injury markers with reduced oxidative stress and inflammatory markers. Further, histopathological examination of the kidneys, liver and pancreas revealed an almost restored normal condition comparable to the negative control. Overall, LF-QRC-BSL have proven to be a promising therapy for type 2 diabetes.
Collapse
Affiliation(s)
- Mai O Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Raut B, Upadhyaya SR, Bashyal J, Parajuli N. In Silico and In Vitro Analyses to Repurpose Quercetin as a Human Pancreatic α-Amylase Inhibitor. ACS OMEGA 2023; 8:43617-43631. [PMID: 38027372 PMCID: PMC10666247 DOI: 10.1021/acsomega.3c05082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Human pancreatic α-amylase (HPA), situated at the apex of the starch digestion hierarchy, is an attractive therapeutic approach to precisely regulate blood glucose levels, thereby efficiently managing diabetes. Polyphenols offer a natural and multifaceted approach to moderate postprandial sugar spikes, with their slight modulation in carbohydrate digestion and potential secondary benefits, such as antioxidant and anti-inflammatory effects. Taking into consideration the unfavorable side effects of currently available commercial medications, we aimed to study a library of polyphenols attributed to their remarkable antidiabetic properties and screened the most potent HPA inhibitor via a comprehensive in silico study encompassing molecular docking, molecular mechanics with generalized Born and surface area solvation (MM/GBSA) calculation, molecular dynamics (MD) simulation, density functional theory (DFT) study, and pharmacokinetic properties followed by an in vitro assay. Significant hydrogen bonding with the catalytic triad residues of HPA, prominent MM/GBSA binding energy of -27.03 kcal/mol, and the stable nature of the protein-ligand complex with regard to 100 ns MD simulation screened quercetin as the best HPA inhibitor. Additionally, quercetin showed strong reactivity in the substrate-binding pocket of HPA and exhibited favorable pharmacokinetic properties with a considerable inhibitory concentration (IC50) of 57.37 ± 0.9 μg/mL against α-amylase. This study holds prospects for HPA inhibition and suggests quercetin as an approach to therapy for diabetes; however, it is imperative to conduct further research.
Collapse
Affiliation(s)
- Bimal
K. Raut
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Siddha Raj Upadhyaya
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Jyoti Bashyal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| |
Collapse
|
17
|
Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel) 2023; 16:1020. [PMID: 37513932 PMCID: PMC10384403 DOI: 10.3390/ph16071020] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin, a flavonoid found in fruits and vegetables, has been a part of human diets for centuries. Its numerous health benefits, including antioxidant, antimicrobial, anti-inflammatory, antiviral, and anticancer properties, have been extensively studied. Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage. Quercetin's anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes, making it a potential therapeutic agent for various inflammatory conditions. It also exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis. Finally, quercetin has cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function, making it a promising candidate for preventing and treating cardiovascular diseases. This review provides an overview of the chemical structure, biological activities, and bioavailability of quercetin, as well as the different delivery systems available for quercetin. Incorporating quercetin-rich foods into the diet or taking quercetin supplements may be beneficial for maintaining good health and preventing chronic diseases. As research progresses, the future perspectives of quercetin appear promising, with potential applications in nutraceuticals, pharmaceuticals, and functional foods to promote overall well-being and disease prevention. However, further studies are needed to elucidate its mechanisms of action, optimize its bioavailability, and assess its long-term safety for widespread utilization.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
18
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
19
|
Nabil-Adam A, Ashour ML, Tamer TM, Shreadah MA, Hassan MA. Interaction of Jania rubens Polyphenolic Extract as an Antidiabetic Agent with α-Amylase, Lipase, and Trypsin: In Vitro Evaluations and In Silico Studies. Catalysts 2023; 13:443. [DOI: 10.3390/catal13020443] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023] Open
Abstract
Jania rubens red seaweed has various bioactive compounds that can be used for several medicinal and pharmaceutical applications. In this study, we investigate the antidiabetic, anti-inflammatory, and antioxidant competency of Jania rubens polyphenolic extract (JRPE) by assessing their interactions with α-amylase, lipase, and trypsin enzymes. HPLC analysis revealed the dominance of twelve polyphenolic compounds. We performed computational analysis using α-amylase, lipase, and trypsin as target proteins for the polyphenols to explore their activities based on their predicted modes of binding sites following molecular modeling analysis. The molecular docking analysis demonstrated a good affinity score with a noticeable affinity to polyphenolic compositions of Jania rubens. The compounds with the highest affinity score for α-amylase (PDB: 4W93) were kaempferol, quercetin, and chlorogenic acid, with −8.4, −8.8 and −8 kcal/mol, respectively. Similarly, lipase (PDB: 1LPB) demonstrated high docking scores of −7.1, −7.4, and −7.2 kcal/mol for kaempferol, quercetin, and chlorogenic acid, respectively. Furthermore, for trypsin (PDB: 4DOQ) results, kaempferol, quercetin, and chlorogenic acid docking scores were −7.2, −7.2, and −7.1 kcal/mol, respectively. The docking findings were verified using in vitro evaluations, manifesting comparable results. Overall, these findings enlighten that the JRPE has antidiabetic, anti-inflammatory, and antioxidant properties using different diabetics’ enzymes that could be further studied using in vivo investigations for diabetes treatment.
Collapse
Affiliation(s)
- Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo 11516, Egypt
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Tamer M. Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Mohamed A. Shreadah
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo 11516, Egypt
| | - Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
- University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
20
|
Świątek Ł, Sieniawska E, Sinan KI, Zengin G, Boguszewska A, Hryć B, Bene K, Polz-Dacewicz M, Dall’Acqua S. Chemical Characterization of Different Extracts of Justicia secunda Vahl and Determination of Their Anti-Oxidant, Anti-Enzymatic, Anti-Viral, and Cytotoxic Properties. Antioxidants (Basel) 2023; 12:509. [PMID: 36830068 PMCID: PMC9952096 DOI: 10.3390/antiox12020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Justicia secunda Vahl. is a traditional medicinal plant in tropical regions, including West Africa. The present study examined the chemical profiles and biological properties of J. secunda extracts obtained with different solvents (dichloromethane, ethyl acetate, methanolic and aqueous: macerated and infused). Chemical components were characterized by liquid chromatography-mass spectrometry (LC-MS), and over 50 compounds were identified, including flavonoids, phenolic acids, and alkaloids. Antioxidant, enzyme inhibitory, cytotoxic, and antiviral properties were selected as biological properties. Total phenolic and flavonoid contents in methanol (58.07 mg gallic acid equivalent (GAE)/g and 13.07 mg rutin equivalent (RE)/g) and water (infused) (36.34 mg GAE/g and 8.52 mg RE/g) were higher than in other extracts. Consistent with the levels of total bioactive components, the methanol and water extracts exhibited stronger antioxidant abilities. However, the dichloromethane and ethyl acetate extracts were more active on α-amylase and α-glucosidase than other extracts. Aqueous extracts exerted selective anticancer properties toward human pharyngeal cancer cell lines, whereas the methanolic extract decreased the human herpesvirus type-1 (HHV-1) infectious titer by 2.16 log and the viral load by 1.21 log. Overall, J. secunda could be considered a multifunctional bioactive raw material in the preparation of potent applications to manage diseases related to oxidative stress, including cancer, diabetes, and Alzheimer's.
