1
|
Electrochemical (bio)sensors based on carbon quantum dots, ionic liquid and gold nanoparticles for bisphenol A. Anal Biochem 2023; 662:115002. [PMID: 36473678 DOI: 10.1016/j.ab.2022.115002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
Electrochemical (bio)sensors were developed for bisphenol A (BPA) determination. Screen printed carbon electrode (SPCE) was modified with ionic liquid 1- butyl-3-methylimidazolium tetrafluoroborate (IL), carbon quantum dots (CQD) and gold nanoparticles (AuNP) for the fabrication of the BPA sensor. Electrode surface composition was optimized for the deposition time of AuNP, amount of CQD and percentage of IL using the central composite design (CCD) method. The results of the CCD study indicated that maximum amperometric response was recorded when 9.8 μg CQD, 3% IL and 284 s AuNP deposition time were used in modification. Tyrosinase (Ty) was further modified on the AuNP/CQD-IL/SPCE to fabricate the biosensor. Analytical performance characteristics of the BPA sensor were investigated by differential pulse anodic adsorptive stripping voltammetry and the AuNP/CQD-IL/SPCE sensor exhibited a linear response to BPA in the range of 2.0 × 10-8 - 3.6 × 10-6 M with a detection limit of 1.1 × 10-8 M. Amperometric measurements showed that the linear dynamic range and detection limit of the Ty/AuNP/CQD-IL/SPCE were 2.0 × 10-8 - 4.0 × 10-6 M and 6.2 × 10-9 M, respectively. Analytical performance characteristics such as sensitivity, reproducibility and selectivity were investigated for the presented (bio)sensors. The analytical applicability of the (bio)sensors to the analysis of BPA in mineral water samples was also tested.
Collapse
|
2
|
He S, Xia H, Chang F. Enzyme free electrochemical determination of bisphenol A using screen-printed electrode modified by graphdiyne and carbon nanotubes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Electrochemical detection of bisphenols in food: A review. Food Chem 2021; 346:128895. [PMID: 33421902 DOI: 10.1016/j.foodchem.2020.128895] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Bisphenols (BPs) are worldwide used organic compounds in plastics, belonging to the group of endocrine disrupting chemicals (EDCs) which exhibits endocrine disruption to beings. Migration of BPs from food contact materials like plastic containers, epoxy coatings in metal cans and thermal papers, would results in bioaccumulation of BPs in human beings, causing adverse health effects. Therefore, sensitive and selective determination of BPs in food is needed. Among different strategies have been explored for the detection of BPs, electrochemical sensors with relatively high sensitivity and fast response are promising. This paper is devoted to comprehensively review the developed electrochemical methods for BPs sensing in food, so that to find a direction for developing low cost, high accuracy and compatibility sensors toward the sensitive and selective detection of BPs. Different electrochemical technologies categorized by recognition agents, aptamers, enzymes, molecularly imprinted polymers and nanomaterials are discussed and summarized in their mechanisms, usages, merits and limitations. The challenges and further perspectives in the development of electrochemical sensors is also discussed.
Collapse
|
4
|
Raymundo-Pereira PA, Silva TA, Caetano FR, Ribovski L, Zapp E, Brondani D, Bergamini MF, Marcolino LH, Banks CE, Oliveira ON, Janegitz BC, Fatibello-Filho O. Polyphenol oxidase-based electrochemical biosensors: A review. Anal Chim Acta 2020; 1139:198-221. [PMID: 33190704 DOI: 10.1016/j.aca.2020.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The detection of phenolic compounds is relevant not only for their possible benefits to human health but also for their role as chemical pollutants, including as endocrine disruptors. The required monitoring of such compounds on-site or in field analysis can be performed with electrochemical biosensors made with polyphenol oxidases (PPO). In this review, we describe biosensors containing the oxidases tyrosinase and laccase, in addition to crude extracts and tissues from plants as enzyme sources. From the survey in the literature, we found that significant advances to obtain sensitive, robust biosensors arise from the synergy reached with a diversity of nanomaterials employed in the matrix. These nanomaterials are mostly metallic nanoparticles and carbon nanostructures, which offer a suitable environment to preserve the activity of the enzymes and enhance electron transport. Besides presenting a summary of contributions to electrochemical biosensors containing PPOs in the last five years, we discuss the trends and challenges to take these biosensors to the market, especially for biomedical applications.
