1
|
Cotchim S, Kongkaew S, Thavarungkul P, Kanatharana P, Limbut W. A dual-electrode label-free immunosensor based on in situ prepared Au-MoO 3-Chi/porous graphene nanoparticles for point-of-care detection of cholangiocarcinoma. Talanta 2024; 272:125755. [PMID: 38364561 DOI: 10.1016/j.talanta.2024.125755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
A novel label-free electrochemical immunosensor was prepared for the detection of carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) as biomarkers of cholangiocarcinoma (CCA). A nanocomposite of gold nanoparticles, molybdenum trioxide, and chitosan (Au-MoO3-Chi) was layer-by-layer assembled on the porous graphene (PG) modified a dual screen-printed electrode using a self-assembling technique, which increased surface area and conductivity and enhanced the adsorption of immobilized antibodies. The stepwise self-assembling procedure of the modified electrode was further characterized morphologically and functionally. The electroanalytical detection of biomarkers was based on the interaction between the antibody and antigen of each marker via linear sweep voltammetry using ferrocyanide/ferricyanide as an electrochemical redox indicator. Under optimized conditions, the fabricated immunosensor showed linear relationships between current change (ΔI) and antigen concentrations in two ranges: 0.0025-0.1 U mL-1 and 0.1-1.0 U mL-1 for CA19-9, and 0.001-0.01 ng mL-1 and 0.01-1.0 ng mL-1 for CEA. The limits of detection (LOD) were 1.0 mU mL-1 for CA19-9 and 0.5 pg mL-1 for CEA. Limits of quantitation (LOQ) were 3.3 mU mL-1 for CA19-9 and 1.6 pg mL-1 for CEA. The selectivity of the developed immunosensor was tested on mixtures of antigens and was then successfully applied to determine CA19-9 and CEA in human serum samples, producing satisfactory results consistent with the clinical method.
Collapse
Affiliation(s)
- Suparat Cotchim
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
2
|
Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius S, Chen CF, Viter R, Ramanavicius A. Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases. BIOSENSORS 2023; 13:620. [PMID: 37366985 DOI: 10.3390/bios13060620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials' influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
3
|
Tian Y, Zhang Y, Lu X, Xiao D, Zhou C. Multifunctionalized flower-like gold nanoparticles with high chemiluminescence for label-free sensing of the hepatitis C virus core protein. J Mater Chem B 2023; 11:2200-2206. [PMID: 36785906 DOI: 10.1039/d2tb02168d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Developing functionalized nanomaterials with strong chemiluminescence (CL) properties is highly significant for ultrasensitive bioanalysis. Here, we report chitosan (CS), luminol, and Co2+-functionalized flower-like gold nanoparticles (Co2+/CS/Lum/AuNFs) with strong CL for the label-free sensing of the HCV core protein (HCVcp). The Co2+/CS/Lum/AuNFs exhibited a greatly enhanced CL emission at around 425 nm, which is 50 times stronger than that of CS/Lum/AuNFs, and is superior to other commonly reported CL nanomaterials. The HCVcp aptamer (HCVcp-apt) further functionalized the surface of the Co2+/CS/Lum/AuNFs through electrostatic interactions blocked the Co2+ catalytic site, depressing the CL. Owing to the high affinity of HCVcp for the HCVcp-apt, the presence of HCVcp predominated its binding and effectively separated the HCVcp-apt from the surface of the Co2+/CS/Lum/AuNFs, so that the CL intensity was significantly enhanced. As the results showed, the HCVcp-apt/Co2+/CS/Lum/AuNFs were successfully used to detect the HCVcp in human serum samples with a linear range from 0.50 ng mL-1 to 1.00 μg mL-1, a detection limit of 0.16 ng mL-1 and an excellent selectivity over other analogs. The strategy is universal for the development of the ultrasensitive detection of other proteins in the field of early disease diagnostics.