Collapse
Affiliation(s)
- Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Anastazja Boguszewska
- Department of Virology with SARS Laboratory, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Benita Hryć
- Medicofarma Biotech S.A., Zamenhofa 29, 20-453 Lublin, Poland
| | - Kouadio Bene
- Laboratoire de Botanique et Phytothérapie, Unité de Formation et de Recherche Sciences de la Nature, Université Nangui Abrogoua, Abidjan 02 BP 801, Côte d’Ivoire
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
21
|
In Vitro Inhibitory Effects of Polyphenols from Flos sophorae immaturus on α-Glucosidase: Action Mechanism, Isothermal Titration Calorimetry and Molecular Docking Analysis. Foods 2023; 12:foods12040715. [PMID: 36832790 PMCID: PMC9956223 DOI: 10.3390/foods12040715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Flos sophorae immaturus (FSI) is considered to be a natural hypoglycemic product with the potential for a-glucosidase inhibitory activity. In this work, the polyphenols with α-glucosidase inhibition in FSI were identified, and then their potential mechanisms were investigated by omission assay, interaction, type of inhibition, fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry and molecular docking analysis. The results showed that five polyphenols, namely rutin, quercetin, hyperoside, quercitrin and kaempferol, were identified as a-glucosidase inhibitors with IC50 values of 57, 0.21, 12.77, 25.37 and 0.55 mg/mL, respectively. Quercetin plays a considerable a-glucosidase inhibition role in FSI. Furthermore, the combination of quercetin with kaempferol generated a subadditive effect, and the combination of quercetin with rutin, hyperoside and quercitrin exhibited an interference effect. The results of inhibition kinetics, fluorescence spectroscopy, isothermal titration calorimetry and molecular docking analysis showed that the five polyphenols were mixed inhibitors and significantly burst the fluorescence intensity of α-glucosidase. Moreover, the isothermal titration calorimetry and molecular docking analysis showed that the binding to α-glucosidase was a spontaneous heat-trapping process, with hydrophobic interactions and hydrogen bonding being the key drivers. In general, rutin, quercetin, hyperoside, quercitrin and kaempferol in FSI are potential α-glucosidase inhibitors.
Collapse
|
22
|
Influence of Ultrasound-Assisted Vacuum Drying on Physicochemical Characteristics, Antioxidant Activity, and α-Glucosidase Inhibition Activity of Flos Sophorae Immaturus. Foods 2023; 12:foods12030671. [PMID: 36766199 PMCID: PMC9914521 DOI: 10.3390/foods12030671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Flos Sophorae Immaturus (FSI) contains a large number of bioactive substances with antioxidant and hypoglycaemic activity. However, a feasible drying process plays an important role in the retention of its biological activity. The present work investigated the effects of ultrasound-assisted vacuum drying (UAVD) on FSI samples in terms of drying time, colour, microstructure, and total flavonoid content (TFC). Meanwhile, the antioxidant activity and α-glucosidase inhibition activity were also evaluated. The results show that the drying time of UVAD samples was decreased by 40% compared to that of the single vacuum-dried (VD) samples (600 W for 10 min). The cellular porous structures of FSI tissue were formed by UAVD, which promoted the migration of water from the inside to the outside. Furthermore, samples treated by UAVD exhibited better antioxidant activities and α-glucosidase and α-amylase inhibition capacities, with DPPH (81.86%), ABTS (88.61%), FRAP (83.05%), α-glucosidase inhibition capacity (89%), α-amylase (85%), drying time (3 h), and total aberration (ΔE) (1.63) being the highest characteristic traits. In this condition, the highest levels of total flavonoid content (TFC), rutin, quercetin, kaempferol, isorhamnetin, and genistein were obtained with 266.94, 239.46, 35.56, 8.54, 10.37, and 5.64 mg/g DW, respectively. The results confirm that UAVD is a novel method that significantly reduced the VD time and promoted the release of the bioactive substances of FSI.
Collapse
|
23
|
Hardinsyah H, Gunawan WB, Nurkolis F, Alisaputra D, Kurniawan R, Mayulu N, Taslim NA, Tallei TE. Antiobesity potential of major metabolites from Clitoria ternatea kombucha: Untargeted metabolomic profiling and molecular docking simulations. Curr Res Food Sci 2023; 6:100464. [PMID: 36875892 PMCID: PMC9976213 DOI: 10.1016/j.crfs.2023.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The prevalence of obesity is rapidly increasing and poses serious health risks accompanied by a decrease in life expectancy and quality of life. Therefore, the therapeutic potential of natural-derived nutraceuticals against obesity and its comorbidities needs to be explored. Molecular inhibition of lipase enzymes and fat mass and obesity-associated (FTO) protein has attracted some recent interest in efforts to find antiobesity agents. This study aims to innovate a fermented drink from Clitoria ternatea kombucha (CTK), find out their metabolites profile, and determine the antiobesity potential through a molecular docking study. The CTK formulation refers to previous research while the metabolites profile was determined using HPLC-ESI-HRMS/MS. Major compounds were selected based on best match value > 99.0% of the M/Z cloud database. A total of 79 compounds were identified in CTK, and 13 ideal compounds were selected to be simulated in the molecular docking study against human pancreatic lipase, α-amylase, α-glucosidase, porcine pancreatic lipase, and FTO proteins. The study found that Kaempferol, Quercetin-3β-D-glucoside, Quercetin, Dibenzylamine, and α-Pyrrolidinopropiophenone showed the best potential as functional antiobesity compounds since their affinity value ranked high in each respective receptor. In conclusion, the major compounds of CTK metabolites have the potential to be promising functional foods against obesity. However, further in vitro and in vivo studies should validate these health benefits.
Collapse
Affiliation(s)
- Hardinsyah Hardinsyah
- Applied Nutrition Division, Community Nutrition Department, Faculty of Human Ecology, IPB University, Bogor, Indonesia
| | - William Ben Gunawan
- Alumnus of Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Darmawan Alisaputra
- Department of Chemistry, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, 55281, Indonesia
| | - Rudy Kurniawan
- Alumnus of Department of Internal Medicine, Faculty of Medicine, University of Indonesia - Cipto Mangunkusumo Hospital, Indonesia
| | - Nelly Mayulu
- Department of Nutrition and Food, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Nurpudji Astuti Taslim
- Department of Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Indonesia
| |
Collapse
|
24
|
Enhancement of Digestion Resistance and Glycemic Control of Corn Starch through Conjugation with Gallic Acid and Quercetin Using the Free Radical Grafting Method. Processes (Basel) 2022. [DOI: 10.3390/pr10122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to synthesize different polyphenol–corn starch complexes including gallic acid–starch and quercetin–starch by conjugating corn starch with gallic acid and quercetin using the free radical grafting method. This process was effective in enhancing conjugations of starch molecules with gallic acid and quercetin (5.20 and 5.83 mg GAE/g, respectively) and imparted promising antioxidant capacity to the phenolic–starch complexes. Significant interactions between these phenolic compounds and corn starch molecules were revealed with an ultraperformance liquid chromatography electrospray ionization Q-time-of-flight mass spectrometry assay. It was revealed that significantly higher levels of resistant starch in the above gallic–starch and quercetin–starch complex samples (11.6 and 15.3 g/100 g, respectively) together with an obvious reduction in glycemic response (7.9% and 11.8%, respectively) observed over the control. Complex samples functionalized with gallic acid and quercetin have exerted modified physicochemical properties, particularly reduction in swelling ability (58.7–60.1%), breakdown viscosity (62.5–67.8%), and setback viscosity (37.7–44.5%). In sum, free radical grafting treatment could be a promising method for imparting corn starch with enhanced resistance to enzyme digestion along with changes in pasting properties for specific food applications.