Collapse
Affiliation(s)
| | - Tiago A Silva
- Departamento de Metalurgia e Química, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), 35180-008, Timóteo, MG, Brazil
| | - Fábio R Caetano
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Laís Ribovski
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Eduardo Zapp
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-256, Brazil
| | - Daniela Brondani
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-256, Brazil
| | - Marcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Luiz H Marcolino
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno C Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, SP, Brazil.
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Wen Y, Li R, Liu J, Zhang X, Wang P, Zhang X, Zhou B, Li H, Wang J, Li Z, Sun B. Promotion effect of Zn on 2D bimetallic NiZn metal organic framework nanosheets for tyrosinase immobilization and ultrasensitive detection of phenol. Anal Chim Acta 2020; 1127:131-139. [PMID: 32800116 DOI: 10.1016/j.aca.2020.06.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Environmental monitoring of pollutants is essential to guarantee the human health and maintain the ecosystem. The exploration of both simple and sensitive detection method has aroused widespread attentions. Herein, 2D bimetallic metal organic framework nanosheets (NiZn-MOF NSs) with tunable Ni/Zn ratios were synthesized, and for the first time employed to construct a tyrosinase biosensor. It is revealed that Zn element not only tuned the porosity structure and electronic structure of MOF NSs, but also modified their electrochemical activity. As a result, enzyme immobilization and electrochemical sensing performance of the NiZn-MOF NSs based biosensor were significantly enhanced by a suitable Zn addition. The fabricated tyrosinase biosensor exhibited excellent analytical detections, with a wide linear range from 0.08 μM to 58.2 μM, a high sensitivity of 159.3 mA M-1, and an ultralow detection limit of 6.5 nM. In addition, the proposed biosensing approach also demonstrated good repeatability, superior selectivity, long-term stability, and high recovery for phenol detection in the real tap water samples.
Collapse
Affiliation(s)
- Yangyang Wen
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Rui Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Jiahao Liu
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Xin Zhang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Ping Wang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Xiang Zhang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bin Zhou
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Hongyan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China.
| | - Zhenxing Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
6
|
Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:37-46. [DOI: 10.1016/j.msec.2019.01.082] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 11/19/2022]
|
7
|
Jiang L, Santiago I, Foord J. Nanocarbon and nanodiamond for high performance phenolics sensing. Commun Chem 2018. [DOI: 10.1038/s42004-018-0045-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
8
|
Advances in sensing and biosensing of bisphenols: A review. Anal Chim Acta 2017; 998:1-27. [PMID: 29153082 DOI: 10.1016/j.aca.2017.09.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/19/2022]
Abstract
Bisphenols (BPs) are well known endocrine disrupting chemicals (EDCs) that cause adverse effects on the environment, biotic life and human health. BPs have been studied extensively because of an increasing concern for the safety of the environment and for human health. They are major raw materials for manufacturing polycarbonates, thermal papers and epoxy resins and are considered hazardous environmental contaminants. A vast array of sensors and biosensors have been developed for the sensitive screening of BPs based on carbon nanomaterials (carbon nanotubes, fullerenes, graphene and graphene oxide), quantum dots, metal and metal oxide nanocomposites, polymer nanocomposites, metal organic frameworks, ionic liquids and molecularly imprinted polymers. This review is devoted mainly to a variety of sensitive, selective and reliable sensing and biosensing methods for the detection of BPs using electrochemistry, fluorescence, colorimetry, surface plasmon resonance, luminescence, ELISAs, circular dichroism, resonance Rayleigh scattering and adsorption techniques in plastic products, food samples, food packaging, industrial wastes, pharmaceutical products, human body fluids and many other matrices. It summarizes the advances in sensing and biosensing methods for the detection of BPs since 2010. Furthermore, the article discusses challenges and future perspectives in the development of novel sensing methods for the detection of BP analogs.