Collapse
Affiliation(s)
- Yafei Tian
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yujiao Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Xueyun Lu
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
4
|
Yakoubi A, Dhafer CEB. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. PLASMONICS (NORWELL, MASS.) 2022; 18:311-347. [PMID: 36588744 PMCID: PMC9786532 DOI: 10.1007/s11468-022-01754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. Coronavirus disease 2019 known as COVID-19 is the worst pandemic since World War II. The outbreak of COVID-19 had a significant repercussion on the health, economy, politics, and environment, making coronavirus-related issues more complicated and becoming one of the most challenging pandemics of the last century with deadly outcomes and a high rate of the reproduction number. There are thousands of different types - or variants - of COVID circulating across the world. Viruses mutate all the time; it emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis, and effective antiviral and protective therapeutics. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis, and treatment of COVID-19. This review presents an outline of the platforms developed using plasmonic nanoparticles in the detection, treatment, and prevention of SARS-CoV-2. We select the best strategies in each of these approaches. The properties of metallic plasmon NPs and their relevance in the development of novel point-of-care diagnosis approaches for COVID-19 are highlighted. Also, we discuss the current challenges and the future perspectives looking towards the clinical translation and the commercial aspects of nanotechnology and plasmonic NP-based diagnostic tools and therapy to fight COVID-19 pandemic. The article could be of significance for researchers dedicated to developing suitable plasmonic detection tools and therapy approaches for COVID-19 viruses and future pandemics.
Collapse
Affiliation(s)
- Afef Yakoubi
- Laboratory of Hetero-organic Compounds and Nanostructured Materials, Chemistry Department, Faculty of Sciences Bizerte, University of Carthage, LR 18 ES11, 7021 Bizerte, Tunisia
| | - Cyrine El Baher Dhafer
- Chemistry Department College of Science, Jouf University, P.O Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
5
|
Pusomjit P, Teengam P, Chuaypen N, Tangkijvanich P, Thepsuparungsikul N, Chailapakul O. Electrochemical immunoassay for detection of hepatitis C virus core antigen using electrode modified with Pt-decorated single-walled carbon nanotubes. Mikrochim Acta 2022; 189:339. [PMID: 35982360 DOI: 10.1007/s00604-022-05400-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Pt nanoparticles deposited on single-walled carbon nanotubes (PtSWCNTs), synthesized via the deposition precipitation (DP) method, were introduced as a substrate for immobilizing antibodies on an electrode surface and then enhancing the electrochemical sensitivity. A PtSWCNT-modified paper-based screen-printed graphene electrode was successfully developed to diagnose hepatitis C virus (HCV) infection. The hepatitis C virus core antigen (HCV-cAg) level was determined by differential pulse voltammetry (DPV) using [Fe(CN)6]3-/4- as a redox solution. In the presence of HCV-cAg, the DPV current response decreased with increasing HCV-cAg concentration. Under the optimal conditions, the change in current response provides a good linear correlation with the logarithm of HCV-cAg concentration in the range 0.05 to 1000 pg mL-1 (RSD < 5%), and the limit of detection was 0.015 pg mL-1 (or 0.71 fmol L-1). Furthermore, the proposed immunosensor has been utilized to quantify HCV-cAg in human serum samples with reliable results compared with standard immunoassays (% relative error < 10%). This sensor offers a simple, sensitive, selective, disposable, and inexpensive means for determination of HCV-cAg in human serum samples. The paper-based label-free immunosensor is versatile and feasible for clinical diagnosis.
Collapse
Affiliation(s)
- Pannaporn Pusomjit
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Prinjaporn Teengam
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Nichanan Thepsuparungsikul
- Department of Chemistry, Faculty of Science, Silpakorn University, Amphoe Muang, 73000, Nakhon Pathom, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand. .,Center of Excellence On Petrochemical and Materials Technology, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand.
| |
Collapse
|
6
|
Nasri N, Rusli A, Teramoto N, Jaafar M, Ku Ishak KM, Shafiq MD, Abdul Hamid ZA. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review. Polymers (Basel) 2021; 13:4234. [PMID: 34883737 PMCID: PMC8659939 DOI: 10.3390/polym13234234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days. Thus, the possibility of virus transmission increases after touching or being in contact with contaminated surfaces. Herein, we aim to provide overviews of various types of antiviral and antimicrobial coating agents, such as antimicrobial polymer-based coating, metal-based coating, functional nanomaterial, and nanocomposite-based coating. The action mode for each type of antimicrobial agent against pathogens is elaborated. In addition, surface properties of the designed antiviral and antimicrobial polymer coating with their influencing factors are discussed in this review. This paper also exhibits several techniques on surface modification to improve surface properties. Various developed research on the development of antiviral/antimicrobial polymer coating to curb the COVID-19 pandemic are also presented in this review.