Collapse
|
25
|
Wang L, Du X, Yue D, Chen X. Catechin, rutin and quercetin in Quercus mongolica Fisch leaves exert inhibitory effects on multiple cancer cells. J Food Biochem 2022; 46:e14486. [PMID: 36351050 DOI: 10.1111/jfbc.14486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/11/2022]
Abstract
We aimed to identify anti-tumor agents in Quercus mongolica Fisch (QMF). Bioactive compounds in QMF leaves, which were extracted using ethanol as a co-solvent. Five point zero six grams of flavonoids were obtained from 100 g of QMF leaves. Catechin (18.4%), rutin (6.3%), ellagic acid (34.9%), quercetin (5.1%) and kaempferol (20.6%) are the main ingredients of the extracts and were further purified by HPLC. CCK-8 cell proliferation assay showed that catechin and ellagic acid exerted strong inhibitory effects on the proliferation of all cancer cells with lower IC50 values against MCF-7 human breast cancer cell lines, SMMC-7721 human hepatocellular carcinoma cells, HeLa human cervical carcinoma cell lines and SKOV3 human ovarian carcinoma cell lines (p < .05). Catechin, rutin and quercetin induced a higher rate of apoptosis and inhibited all cancer cell proliferation by inducing the G0/G1 phase and G2/M phase arrest (p < .05). However, ellagic acid induced tumor cell death, not through apoptosis and there may be other molecular mechanisms. High levels of catechin and ellagic acid in QMF can be developed as potential drugs to treat different types of cancer cells. PRACTICAL APPLICATIONS: Quercus species have been widely studied because of their antioxidant, anti-inflammatory, antimicrobial, and anti-tumor properties. Bioactive compounds in the leaves of Quercus mongolica Fisch have high levels of catechin and ellagic acid, which exert significant inhibitory properties on the proliferation of various types of cancer cells. Therefore, the bioactive compounds may be potential natural drugs in the prevention of cancer development and progression.
Collapse
Affiliation(s)
- Linmei Wang
- Tussah Comprehensive Utilization Laboratory, Liaoning Academy of Marine and Fisheries Sciences, Dalian, China
| | - Xingfan Du
- Tussah Comprehensive Utilization Laboratory, Liaoning Academy of Marine and Fisheries Sciences, Dalian, China
| | - Dongmei Yue
- Tussah Comprehensive Utilization Laboratory, Liaoning Academy of Marine and Fisheries Sciences, Dalian, China
| | - Xinghe Chen
- Tussah Comprehensive Utilization Laboratory, Liaoning Academy of Marine and Fisheries Sciences, Dalian, China
| |
Collapse
|
26
|
Zhang Z, Fan X, Zou L, Xing B, Zhu M, Yang X, Ren G, Yao Y, Zhang L, Qin P. Phytochemical properties and health benefits of pregelatinized Tartary buckwheat flour under different extrusion conditions. Front Nutr 2022; 9:1052730. [PMID: 36438721 PMCID: PMC9682129 DOI: 10.3389/fnut.2022.1052730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2023] Open
Abstract
This work investigated the phytochemical properties and health benefits of Tartary buckwheat flour obtained with different extrusion conditions including high, medium, and low temperature. Extrusion significantly decreased the fat content and changed the original color of Tartary buckwheat flour. The contents of protein, total flavonoids, and D-chiro-inositol were affected by the extrusion temperature and moisture. Extrusion significantly decreased the total flavonoids and flavonoid glycosides contents, while it significantly increased aglycones. Compared to native Tartary buckwheat flour and pregelatinization Tartary buckwheat flour obtained with traditional extrusion processing technology, the pregelatinization Tartary buckwheat flour obtained with improved extrusion processing technology contained higher aglycones and lower flavonoid glycosides, which had stronger antioxidant capacity, α-glucosidase inhibitory activity and relatively mild α-amylase inhibitory activity. Correlation analysis proved that the aglycone content was positively correlated with antioxidant and α-glucosidase inhibitory activities. These findings indicate that the pregelatinization Tartary buckwheat flour obtained with improved extrusion processing technology could be used as an ideal functional food resource with antioxidant and anti-diabetic potential.
Collapse
Affiliation(s)
- Zhuo Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Fan
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bao Xing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manli Zhu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Guixing Ren
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yang Yao
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lizhen Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Sciences, Shanxi University, Taiyuan, China
| | - Peiyou Qin
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Ansari P, Choudhury ST, Seidel V, Rahman AB, Aziz MA, Richi AE, Rahman A, Jafrin UH, Hannan JMA, Abdel-Wahab YHA. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081146. [PMID: 36013325 PMCID: PMC9409999 DOI: 10.3390/life12081146] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
Abstract
Diabetes Mellitus (DM) is a metabolic disorder that is spreading alarmingly around the globe. Type-2 DM (T2DM) is characterized by low-grade inflammation and insulin resistance and is closely linked to obesity. T2DM is mainly controlled by lifestyle/dietary changes and oral antidiabetic drugs but requires insulin in severe cases. Many of the drugs that are currently used to treat DM are costly and present adverse side effects. Several cellular, animal, and clinical studies have provided compelling evidence that flavonoids have therapeutic potential in the management of diabetes and its complications. Quercetin is a flavonoid, present in various natural sources, which has demonstrated in vitro and in vivo antidiabetic properties. It improves oral glucose tolerance, as well as pancreatic β-cell function to secrete insulin. It inhibits the α-glucosidase and DPP-IV enzymes, which prolong the half-life of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Quercetin also suppresses the release of pro-inflammatory markers such as IL-1β, IL-4, IL-6, and TNF-α. Further studies are warranted to elucidate the mode(s) of action of quercetin at the molecular level. This review demonstrates the therapeutic potential of quercetin in the management of T2DM.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-132-387-9720
| | - Samara T. Choudhury
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Akib Bin Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Md. Abdul Aziz
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Anika E. Richi
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Ayesha Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Umme H. Jafrin
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | | |
Collapse
|
28
|
Nguyen QV, Huyen B, Thi B, Tran MĐ, Nguyen MT, Doan MD, Nguyen AD, Minh Le T, Tran VC, Pham TN. Impact of Different Drying Temperatures on In Vitro Antioxidant and Antidiabetic Activities and Phenolic Compounds of Wild Guava Leaves Collected in the Central Highland of Vietnam. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221095349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Most biologically natural compounds are very sensitive and easily degradable under drying conditions. This study aimed to investigate the effect of drying temperature on the contents of phenolic compounds and in vitro antioxidant and antidiabetic activities of wild guava leaves. Wild guava leaves were dried at 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C, as well as sun drying (SD). The total phenolic and flavonoid contents (TPC and TFC) were measured using the colorimetric method. Antioxidant activity was determined by the 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) and 2,2-azino-bis(3-ethylbenzothazoline-6-sulfonic acid (ABTS) radical scavenging activity assays. In vitro antidiabetic activity was measured by assessing α-glucosidase and α-amylase inhibitory activities. The contents of individual phenolic compounds were determined using ultra-performance liquid chromatography (UPLC). The principal component analysis (PCA) results revealed that hot air drying at different temperatures had significantly different effects on the bioactive compounds and biological properties of guava leaves. Drying at high or low temperatures resulted in a higher degradable rate of bioactive compounds leading to a weakening of the biological properties. Drying at 50 °C resulted in high TPC and TFC as well as the highest in vitro antioxidant and antidiabetic activities. Furthermore, the highest contents of gallic acid, catechin, rutin, quercetin, apigenin, quercitrin, vitexin, and apigenin-7- O-D-glucopyranoside were found in samples dried at 50 °C, whereas the highest contents of chlorogenic acid, epicatechin, and ellagic acid were observed in samples dried at 60 °C. Therefore, drying at 50 °C was the suitable temperature for retaining valuable biological compounds in wild guava leaves.