Collapse
|
9
|
Varmira K, Saed-Mocheshi M, Jalalvand AR. Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: A comprehensive review. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Biosensor Based on Tyrosinase Immobilized on Graphene-Decorated Gold Nanoparticle/Chitosan for Phenolic Detection in Aqueous. SENSORS 2017; 17:s17051132. [PMID: 28509848 PMCID: PMC5470808 DOI: 10.3390/s17051132] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 02/04/2023]
Abstract
In this research work, electrochemical biosensor was fabricated based on immobilization of tyrosinase onto graphene-decorated gold nanoparticle/chitosan (Gr-Au-Chit/Tyr) nanocomposite-modified screen-printed carbon electrode (SPCE) for the detection of phenolic compounds. The nanocomposite film was constructed via solution casting method. The electrocatalytic activity of the proposed biosensor for phenol detection was studied using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Experimental parameters such as pH buffer, enzyme concentration, ratio of Gr-Au-Chit, accumulation time and potential were optimized. The biosensor shows linearity towards phenol in the concentration range from 0.05 to 15 μM with sensitivity of 0.624 μA/μM and the limit of detection (LOD) of 0.016 μM (S/N = 3). The proposed sensor also depicts good reproducibility, selectivity and stability for at least one month. The biosensor was compared with high-performance liquid chromatography (HPLC) method for the detection of phenol spiked in real water samples and the result is in good agreement and comparable.
Collapse
|
11
|
LU Z, WANG Y, ZHANG Z, SHEN Y, LI M. Tyrosinase Modified Poly(thionine) Electrodeposited Glassy Carbon Electrode for Amperometric Determination of Catechol. ELECTROCHEMISTRY 2017. [DOI: 10.5796/electrochemistry.85.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- ZhenYong LU
- School of Chemical Engineering, University of Science and Technology LiaoNing
| | - Yue WANG
- School of Chemical Engineering, University of Science and Technology LiaoNing
| | - ZhiQiang ZHANG
- School of Chemical Engineering, University of Science and Technology LiaoNing
| | - Yang SHEN
- School of Chemical Engineering, University of Science and Technology LiaoNing
| | - MengFan LI
- School of Chemical Engineering, University of Science and Technology LiaoNing
| |
Collapse
|
12
|
Rana A, Kawde AN. Open-circuit Electrochemical Polymerization for the Sensitive Detection of Phenols. ELECTROANAL 2015. [DOI: 10.1002/elan.201500603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Li Y, Zhai X, Liu X, Wang L, Liu H, Wang H. Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 2015; 148:362-9. [PMID: 26653461 DOI: 10.1016/j.talanta.2015.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 12/19/2022]
Abstract
A simple bisphenol A (BPA) sensor was successfully fabricated based on ordered mesoporous carbon CMK-3 modified nano-carbon ionic liquid paste electrode (CMK-3/nano-CILPE). The nanostructure of CMK-3 and the surface morphologies of modified electrodes were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Electrochemical properties of the fabricated electrodes were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The fabricated sensor displayed excellent electroactivity towards bisphenol A using linear sweep voltammetry (LSV). Experimental conditions influencing the analytical performance of the modified electrode were optimized. Under optimal conditions, the oxidation peak current was proportional to BPA concentration in the range from 0.2 μM to 150 μM with a detection limit of 0.05 μM (S/N=3). This method was successfully used for determination of BPA leached from drinking bottle and plastic bag with good recoveries.
Collapse
Affiliation(s)
- Yonghong Li
- Electrochemistry and spectroscopy analysis laboratory, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China.