Collapse
Affiliation(s)
- Nazihah Nasri
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Chiba, Japan;
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Ku Marsilla Ku Ishak
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| |
Collapse
|
7
|
Zia TUH, Ali Shah AUH. Understanding the adsorption of 1 NLB antibody on polyaniline nanotubes as a function of zeta potential and surface charge density for detection of hepatitis C core antigen: A label-free impedimetric immunosensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Bidram E, Esmaeili Y, Amini A, Sartorius R, Tay FR, Shariati L, Makvandi P. Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomater Sci Eng 2021; 7:2150-2176. [PMID: 33979143 PMCID: PMC8130531 DOI: 10.1021/acsbiomaterials.1c00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Human respiratory viral infections are the leading cause of morbidity and mortality around the world. Among the various respiratory viruses, coronaviruses (e.g., SARS-CoV-2) have created the greatest challenge and most frightening health threat worldwide. Human coronaviruses typically infect the upper respiratory tract, causing illnesses that range from common cold-like symptoms to severe acute respiratory infections. Several promising vaccine formulations have become available since the beginning of 2021. Nevertheless, achievement of herd immunity is still far from being realized. Social distancing remains the only effective measure against SARS-CoV-2 infection. Nanobiotechnology enables the design of nanobiosensors. These nanomedical diagnostic devices have opened new vistas for early detection of viral infections. The present review outlines recent research on the effectiveness of nanoplatforms as diagnostic and antiviral tools against coronaviruses. The biological properties of coronavirus and infected host organs are discussed. The challenges and limitations encountered in combating SARS-CoV-2 are highlighted. Potential nanodevices such as nanosensors, nanobased vaccines, and smart nanomedicines are subsequently presented for combating current and future mutated versions of coronaviruses.
Collapse
Affiliation(s)
- Elham Bidram
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Yasaman Esmaeili
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Abbas Amini
- Centre
for Infrastructure Engineering, Western
Sydney University, Locked
Bag 1797, Penrith 2751, New South Wales, Australia
- Department
of Mechanical Engineering, Australian College
of Kuwait, Al Aqsa Mosque
Street, Mishref, Safat 13015, Kuwait
| | - Rossella Sartorius
- Institute
of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Pietro Castellino 111, Naples 80131, Italy
| | - Franklin R. Tay
- The
Graduate
School, Augusta University, 1120 15th Street, Augusta, Georgia 30912, United States
| | - Laleh Shariati
- Applied
Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
- Department
of Biomaterials, Nanotechnology and Tissue Engineering, School of
Advanced Technologies in Medicine, Isfahan
University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Pooyan Makvandi
- Centre
for Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, Pontedera 56025, Pisa, Italy
| |
Collapse
|
9
|
Yadav AK, Verma D, Kumar A, Kumar P, Solanki PR. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. MATERIALS TODAY. CHEMISTRY 2021; 20:100443. [PMID: 33615086 PMCID: PMC7877231 DOI: 10.1016/j.mtchem.2021.100443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
The World Health Organization (WHO) has declared the COVID-19 an international health emergency due to the severity of infection progression, which became more severe due to its continuous spread globally and the unavailability of appropriate therapy and diagnostics systems. Thus, there is a need for efficient devices to detect SARS-CoV-2 infection at an early stage. Nowadays, the reverse transcription polymerase chain reaction (RT-PCR) technique is being applied for detecting this virus around the globe; however, factors such as stringent expertise, long diagnostic times, invasive and painful screening, and high costs have restricted the use of RT-PCR methods for rapid diagnostics. Therefore, the development of cost-effective, portable, sensitive, prompt and selective sensing systems to detect SARS-CoV-2 in biofluids at fM/pM/nM concentrations would be a breakthrough in diagnostics. Immunosensors that show increased specificity and sensitivity are considerably fast and do not imply costly reagents or instruments, reducing the cost for COVID-19 detection. The current developments in immunosensors perhaps signify the most significant opportunity for a rapid assay to detect COVID-19, without the need of highly skilled professionals and specialized tools to interpret results. Artificial intelligence (AI) and the Internet of Medical Things (IoMT) can also be equipped with this immunosensing approach to investigate useful networking through database management, sharing, and analytics to prevent and manage COVID-19. Herein, we represent the collective concepts of biomarker-based immunosensors along with AI and IoMT as smart sensing strategies with bioinformatics approach to monitor non-invasive early stage SARS-CoV-2 development, with fast point-of-care (POC) diagnostics as the crucial goal. This approach should be implemented quickly and verified practicality for clinical samples before being set in the present times for mass-diagnostic research.