Collapse
Affiliation(s)
- Quang-Vinh Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City, Dak Lak Province, Vietnam
| | - Bich Huyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City, Dak Lak Province, Vietnam
| | | | - Minh-Đinh Tran
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City, Dak Lak Province, Vietnam
| | - Minh-Trung Nguyen
- Faculty of Natural science and Technology, Tay Nguyen University, Buon Ma Thuot City, Dak Lak Province, Vietnam
| | - Manh-Dung Doan
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City, Dak Lak Province, Vietnam
| | - Anh-Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City, Dak Lak Province, Vietnam
| | - Tam Minh Le
- Faculty of Food Science and Technology, Ho CHi Minh City University of Food Industry, Tan Phu Dist. Ho Chi Minh City, Vietnam
| | - Van-Cuong Tran
- Faculty of Agriculture and Forestry, Tay Nguyen University, Buon Ma Thuot City, Dak Lak Province, Vietnam
| | - Tri-Nhut Pham
- Faculty of Environment and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
29
|
Tongkaew P, Tohraman A, Bungaramphai R, Mitrpant C, Aydin E. Kluai Hin (Musa sapientum Linn.) peel as a source of functional polyphenols identified by HPLC-ESI-QTOF-MS and its potential antidiabetic function. Sci Rep 2022; 12:4145. [PMID: 35264695 PMCID: PMC8907229 DOI: 10.1038/s41598-022-08008-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
To date, information on the polyphenolic composition of Kluai Hin banana peel and pulp and the potential antidiabetic activity of its major active compounds is limited. This study aimed to identify polyphenols in extracts of fresh and freeze-dried Kluai Hin banana peel and pulp (methanol:water; M:W, 80:20 for flavonoids and acetone:water:acetic acid; A:W:A, 50:49:1 for phenolic acids) by RP-HPLC-DAD and HPLC-ESI-QTOF-MS. Additionally, inhibition of α-amylase and α-glucosidase activities was investigated with crude extracts from Kluai Hin banana peel and pulp, and compared with its major polyphenols ((+)-catechin, (-)-epicatechin and gallic acid) and the antidiabetic drug acarbose. (-)-Gallocatechin was the most abundant polyphenol and was detected in all fresh and freeze-dried pulp and peel extracts by RP-HPLC-DAD. Furthermore, unidentified polyphenol peaks of Kluai Hin were further explored by HPLC-ESI-QTOF-MS. The A:W:A fresh peel extract contained more total phenolic content (811.56 mg GAE/100 g) than the freeze-dried peel (565.03 mg GAE/100 g). A:W:A extraction of the fresh and freeze-dried peel of exhibited IC50 values for α-amylase activity 2.66 ± 0.07 mg/ml and 2.97 ± 0.00 mg/ml, respectively, but its inhibitory activity was lower than acarbose (IC50 = 0.25 ± 0.01 mg/ml). Peel extracts inhibited α-glucosidase activity, whereas pulp extracts had no effect. In addition, all standards, except gallocatechin, activated α-amylase activity, while, gallocatechin inhibited α-glucosidase activity better than acarbose. Therefore, we propose a further investigation into the use of Kluai Hin banana peel as a potential functional food for the management of postprandial glycaemic response to reduce diabetes risk and in the management of diabetes with a commercial drug.
Collapse
Affiliation(s)
- Patthamawadee Tongkaew
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand.
| | - Anna Tohraman
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand
| | - Ramlatee Bungaramphai
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ebru Aydin
- Department of Food Engineering, Suleyman Demirel University, Isparta, 32260, Turkey
| |
Collapse
|
30
|
Swilam N, Nawwar MAM, Radwan RA, Mostafa ES. Antidiabetic Activity and In Silico Molecular Docking of Polyphenols from Ammannia baccifera L. subsp. Aegyptiaca (Willd.) Koehne Waste: Structure Elucidation of Undescribed Acylated Flavonol Diglucoside. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030452. [PMID: 35161433 PMCID: PMC8840488 DOI: 10.3390/plants11030452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Chemical investigation of the aerial parts of Ammania aegyptiaca ethanol extract (AEEE) showed high concentrations of polyphenol and flavonoid content, with notable antioxidant activity. Undescribed acylated diglucoside flavonol myricetin 3-O-β-4C1-(6″-O-galloyl glucopyranoside) 7-O-β-4C1-glucopyranoside (MGGG) was isolated from the aerial parts of AEEE, along with four known polyphenols that had not been characterized previously from AEEE. The inhibitory effects of MGGG, AEEE, and all compounds against α-amylase, pancreatic lipase and β-glucosidase were assessed. In addition, molecular docking was used to determine the inhibition of digestive enzymes, and this confirmed that the MGGG interacted strongly with the active site residues of these enzymes, with the highest binding free energy against α-amylase (-8.99 kcal/mol), as compared to the commercial drug acarbose (-5.04 kcal/mol), thus justifying its use in the potential management of diabetes. In streptozotocin (STZ)-induced diabetic rats, AEEE significantly decreased high serum glucose, α-amylase activity and serum liver and kidney function markers, as well as increasing insulin blood level. Moreover, AEEE improved the lipid profile of diabetic animals, increased superoxide dismutase (SOD) activity, and inhibited lipid peroxidation. Histopathological studies proved the decrease in pancreas damage and supported the biochemical findings. These results provide evidence that AEEE and MGGG possess potent antidiabetic activity, which warrants additional investigation.
Collapse
Affiliation(s)
- Noha Swilam
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk City 11837, Egypt
| | - Mahmoud A. M. Nawwar
- National Research Centre, Department of Phytochemistry and Plant Systematic, Dokki 12622, Egypt;
| | - Rasha A. Radwan
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, El Ismailia 41611, Egypt;
| | - Eman S. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, October University of Modern Sciences and Arts (MSA University), Giza 11787, Egypt;
| |
Collapse
|
31
|
Sinan KI, Akpulat U, Aldahish AA, Celik Altunoglu Y, Baloğlu MC, Zheleva-Dimitrova D, Gevrenova R, Lobine D, Mahomoodally MF, Etienne OK, Zengin G, Mahmud S, Capasso R. LC-MS/HRMS Analysis, Anti-Cancer, Anti-Enzymatic and Anti-Oxidant Effects of Boerhavia diffusa Extracts: A Potential Raw Material for Functional Applications. Antioxidants (Basel) 2021; 10:2003. [PMID: 34943106 PMCID: PMC8698501 DOI: 10.3390/antiox10122003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Boerhavia diffusa is a great tropical plant and is widely used for various traditional purposes. In the present study, we examined the influence of solvents (dichloromethane, ethyl acetate, methanol and infusion (water)) on chemical composition and biological capabilities of B. diffusa. An UHPLC-HRMS method was used to determine the chemical characterization. The biological ability was examined for antioxidant, enzyme inhibitory and anti-cancer effects. To evaluate antioxidant effects, different chemical methods (ABTS, DPPH, CUPRAC, FRAP, metal chelating and phosphomolybdenum) were applied. With regard to enzyme inhibitory properties, cholinesterases, amylase, glucosidase and tyrosinase were used. The MDA-MB-231 breast cancer cell line was chosen to determine anticancer activity. Based on the UHPLC-HRMS analysis, 37 specialized metabolites were dereplicated and identified in the studied extracts. Results revealed the presence of 15 hydroxybenzoic, hydroxycinnamic, acylquinic acids, and their glycosides, one rotenoid, seven flavonoids, 12 fatty acids and two other glycosides. Among the tested extracts, the methanol extract showed a stronger antioxidant ability compared with other extracts. The methanol extract also showed the best inhibitory effects on tyrosinase and glucosidase. In the anti-cancer evaluation, the methanol extract showed stronger anticancer effects compared with water extract. In summary, our observations can contribute to the establishment of B. diffusa as a potential candidate for functional applications in the preparation.
Collapse
Affiliation(s)
- Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Uğur Akpulat
- Department of Medical Biology, Faculty of Medicine, Kastamonu University, Kastamonu 37150, Turkey;
| | - Afaf A. Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Asir, Saudi Arabia;
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey; (Y.C.A.); (M.C.B.)
| | - Mehmet Cengiz Baloğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey; (Y.C.A.); (M.C.B.)
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1431 Soifa, Bulgaria; (D.Z.-D.); (R.G.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1431 Soifa, Bulgaria; (D.Z.-D.); (R.G.)
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (D.L.); (M.F.M.)
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (D.L.); (M.F.M.)