| | - Xiurong Zhai
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, PR China
| | - Xinsheng Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ling Wang
- Electrochemistry and spectroscopy analysis laboratory, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Herong Liu
- Electrochemistry and spectroscopy analysis laboratory, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Haibo Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
14
|
Romero-Arcos M, Garnica-Romo MG, Martinez-Flores HE, Vázquez-Marrufo G, Ramírez-Bon R, González-Hernández J, Barbosa-Cánovas GV. Enzyme Immobilization by Amperometric Biosensors with TiO2 Nanoparticles Used to Detect Phenol Compounds. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9129-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Nazari M, Kashanian S, Rafipour R. Laccase immobilization on the electrode surface to design a biosensor for the detection of phenolic compound such as catechol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 145:130-138. [PMID: 25770936 DOI: 10.1016/j.saa.2015.01.126] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/09/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Biosensors based on the coupling of a biological entity with a suitable transducer offer an effective route to detect phenolic compounds. Phenol and phenolic compounds are among the most toxic environmental pollutants. Laccases are multi-copper oxidases that can oxide phenol and phenolic compounds. A method is described for construction of an electrochemical biosensor to detect phenolic compounds based on covalent immobilization of laccase (Lac) onto polyaniline (PANI) electrodeposited onto a glassy carbon (GC) electrode via glutaraldehyde coupling. The modified electrode was characterized by voltammetry, Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) techniques. The results indicated that laccase was immobilized onto modified GC electrode by the covalent interaction between laccase and terminal functional groups of the glutaraldehyde. The laccase immobilized modified electrode showed a direct electron transfer reaction between laccase and the electrode. Linear range, sensitivity, and detection limit for this biosensor were 3.2 × 10(-6) to 19.6 × 10(-6)M, 706.7 mAL mol(-1), 2.07 × 10(-6)M, respectively.
Collapse
Affiliation(s)
- Maryam Nazari
- Faculty of Chemistry, Razi University, Kermanshah, Islamic Republic of Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Islamic Republic of Iran.
| | - Ronak Rafipour
- Department of Chemistry, College of Science, Kermanshah Branch, Islamic Azad University, Kermanshah, Islamic Republic of Iran
| |
Collapse
|
16
|
Wang X, Lu X, Wu L, Chen J. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosens Bioelectron 2015; 65:295-301. [DOI: 10.1016/j.bios.2014.10.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/24/2014] [Accepted: 10/05/2014] [Indexed: 10/24/2022]
|
17
|
Hernández-Cancel G, Suazo-Dávila D, Medina-Guzmán J, Rosado-González M, Díaz-Vázquez LM, Griebenow K. Chemically glycosylation improves the stability of an amperometric horseradish peroxidase biosensor. Anal Chim Acta 2015; 854:129-39. [PMID: 25479876 PMCID: PMC4292887 DOI: 10.1016/j.aca.2014.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 10/16/2014] [Accepted: 11/05/2014] [Indexed: 11/24/2022]
Abstract
We constructed a biosensor by electrodeposition of gold nano-particles (AuNPs) on glassy carbon (GC) and subsequent formation of a 4-mercaptobenzoic acid self-assembled monolayer (SAM). The enzyme horseradish peroxidase (HRP) was then covalently immobilized onto the SAM. Two forms of HRP were employed: non-modified and chemically glycosylated with lactose. Circular dichroism (CD) spectra showed that chemical glycosylation did neither change the tertiary structure of HRP nor the heme environment. The highest sensitivity of the biosensor to hydroquinone was obtained for the biosensor with HRP-lactose (414 nA μM(-1)) compared to 378 nA μM(-1) for the one employing non-modified HRP. The chemically glycosylated form of the enzyme catalyzed the reduction of hydroquinone more rapidly than the native form of the enzyme. The sensor employing lactose-modified HRP also had a lower limit of detection (74 μM) than the HRP biosensor (83 μM). However, most importantly, chemically glycosylation improved the long-term stability of the biosensor, which retained 60% of its activity over a four-month storage period compared to only 10% for HRP. These results highlight improvements by an innovative stabilization method when compared to previously reported enzyme-based biosensors.
Collapse
Affiliation(s)
- Griselle Hernández-Cancel
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan 00931-3346, Puerto Rico.
| | - Damaris Suazo-Dávila
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan 00931-3346, Puerto Rico.
| | - Johnsue Medina-Guzmán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan 00931-3346, Puerto Rico
| | - María Rosado-González
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan 00931-3346, Puerto Rico.
| | - Liz M Díaz-Vázquez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan 00931-3346, Puerto Rico.