Collapse
Affiliation(s)
- A K Yadav
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - D Verma
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, 201301, India
| | - A Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - P Kumar
- Sri Aurobindo College, Delhi University, New Delhi, 110017, India
| | - P R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
10
|
Ibrahim Fouad G. A proposed insight into the anti-viral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19). BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:36. [PMID: 33564223 PMCID: PMC7863044 DOI: 10.1186/s42269-021-00487-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/06/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Over the last ten months since December 2019, the world has faced infectious emerging novel coronavirus disease-2019 (COVID-19) outbreaks that had a massive global impact affecting over 185 countries. MAIN BODY Emerging novel COVID-19 is a global health emergency on a pandemic scale that represents a terror to human health through its ability to escape anti-viral measures. Such viral infections impose a great socioeconomic burden, besides global health challenges. This imposes a pressing need for the development of anti-viral therapeutic agents and diagnostic tools that demonstrate multifunctional, target-specific, and non-toxic properties. Nanotheranostics is regarded as a promising approach for the management of different viral infections. Nanotheranostics facilitates targeted drug-delivery of anti-viral therapeutics as well as contributing to the development of diagnostic systems. Multifunctional metallic nanoparticles (NPs) have emerged as innovative theranostic agents that enable sustainable treatment and effective diagnosis. Here we have reviewed current advances in the use of theranostic metallic NPs to fight against COVID-19, and discussed the application as well as limitations associated with nanotechnology-based theranostic approaches. CONCLUSION This review verified the potential use of some metal-based NPs as anti-viral nanotheranostic agents. Metal-based NPs could act as carriers that enable the sustainable and targeted delivery of active anti-viral molecules, or as diagnostic agents that allow rapid and sensitive diagnosis of viral infections.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622 Egypt
| |
Collapse
|
11
|
Abstract
Infectious diseases are caused from pathogens, which need a reliable and fast diagnosis. Today, expert personnel and centralized laboratories are needed to afford much time in diagnosing diseases caused from pathogens. Recent progress in electrochemical studies shows that biosensors are very simple, accurate, precise, and cheap at virus detection, for which researchers find great interest in this field. The clinical levels of these pathogens can be easily analyzed with proposed biosensors. Their working principle is based on affinity between antibody and antigen in body fluids. The progress still continues on these biosensors for accurate, rapid, reliable sensors in future.
Collapse
|
12
|
Developments in the HCV Screening Technologies Based on the Detection of Antigens and Antibodies. SENSORS 2019; 19:s19194257. [PMID: 31575036 PMCID: PMC6806196 DOI: 10.3390/s19194257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/20/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) accounts for 15%-20% of cases of acute infection, and chronic HCV infection is developed in about 50%-80% of HCV patients. Unfortunately, due to the lack of proper medical care, difficulty in screening for HCV infection, and lack of awareness resulted in chronic HCV infection in 71 million people on a global scale, and about 399,000 deaths in 2016. It is crucial to recognize that the effective use of antiviral medicines can cure more than 95% of HCV infected people. The Global Health Sector Strategy (GHSS) aim is to reduce the new HCV infections and the HCV associated mortality by 90% and 65%, respectively. Therefore, the methods that are simple, yet powerful enough to detect HCV infections with high sensitivity, specificity, and a shorter window period are crucial to restrain the global burden of HCV healthcare. This article focuses on the technologies used for the detection of HCV in clinical specimens.