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan 00225, Côte d’Ivoire;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
32
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
33
|
Ankolekar C, Sarkar D, Greene D, Shetty K. Using Biological Elicitation to Improve Type 2 Diabetes Targeted Food Quality of Stored Apple. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.709384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food quality improvements of fresh fruits targeting both food preservation and human health is essential to advance healthy dietary options and to mitigate imbalanced nutrition-linked non-communicable chronic disease (NCDs) challenges globally. Specifically, protective phenolic bioactives of fruits with dual functional benefits can be harnessed to advance innovations for improving nutritional quality and post-harvest shelf-life of perishable fruits. Based on this rationale the dual functional benefits of plant phenolics were harnessed using novel biological elicitation strategies to modulate phenolic bioactive-linked protective responses in apple during storage in two interrelated studies. Bioprocessed food-grade elicitors [water soluble chitosan oligosaccharide -(COS) and phenolic enriched oregano extracts-(OX)] were targeted as post-harvest dipping treatments (2 & 4 g/ L) and compared with diphenylamine (DPA) (1 & 2 g/L) to enhance phenolic-linked antioxidant and anti-diabetic (type 2 diabetes) relevant properties of Cortland apple during 3 months of storage (4°C). The selection of bio-elicitors and respective doses were based on the foundations of the previous related study, which resulted in reduction of superficial scald of Cortland apple during storage. Apples sampled over 3 months as aqueous and ethanol (12%) extracts of peel and pulp were analyzed separately for total soluble phenolic content, phenolic profile, antioxidant activity, and glucose metabolism relevant α-amylase and α-glucosidase enzyme inhibitory activities using in vitro assay models. Enhanced soluble phenolic content and associated antioxidant activity were observed in ethanol (12%) extracts of apple peel with 4 g/L COS elicitor treatments after 2 and 3 months of storage. High chlorogenic acid and quercetin derivatives were found in peel extracts of Cortland apple, while pulp extracts had high chlorogenic and gallic acids. Additionally, high α-glucosidase enzyme inhibitory activity, which is relevant for managing post-prandial hyperglycemia of type 2 diabetes was also observed in bio-elicited apple peel and pulp extracts. Therefore, results of these two interrelated studies indicate that bioprocessed food grade elicitor such as OX and COS can be recruited as a novel tool to enhance protective phenolic responses for improving type 2 diabetes targeted food quality and post-harvest storage quality of apple.
Collapse
|
34
|
Devecchi A, Demasi S, Saba F, Rosato R, Gambino R, Ponzo V, De Francesco A, Massarenti P, Bo S, Scariot V. Compositional Characteristics and Antioxidant Activity of Edible Rose Flowers and Their Effect on Phenolic Urinary Excretion. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/142639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
35
|
Abbot V, Bhardwaj V, Sharma P. Investigation of intermolecular interactions of anionic surfactant SDS and rutin: A physico-chemical approach for pharmaceutical application. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Fais A, Delogu GL, Floris S, Era B, Medda R, Pintus F. Euphorbia characias: Phytochemistry and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1468. [PMID: 34371671 PMCID: PMC8309316 DOI: 10.3390/plants10071468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
The aim of this review is to summarize all the compounds identified and characterized from Euphorbia characias, along with the biological activities reported for this plant. Euphorbia is one of the greatest genera in the spurge family of Euphorbiaceae and includes different kinds of plants characterized by the presence of milky latex. Among them, the species Euphorbia characias L. is an evergreen perennial shrub widely distributed in Mediterranean countries. E. characias latex and extracts from different parts of the plant have been extensively studied, leading to the identification of several chemical components such as terpenoids, sterol hydrocarbons, saturated and unsaturated fatty acids, cerebrosides and phenolic and carboxylic acids. The biological properties range between antioxidant activities, antimicrobial, antiviral and pesticidal activities, wound-healing properties, anti-aging and hypoglycemic properties and inhibitory activities toward target enzymes related to different diseases, such as cholinesterases and xanthine oxidase. The information available in this review allows us to consider the plant E. characias as a potential source of compounds for biomedical research.
Collapse
Affiliation(s)
| | | | | | | | - Rosaria Medda
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (A.F.); (G.L.D.); (S.F.); (B.E.); (F.P.)
| | | |
Collapse
|
38
|
The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678662. [PMID: 34257817 PMCID: PMC8249127 DOI: 10.1155/2021/6678662] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/17/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
Metabolic diseases have become major public health issues worldwide. Searching for effective drugs for treating metabolic diseases from natural compounds has attracted increasing attention. Quercetin, an important natural flavonoid, is extensively present in fruits, vegetables, and medicinal plants. Due to its potentially beneficial effects on human health, quercetin has become the focus of medicinal attention. In this review, we provide a timely and comprehensive summary of the pharmacological advances and clinical data of quercetin in the treatment of three metabolic diseases, including diabetes, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD). Accumulating evidences obtained from animal experiments prove that quercetin has beneficial effects on these three diseases. It can promote insulin secretion, improve insulin resistance, lower blood lipid levels, inhibit inflammation and oxidative stress, alleviate hepatic lipid accumulation, and regulate gut microbiota disorders in animal models. However, human clinical studies on the effects of quercetin in diabetes, hyperlipidemia, and NAFLD remain scarce. More clinical trials with larger sample sizes and longer trial durations are needed to verify its true effectiveness in human subjects. Moreover, another important issue that needs to be resolved in future research is to improve the bioavailability of quercetin. This review may provide valuable information for the basic research, drug development, and clinical application of quercetin in the treatment of metabolic diseases.
Collapse
|
39
|
Comprehensive evaluation of two Astragalus species (A. campylosema and A. hirsutus) based on biological, toxicological properties and chemical profiling. Food Chem Toxicol 2021; 154:112330. [PMID: 34116105 DOI: 10.1016/j.fct.2021.112330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
Astragalus L. (Fabaceae) is an important genus with numerous species having various traditional medicinal uses making them of interest for scientific investigations to ascertain their therapeutic benefits. In the present study, the quantitative polyphenolic profiles of methanolic extracts from different parts (leaves, flowers, and roots) of two endemic Astragalus species growing in Turkey, i.e. A. campylosema Boiss. and A. hirsutus Vahl were determined, along with their antioxidant and enzyme inhibitory properties. A. campylosema and A. hirsutus extracts showed varying total phenolic (25.80-40.60 and18.59-29.46 mg GAE/g, respectively) and total flavonoid (11.21-105.91 and 16.06-131.91 mg RE/g, respectively) contents. HPLC-MS/MS revealed rutin to be the predominant phenolic compound in all the extracts of A. campylosema and leaf extract of A. hirsutus (133.53-752.42 μg g-1), while hyperoside was the major one in the flower and root extracts of A. hirsutus (2014.07 and 123.13 μg g-1, respectively). In DPPH and ABTS assays, radical scavenging capacity was demonstrated by all extracts of A. campylosema (47.13-48.10 and 87.03-115.36 mg TE/g, respectively) and A. hirsutus (17.82-38.67 and 47.84-57.29 mg TE/g, respectively). Reducing activity was also displayed by the extracts in CUPRAC and FRAP assays (A. campylosema: 83.06-135.20 and 59.15-90.19 mg TE/g, respectively; A. hirsutus: 53.02-83.42 and 31.25-43.25 mg TE/g, respectively). All extracts were also found to act as metal chelators (12.32-21.45 mg EDTAE/g) and exhibited total antioxidant capacity ranging from 1.16 to 1.60 mmol TE/g, in phosphomolybdenum assay. Acetyl- and butyryl-cholinesterase inhibitory effects were observed by all the extracts of the two species (1.56-4.99 mg GALAE/g). Anti-hyperpigmentation potential by inhibiting tyrosinase (54.55-67.35 mg KAE/g) was reported as well. Carbohydrate hydrolyzing enzymes, amylase and glucosidase were also inhibited (0.22-1.03 mmol ACAE/g). Overall, A. campylosema extracts showed relatively better antioxidant and enzyme inhibitory potentials compared to A. hirsutus extracts. Strikingly, A. hirsutus extracts was found to have higher AGE inhibition activity than A. campylosema. Although the cytotoxic effect of three different organs obtained from A. campylosema and A. hirsutus increased depending on the dose (from 10 to 200 μg/mL), it was found that both plant extracts did not show a genotoxic effect at the highest concentration of 200 μg/mL. Indeed, data amassed from this current scientific work showed the two selected Astragalus species to be rich in bioactive polyphenols that could be responsible for the various pharmacological activities and hence demands to be further explored for their possible applications as natural health promoting agents.