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan 00931-3346, Puerto Rico.
| |
Collapse
|
18
|
Determination of Phenol and Chlorophenols at Single-Wall Carbon Nanotubes/Poly(3,4-ethylenedioxythiophene) Modified Glassy Carbon Electrode Using Flow Injection Amperometry. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/926213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phenol and chlorophenols were investigated using single-wall carbon nanotubes (SWCNT) and poly(3,4-ethylenedioxythiophene) (PEDOT) composite modified glassy carbon electrode (SWCNT/PEDOT/GCE) as a detector in flow injection system. Optimization of experimental variables such as the detection potential, flow rate, and pH of the carrier solution (0.1 M sodium acetate) for the determination of phenol (P), 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP), and pentachlorophenol (PCP) were performed. Under these conditions, analytical parameters were calculated from the calibration curve of measured amperometric responses as a function of concentrations of phenol and chlorophenols. The designed electrode exhibited very good analytical performance. The designed electrode was tested with 20 repetitive injections of each analyte and showed good operational stability. The analytical performance of the SWCNT/PEDOT/GCE electrode under flow through conditions was tested and was found to be impressive. The electrode showed a wider dynamic range for the detection of phenol and chlorophenols with low limits of detection compared with other enzymatic and nonenzymatic sensors. These results suggest that the method is quite useful for the analysis and monitoring of phenols and chlorophenols.
Collapse
|
19
|
Subrizi F, Crucianelli M, Grossi V, Passacantando M, Pesci L, Saladino R. Carbon Nanotubes as Activating Tyrosinase Supports for the Selective Synthesis of Catechols. ACS Catal 2014. [DOI: 10.1021/cs400856e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fabiana Subrizi
- Department
of Physical and Chemical Sciences, University of L’Aquila, Via
Vetoio, I-67100 Coppito, AQ, Italy
| | - Marcello Crucianelli
- Department
of Physical and Chemical Sciences, University of L’Aquila, Via
Vetoio, I-67100 Coppito, AQ, Italy
| | - Valentina Grossi
- Department
of Physical and Chemical Sciences, University of L’Aquila, Via
Vetoio, I-67100 Coppito, AQ, Italy
| | - Maurizio Passacantando
- Department
of Physical and Chemical Sciences, University of L’Aquila, Via
Vetoio, I-67100 Coppito, AQ, Italy
| | - Lorenzo Pesci
- Department
of Ecology and Biology, University of Tuscia, Largo dell’Università, 01100 Viterbo, VT, Italy
| | - Raffaele Saladino
- Department
of Ecology and Biology, University of Tuscia, Largo dell’Università, 01100 Viterbo, VT, Italy
| |
Collapse
|
20
|
Nurul Karim M, Lee HJ. Amperometric phenol biosensor based on covalent immobilization of tyrosinase on Au nanoparticle modified screen printed carbon electrodes. Talanta 2013; 116:991-6. [PMID: 24148506 DOI: 10.1016/j.talanta.2013.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 11/18/2022]
Abstract
A highly selective and sensitive amperometric biosensor for the detection of phenol was developed based on a platform where Au nanoparticles (AuNPs) are electrodeposited onto a disposable screen printed carbon electrode and tyrosinase is then covalently immobilized on the AuNP's using alkanethiol and cross-linker molecules. The electrocatalytic responses of the tyrosinase modified biosensor for the detection of phenol were measured using both cyclic voltammetry and square wave voltammetry. Temperature, buffer pH and the amount of tyrosinase immobilized on the electrode surface were also optimized for phenol sensing. A high sensitivity of 15.7 µA ppm(-1), a low detectable phenol concentration of 47 ppb alongside a linear response from 47 ppb to 15 ppm was achieved using square wave voltammetry in addition to good selectivity. As a demonstration, the biosensor was applied to determine phenol concentrations in regional water samples from S. Korea.
Collapse
Affiliation(s)
- Md Nurul Karim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701, Republic of Korea
| | | |
Collapse
|
21
|
Qurashi A, Rather JA, De Wael K, Merzougui B, Tabet N, Faiz M. Rapid microwave synthesis of high aspect-ratio ZnO nanotetrapods for swift bisphenol A detection. Analyst 2013; 138:4764-8. [DOI: 10.1039/c3an00336a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Pereira GF, Andrade LS, Rocha-Filho RC, Bocchi N, Biaggio SR. Electrochemical determination of bisphenol A using a boron-doped diamond electrode. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.03.157] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|