Collapse
|
13
|
Plasmonic nanoplatform for point-of-care testing trace HCV core protein. Biosens Bioelectron 2019; 147:111488. [PMID: 31350137 DOI: 10.1016/j.bios.2019.111488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 12/29/2022]
Abstract
Early diagnosis of hepatitis C virus (HCV) infection is still urgently desired as there is a global healthy burden and no vaccine available. In this work, a plasmonic nanoplatform was engineered with catalytic hairpin assembly (CHA) amplification reaction specifically of HCV core protein (HCVcp), G-quadruplex/hemin DNAzyme and nanofibrous membrane together. HCVcp was detected in whole serum at the ultralow concentration of 1.0 × 10-4 pg/mL with naked eye. By testing serum samples from 30 donors with different viral loads, detection sensitivity of the plasmonic nanoplatform turned out to be much better than that of the commercial ELISA kit. In addition, the plasmonic nanoplatform exhibited high specificity, excellent reusability and long-term stability. Naked-eye detection based on the plasmonic nanoplatform is expected to have potential applications in point-of-care testing (POCT) and early diagnosis of hepatitis C and other infectious diseases.
Collapse
|
14
|
Abd Ellah NH, Tawfeek HM, John J, Hetta HF. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine (Lond) 2019; 14:1471-1491. [PMID: 31166139 DOI: 10.2217/nnm-2018-0348] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is not easily cleared from the human body and in most cases turned into chronic infection. This chronicity is a major cause of liver damage, cirrhosis and hepatocellular carcinoma. Therefore, immediate detection and treatment of HCV guarantees eradication of the virus and prevention of chronicity complications. Since discovery of HCV in 1989, several emerging treatments were developed such as polyethylene glycol(PEG)-ylated interferon/ribavirin, direct acting antivirals and host targeting antivirals. Despite the progress in anti-HCV therapy, there is still a pressing need of new approaches for affordable and effective drug delivery systems using nanomedicine. In this review, the contribution of nanoparticles as a promising delivery system for HCV immunizing, diagnostic and therapeutic agents are discussed.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Medical Sciences Building, University of Cincinnati, Cincinnati, OH 45267, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.,Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Karak, Jordan
| | - James John
- Central Research Facilities, Sri Ramachandra institute of higher education & research, Sri Ramachandra University, Chennai, India
| | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| |
Collapse
|
15
|
Disposable syringe-based visual immunotest for pathogenic bacteria based on the catalase mimicking activity of platinum nanoparticle-concanavalin A hybrid nanoflowers. Mikrochim Acta 2019; 186:57. [DOI: 10.1007/s00604-018-3133-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/29/2018] [Indexed: 01/22/2023]
|
16
|
Hassanpour S, Baradaran B, de la Guardia M, Baghbanzadeh A, Mosafer J, Hejazi M, Mokhtarzadeh A, Hasanzadeh M. Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: a review on recent advancements. Mikrochim Acta 2018; 185:568. [DOI: 10.1007/s00604-018-3088-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022]
|
17
|
Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh M, Baradaran B, de la Guardia M. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt Chem 2017; 97:445-457. [PMID: 32287543 PMCID: PMC7126209 DOI: 10.1016/j.trac.2017.10.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Viruses are real menace to human safety that cause devastating viral disease. The high prevalence of these diseases is due to improper detecting tools. Therefore, there is a remarkable demand to identify viruses in a fast, selective and accurate way. Several biosensors have been designed and commercialized for detection of pathogenic viruses. However, they present many challenges. Nanotechnology overcomes these challenges and performs direct detection of molecular targets in real time. In this overview, studies concerning nanotechnology-based biosensors for pathogenic virus detection have been summarized, paying special attention to biosensors based on graphene oxide, silica, carbon nanotubes, gold, silver, zinc oxide and magnetic nanoparticles, which could pave the way to detect viral diseases and provide healthy life for infected patients.