Collapse
|
40
|
Dall’Acqua S, Sinan KI, Sut S, Ferrarese I, Etienne OK, Mahomoodally MF, Lobine D, Zengin G. Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton hirtus L'Hér. Extracts Obtained with Different Solvents. Molecules 2021; 26:1902. [PMID: 33800622 PMCID: PMC8038089 DOI: 10.3390/molecules26071902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
Croton hirtus L'Hér methanol extract was studied by NMR and two different LC-DAD-MSn using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources to obtain a quali-quantitative fingerprint. Forty different phytochemicals were identified, and twenty of them were quantified, whereas the main constituents were dihydro α ionol-O-[arabinosil(1-6) glucoside] (133 mg/g), dihydro β ionol-O-[arabinosil(1-6) glucoside] (80 mg/g), β-sitosterol (49 mg/g), and isorhamnetin-3-O-rutinoside (26 mg/g). C. hirtus was extracted with different solvents-namely, water, methanol, dichloromethane, and ethyl acetate-and the extracts were assayed using different in vitro tests. The methanolic extracts presented the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) values. All the tested extracts exhibited inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with a higher activity observed for dichloromethane (AChE: 5.03 and BChE: 16.41 mgGALAE/g), while the methanolic extract showed highest impact against tyrosinase (49.83 mgKAE/g). Taken together, these findings suggest C. hirtus as a novel source of bioactive phytochemicals with potential for commercial development.
Collapse
Affiliation(s)
- Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey; (K.I.S.); (G.Z.)
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.)
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.)
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, 00225 Abidjan, Côte d’Ivoire;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius;
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey; (K.I.S.); (G.Z.)
| |
Collapse
|
41
|
Sood A, Kumar B, Singh SK, Prashar P, Gautam A, Gulati M, Pandey NK, Melkani I, Awasthi A, Saraf SA, Vidari G, Ozdemir M, Hussain FHS, Anwar ET, Ameen MSM, Gupta S, Porwal O. Flavonoids as Potential Therapeutic Agents for the Management of Diabetic Neuropathy. Curr Pharm Des 2020; 26:5468-5487. [DOI: 10.2174/1381612826666200826164322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Flavonoids are secondary metabolites that are widely distributed in plants. These phenolic compounds
are classified into various subgroups based on their structures: flavones, flavonols, isoflavones, flavanones, and
anthocyanins. They are known to perform various pharmacological actions like antioxidant, anti-inflammatory,
anticancer, antimicrobial, antidiabetic and antiallergic, etc. Diabetes is a chronic progressive metabolic disorder
that affects several biochemical pathways and leads to secondary complications such as neuropathy, retinopathy,
nephropathy, and cardiomyopathy. Among them, the management of diabetic neuropathy is one of the major
challenges for physicians as well as the pharmaceutical industries. Naturally occurring flavonoids are extensively
used for the treatment of diabetes and its related complications due to their antioxidant properties. Moreover,
flavonoids inhibit various pathways that are involved in the progression of diabetic neuropathy like the reduction
of oxidative stress, decrease in glycogenolysis, increase glucose utilization, decrease in the formation of advanced
glycation end products, and inhibition of the α-glucosidase enzyme. This review entails current updates on the
therapeutic perspectives of flavonoids in the treatment of neuropathic pain. This manuscript explains the pathological
aspects of neuropathic pain, the chemistry of flavonoids, and their application in amelioration of neuropathic
pain through preclinical studies either alone or in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Ankita Sood
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pankaj Prashar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anamika Gautam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Melkani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Subhini A Saraf
- Department of Pharmaceutical Sciences, School of Bioscience and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Giovani Vidari
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Mehmet Ozdemir
- Department of Densitry, Tishk International University- Erbil, Kurdistan Region, Iraq
| | | | - Esra Tariq Anwar
- Department of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| | | | - Saurabh Gupta
- Department of Pharmacology, Chitkara University, Rajpura, Punjab, India
| | - Omji Porwal
- Department of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| |
Collapse
|
42
|
Song K, Sivanesan I, Ak G, Zengin G, Cziáky Z, Jekő J, Rengasamy KRR, Lee ON, Kim DH. Screening of Bioactive Metabolites and Biological Activities of Calli, Shoots, and Seedlings of Mertensia maritima (L.) Gray. PLANTS 2020; 9:plants9111551. [PMID: 33198181 PMCID: PMC7697918 DOI: 10.3390/plants9111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023]
Abstract
Mertensia maritima (L.) Gray is threatened with extinction owing to climate change, poor seed germination, and ocean warming. In vitro explant-culture is used for ex situ preservation and plantlet massive production. In vitro cell and organ cultures serve as an alternative plant material source to investigate the biological activities and phytochemical profiles of rare plants. We aimed to develop an efficient callus and shoot production protocol and investigate bioactive metabolites, antioxidants, and enzyme inhibitory potential of M. maritima calli, shoots, and in vivo seedlings. The effects of combinations of different plant growth regulators, 6-BA (N6-benzyladenine), 6-KN (Kinetin), TDZ (Thidiazuron), and NAA (1-Naphthylacetic acid), in MS (Murashige and Skoog) nutrient medium were studied. The highest callus proliferation was obtained after 5-week cultivation over a 16-h photoperiod on growth medium MS enriched with 4 µM each of 6-BA and NAA. The medium with 2 µM 6-BA and 4 µM 6-KN had the best shoot induction rate (91.1%) with a mean of 13.4 shoots. The combination of two cytokinins (6-BA and 6-KN) was found to be effective in M. maritima shoot regeneration. The rooting frequency was 100% in ½ MS with Indole-3-butyric acid (IBA 2 µM). The number of detected compounds and chemical composition in the M. maritima shoots and seedlings extracts were similar. The total amount of phenolics in the shoots was 216.4% and 369.5% higher than in seedlings and calli, respectively. The total amount of flavonoids in the shoots was 241.1% and 429.3% higher than in seedlings and calli, respectively. The best antioxidant activity was obtained in the shoots, followed by seedlings and calli. However, the order was seedlings > calli > shoots regarding metal chelating ability. The strongest acetylcholinesterase inhibition properties were obtained in the calli, followed by seedlings and shoots. However, the tested samples can be ranked as seedlings > shoots > calli in butylcholinestrase inhibition assay. This study is the first report on the enzyme inhibitory effects of M. maritima extracts, providing valuable contributions to the scientific community.
Collapse
Affiliation(s)
- Kihwan Song
- Department of Bioresources Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2450-0576
| | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University, 42130 Konya, Turkey; (G.A.); (G.Z.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, 42130 Konya, Turkey; (G.A.); (G.Z.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - Kannan RR Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa
| | - O New Lee
- Department of Bioindustry and Bioresource Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Doo Hwan Kim
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
43
|
Quaresma DMO, Justino AB, Sousa RMF, Munoz RAA, de Aquino FJT, Martins MM, Goulart LR, Pivatto M, Espindola FS, de Oliveira A. Antioxidant compounds from Banisteriopsis argyrophylla leaves as α-amylase, α-glucosidase, lipase, and glycation inhibitors. Bioorg Chem 2020; 105:104335. [PMID: 33074116 DOI: 10.1016/j.bioorg.2020.104335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 01/16/2023]
Abstract
Banisteriopsis argyrophylla belongs to the Malpighiaceae family, which is a species from Cerrado, also known as "cipó-prata" or "cipó-folha-de-prata." Several species of this family present biological potential. This work reports the chemical identification of the ethanol extract (EE) and its fractions from B. argyrophylla leaves and shows the analysis of the antioxidant activity and inhibitory effects on activities of α-amylase, α-glucosidase and lipase, and non-enzymatic glycation. The ethyl acetate fraction (EAF) and n-butanol fraction (BF) showed antioxidant activity, with IC50 values of 4.1 ± 0.1 and 4.8 ± 0.1 μg mL-1, respectively, by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, and IC50 values of 6046.3 ± 174.2 and 6264.2 ± 32.2 µmol Trolox eq g-1 by the oxygen radical absorbance capacity (ORAC) method. Furthermore, the DPPH method with these fractions presented electroactive species with antioxidant potential, as shown by the differential pulse voltammetry (DPV) method. The inhibitory effects of the EAF and BF were demonstrated by the following results: IC50 of 5.1 ± 0.3 and 2.5 ± 0.2 μg mL-1 for α-amylase, IC50 of 1093.5 ± 26.0 and 1250.8 ± 21.9 μg mL-1 for α-glucosidase, IC50 of 8.3 ± 4.1 and 4.4 ± 1.0 μg mL-1 for lipase, and IC50 of 1.3 ± 0.1 and 0.9 ± 0.1 μg mL-1 for glycation. Some bioactive compounds were identified by (-)-ESI-MS/MS, such as catechin, procyanidins, glycosylated flavonoids, kaempferol, and megastigmane glucosides. The antidiabetic activity of B.argyrophylla has been reported for the first time.
Collapse
Affiliation(s)
- Daiane M O Quaresma
- Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila, 2121. Campus Santa Mônica, Uberlândia-MG, CEP 38400-902, Brazil
| | - Allisson B Justino
- Institute of Biotechnology, Federal University of Uberlândia, Av. Pará, 1720. Campus Umuarama, Uberlândia-MG, CEP 38400-902, Brazil
| | - Raquel M F Sousa
- Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila, 2121. Campus Santa Mônica, Uberlândia-MG, CEP 38400-902, Brazil
| | - Rodrigo A A Munoz
- Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila, 2121. Campus Santa Mônica, Uberlândia-MG, CEP 38400-902, Brazil
| | - Francisco J T de Aquino
- Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila, 2121. Campus Santa Mônica, Uberlândia-MG, CEP 38400-902, Brazil
| | - Mário M Martins
- Institute of Biotechnology, Federal University of Uberlândia, Av. Pará, 1720. Campus Umuarama, Uberlândia-MG, CEP 38400-902, Brazil
| | - Luiz R Goulart
- Institute of Biotechnology, Federal University of Uberlândia, Av. Pará, 1720. Campus Umuarama, Uberlândia-MG, CEP 38400-902, Brazil
| | - Marcos Pivatto
- Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila, 2121. Campus Santa Mônica, Uberlândia-MG, CEP 38400-902, Brazil
| | - Foued S Espindola
- Institute of Biotechnology, Federal University of Uberlândia, Av. Pará, 1720. Campus Umuarama, Uberlândia-MG, CEP 38400-902, Brazil
| | - Alberto de Oliveira
- Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila, 2121. Campus Santa Mônica, Uberlândia-MG, CEP 38400-902, Brazil.
| |
Collapse
|
44
|
Characterization of Polysaccharides Extracted from Pulps and Seeds of Crataegus azarolus L. var. aronia: Preliminary Structure, Antioxidant, Antibacterial, α-Amylase, and Acetylcholinesterase Inhibition Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1903056. [PMID: 32566076 PMCID: PMC7275951 DOI: 10.1155/2020/1903056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
Abstract
Polysaccharides from the pulps (CAP) and seeds (CAS) of Crataegus azarolus L. var. aronia were extracted by hot water method. Both polysaccharides were characterized by scanning electron microscopy (SEM), Congo red test, FT-IR spectroscopy, and their antioxidant, α-amylase, antiacetylcholinesterase, and antibacterial activities were evaluated. CAP showed the highest total carbohydrate (82.35%) and uronic acid (29.39%) contents. The Congo red test revealed the lack of triple-helical conformation for both polysaccharides. The comparison of both infrared spectra indicated similar patterns with the presence of typical bands of polysaccharides. However, the microstructure of both samples indicated differences when analyzed by SEM. CAP displayed higher antioxidant, α-amylase, and acetylcholinesterase inhibitory activities. Besides, CAP showed the strongest antimicrobial effects against seven microorganisms and, notably, the Gram-positive bacteria. Overall, the results suggest that polysaccharides from C. azarolus L. var. aronia may be considered as novel sources of antioxidants and recommended as enzyme inhibitory agents in food and pharmaceutical industries.
Collapse
|
45
|
Abdelli I, Benariba N, Adjdir S, Fekhikher Z, Daoud I, Terki M, Benramdane H, Ghalem S. In silico evaluation of phenolic compounds as inhibitors of Α-amylase and Α-glucosidase. J Biomol Struct Dyn 2020; 39:816-822. [PMID: 31955660 DOI: 10.1080/07391102.2020.1718553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of the present study focuses on the molecular docking approach to screen alternative drug that can regulate the hyperglycemia by down-regulating α-glucosidase and α-amylase activity using phenolic compounds: tannic acid (L1), catechin (L2), gallic acid (L3), quercetin (L5) and epicatechin (L6). L1 gives the best docking scores, its interaction with α-amylase and α-glucosidase has the lowest energy score compared to the other complexes and to the acarbose (L4). L1 forms strong five H-donor interactions with residues of active site of α-amylase and three H-donor interactions with α-glucosidase. The in silico evaluation of the unfavorable absorption, distribution, metabolism, and elimination (ADME) properties and drug-likeness revealed that L5 has high absorption compared to tannic acid and to the other compounds. This study revealed for the first time that tannic acid is a functional inhibitor of α-glucosidase and α-amylase activities and can be used as alternative for the regulation of post-prandial hyperglycaemia. Communicated by Ramaswamy Sarma.
Collapse
Affiliation(s)
- Imane Abdelli
- Higher School of Applied Sciences, Tlemcen, Algeria.,Laboratory of Natural and Bio-Actives Substances, Tlemcen University- Faculty of Science, Tlemcen, Algeria
| | - Nabila Benariba
- Antibiotic, Antifungal Laboratory: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Faculty SNV-STU, Abou Bekr Belkaïd University, Tlemcen, Algeria
| | - Sara Adjdir
- Antibiotic, Antifungal Laboratory: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Faculty SNV-STU, Abou Bekr Belkaïd University, Tlemcen, Algeria
| | - Zohra Fekhikher
- Antibiotic, Antifungal Laboratory: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Faculty SNV-STU, Abou Bekr Belkaïd University, Tlemcen, Algeria
| | - Ismail Daoud
- Laboratory of Natural and Bio-Actives Substances, Tlemcen University- Faculty of Science, Tlemcen, Algeria.,Department of Matter Sciences, University Mohamed Khider, Biskra, Algeria
| | - Mohammed Terki
- Antibiotic, Antifungal Laboratory: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Faculty SNV-STU, Abou Bekr Belkaïd University, Tlemcen, Algeria
| | - Hanane Benramdane
- Antibiotic, Antifungal Laboratory: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Faculty SNV-STU, Abou Bekr Belkaïd University, Tlemcen, Algeria
| | - Said Ghalem
- Laboratory of Natural and Bio-Actives Substances, Tlemcen University- Faculty of Science, Tlemcen, Algeria
| |
Collapse
|
46
|
The impact of Tartary buckwheat extract on the nutritional property of starch in a whole grain context. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Di Sotto A, Locatelli M, Macone A, Toniolo C, Cesa S, Carradori S, Eufemi M, Mazzanti G, Di Giacomo S. Hypoglycemic, Antiglycation, and Cytoprotective Properties of a Phenol-Rich Extract From Waste Peel of Punica granatum L. var. Dente di Cavallo DC2. Molecules 2019; 24:E3103. [PMID: 31461832 PMCID: PMC6749322 DOI: 10.3390/molecules24173103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Pomegranate peel is a natural source of phenolics, claimed to possess healing properties, among which are antioxidant and antidiabetic. In the present study, an ethyl acetate extract, obtained by Soxhlet from the peel of Dente di Cavallo DC2 pomegranate (PGE) and characterized to contain 4% w/w of ellagic acid, has been evaluated for its hypoglycemic, antiglycation, and antioxidative cytoprotective properties, in order to provide possible evidence for future nutraceutical applications. The α-amylase and α-glucosidase enzyme inhibition, interference with advanced glycation end-products (AGE) formation, and metal chelating abilities were studied. Moreover, the possible antioxidant cytoprotective properties of PGE under hyperglycemic conditions were assayed. Phenolic profile of the extract was characterized by integrated chromatographic and spectrophotometric methods. PGE resulted able to strongly inhibit the tested enzymes, especially α-glucosidase, and exerted chelating and antiglycation properties. Also, it counteracted the intracellular oxidative stress under hyperglycemic conditions, by reducing the levels of reactive oxygen species and total glutathione. Among the identified phenolics, rutin was the most abundant flavonoid (about 4 % w/w). Present results suggest PGE to be a possible remedy for hyperglycemia management and encourage further studies to exploit its promising properties.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Marcello Locatelli
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Alberto Macone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, P.le A. Moro 5, 00185 Rome, Italy
| | - Chiara Toniolo
- Department of Environmental Biology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Stefania Cesa
- Department of Chemistry and Technology of Drugs, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, P.le A. Moro 5, 00185 Rome, Italy
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
48
|
Petersen MJ, de Cássia Lemos Lima R, Kjaerulff L, Staerk D. Immobilized α-amylase magnetic beads for ligand fishing: Proof of concept and identification of α-amylase inhibitors in Ginkgo biloba. PHYTOCHEMISTRY 2019; 164:94-101. [PMID: 31103779 DOI: 10.1016/j.phytochem.2019.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Diabetes mellitus is a widespread metabolic disorder that affects millions of people around the world. The disease is a major burden on both economic and social levels, and there is a need for improved drugs with fewer side effects in the management of the disease. Current methods for isolation of anti-diabetic lead compounds from complex mixtures suffer from low resolution and sensitivity, and there is a need for improved alternatives. In this work, magnetic ligand fishing combined with high-performance liquid chromatography - photodiode-array detection - high-resolution mass spectrometry - solid-phase extraction - nuclear magnetic resonance spectroscopy (HPLC-PDA-HRMS-SPE-NMR) was developed and validated, with the aim of accelerating discovery of natural products targeting α-amylase. The enzyme was successfully immobilized onto magnetic beads and retained its catalytic activity for a period of 75 days, and the specificity of this method was successfully validated by testing the N-terminus coupled α-amylase immobilized magnetic beads on an artificial mixture. A proof of concept experiment, using a crude ethyl acetate extract of Ginkgo biloba leaves, proved that it was possible to fish out four α-amylase ligands. HPLC-PDA-HRMS-SPE-NMR analysis confirmed the presence of bilobetin, isoginkgetin, ginkgetin and sciadopitysin in the solutions resulting from α-amylase ligand fishing with Ginkgo biloba. IC50 curves revealed a reversed relationship between concentration of sciadopitysin and inhibition of α-amylase activity, suggesting that this compound activated the enzyme instead of inhibiting it.
Collapse
Affiliation(s)
- Malene J Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Rita de Cássia Lemos Lima
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
49
|
Rezabakhsh A, Rahbarghazi R, Malekinejad H, Fathi F, Montaseri A, Garjani A. Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:183-193. [PMID: 30668339 DOI: 10.1016/j.phymed.2018.11.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Quercetin, a flavonoid antioxidant, has been found to exert therapeutic effects in diabetic condition. Autophagy represents a homeostatic cellular mechanism for the turnover of unfolds proteins and damaged organelles through a lysosome-dependent degradation manner. We speculated that quercetin could protect endothelial cells against high glucose-induced damage by promoting autophagic responses. METHODS HUVECs viability was evaluated by MTT method. Griess and TBARS assays were used to monitor the levels of NO and MDA, respectively. Intracellular ROS generation was determined in DCFDA-stained cells analyzed by flow cytometry. To investigate the role of quercetin in endothelial cell migratory behavior, we used a scratch test. The level of autophagy proteins LC3, Beclin-1 and P62 were measured by western blotting technique. RESULTS Our results showed that quercetin had the potential to increase cell survival after exposure to high glucose (P < 0.05). Total levels of oxidative stress markers were profoundly decreased and the activity of GSH was increased by quercetin (P < 0.05). High glucose suppressed HUVECs migration to the scratched area (P < 0.05). However, a significant stimulation in cell migration was observed after exposure to quercetin (P < 0.05). Based on data, autophagy was blocked at the late stage by high glucose concentration while quercetin enhanced autophagic response by reducing the P62 level coincided with the induction of Beclin-1 and LC3-II to LC3-I ratio (P < 0.05). All these beneficial effects were reversed by 3-methyladenine as an autophagy inhibitor. CONCLUSION Together, our data suggest that quercetin could protect HUVECs from high glucose induced-damage possibly by activation of the autophagy response.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzaneh Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Garjani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Wang H, Ye YH, Wang HH, Liu J, Liu YJ, Jiang BW. HPLC-QTOF-MS/MS profiling, antioxidant, and α-glucosidase inhibitory activities of Pyracantha fortuneana fruit extracts. J Food Biochem 2019; 43:e12821. [PMID: 31353511 DOI: 10.1111/jfbc.12821] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 11/27/2022]
Abstract
This study was carried out to optimize the solvent for extracting the antioxidants and α-glucosidase inhibitors (AGIs) from Pyracantha fortuneana fruit (PFF) and the major chemical components were characterized by HPLC-QTOF-MS/MS. The results showed that 50% and 70% acetone (v/v, ml/ml) gave the best extraction efficiency on phenolics and total flavonoids, while 70% acetone and 50% methanol possess better recovery on protein and polysaccharides, respectively. In addition, the 50% and 70% acetone extracts gave the strongest radical scavenging ability and α-glucosidase inhibitory activity (p > 0.05), but the Fe3+ reducing power of the 50% acetone extract was higher than that of 70% acetone. Correlation analysis indicated that phenolic acids and flavonoids were connected to the antioxidant activity and α-glucosidase inhibitory activity closely. Moreover, 25 compounds including 7 flavonoids, 6 phenolic acids, 7 organic acids, 3 tannins, 1 terpene, and 1 alkaloid were identified or tentatively identified in the 50% acetone extract. Overall, 50% acetone can be a proper solvent for extracting antioxidants and AGIs from PFF. PRACTICAL APPLICATIONS: Imbalance between production and clearance of reactive oxygen species (ROS) in the body could induce various chronic diseases. PFF is an edible fruit beneficial to human health; it is reported to be capable of optimizing blood glucose levels and may prevent premature aging. In the present study, PFF was found to be excellent in antioxidant activities and α-glucosidase inhibitory ability; 50% acetone was found to be the best extraction solvent. In addition, the predominant phytochemical components of the 50% acetone extract were characterized. This study can promote further research of Pyracantha fortuneana in natural functional products, especially in the prevention of type II diabetes and its complication.
Collapse
Affiliation(s)
- Hao Wang
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, National Research and Development Center of Freshwater Fish Processing, Nanchang, China
| | - Yun-Hua Ye
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, National Research and Development Center of Freshwater Fish Processing, Nanchang, China
| | - Hong-Hong Wang
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, National Research and Development Center of Freshwater Fish Processing, Nanchang, China
| | - Jun Liu
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, National Research and Development Center of Freshwater Fish Processing, Nanchang, China
| | - Yan-Jiang Liu
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, National Research and Development Center of Freshwater Fish Processing, Nanchang, China
| | - Bo-Wen Jiang
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, National Research and Development Center of Freshwater Fish Processing, Nanchang, China
| |
Collapse
|