Collapse
Affiliation(s)
- Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Reza Eivazzadeh-Keihan
- Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Paria Pashazadeh
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Iran
| | | | - Nasrin Gharaatifar
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
18
|
A glassy carbon immunoelectrode modified with vanadium oxide nanobelts for ultrasensitive voltammetric determination of the core antigen of hepatitis C virus. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2449-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Ghanbari K, Roushani M, Azadbakht A. Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen. Anal Biochem 2017; 534:64-69. [PMID: 28728900 DOI: 10.1016/j.ab.2017.07.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 11/26/2022]
Abstract
In the present study, by using the aptamer proximity binding assay strategy, a novel electrochemical aptasensor is described for ultrasensitive detection of hepatitis C virus (HCV) core antigen. The immobilization surface is prepared by the modification of a glassy carbon electrode (GCE) with a graphene quantum dots (GQD). GQD were introduced as a novel and suitable substrate for aptamers through π-π stacking interactions, the richness of hydrophilic edges as well as hydrophobic plane in GQD which enhances the aptamer absorption on the electrode surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed at each stage of the chemical modification process to confirm the resulting surface changes. EIS technique was used as an efficient alternative detection system for HCV core antigen measurement with detection limit 3.3 pg mL-1 and two linear concentration range 10-70 pg mL-1 and 70-400 pg mL-1. Moreover, the fabricated aptasensor could accurately detect HCV core antigen concentration in human serum samples. Such an aptasensor opens a rapid, selective and sensitive route for HCV core antigen detection and provides a promising strategy for potential applications in clinical diagnostics.
Collapse
Affiliation(s)
| | | | - Azadeh Azadbakht
- Department of Chemistry, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran
| |
Collapse
|
20
|
TiO2 nanoparticles doped with Celestine Blue as a label in a sandwich immunoassay for the hepatitis C virus core antigen using a screen printed electrode. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2190-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation of riboflavin was used as redox probe. Biosens Bioelectron 2017; 89:946-951. [DOI: 10.1016/j.bios.2016.09.086] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/13/2016] [Accepted: 09/24/2016] [Indexed: 11/21/2022]
|
22
|
Justino CI, Duarte AC, Rocha-Santos TA. Critical overview on the application of sensors and biosensors for clinical analysis. Trends Analyt Chem 2016; 85:36-60. [PMID: 32287540 PMCID: PMC7112812 DOI: 10.1016/j.trac.2016.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sensors and biosensors have been increasingly used for clinical analysis due to their miniaturization and portability, allowing the construction of diagnostic devices for point-of-care testing. This paper presents an up-to-date overview and comparison of the analytical performance of sensors and biosensors recently used in clinical analysis. This includes cancer and cardiac biomarkers, hormones, biomolecules, neurotransmitters, bacteria, virus and cancer cells, along with related significant advances since 2011. Some methods of enhancing the analytical performance of sensors and biosensors through their figures of merit are also discussed.
Collapse
Affiliation(s)
- Celine I.L. Justino
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- ISEIT/Viseu, Instituto Piaget, Estrada do Alto do Gaio, Galifonge, 3515-776 Lordosa, Viseu, Portugal
| | - Armando C. Duarte
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Teresa A.P. Rocha-Santos
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
23
|
Abstract
The application of simple, cost-effective, rapid, and accurate diagnostic technologies for detection and identification of cardiac and cancer biomarkers has been a central point in the clinical area. Biosensors have been recognized as efficient alternatives for the diagnostics of various diseases due to their specificity and potential for application on real samples. The role of nanotechnology in the construction of immunological biosensors, that is, immunosensors, has contributed to the improvement of sensitivity, since they are based in the affinity between antibody and antigen. Other analytes than biomarkers such as hormones, pathogenic bacteria, and virus have also been detected by immunosensors for clinical point-of-care applications. In this chapter, we first introduced the various types of immunosensors and discussed their applications in clinical diagnostics over the recent 6 years, mainly as point-of-care technologies for the determination of cardiac and cancer biomarkers, hormones, pathogenic bacteria, and virus. The future perspectives of these devices in the field of clinical diagnostics are also evaluated.
Collapse
|
24
|
Singh R, Sharma A, Hong S, Jang J. Electrical immunosensor based on dielectrophoretically-deposited carbon nanotubes for detection of influenza virus H1N1. Analyst 2015; 139:5415-21. [PMID: 25232557 DOI: 10.1039/c4an01335b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The influenza virus has received extensive attention due to the recent H1N1 pandemics originating from swine. This study reports a label-free, highly sensitive, and selective electrical immunosensor for the detection of influenza virus H1N1 based on dielectrophoretically deposited single-walled carbon nanotubes (SWCNTs). COOH-functionalized SWCNTs were deposited on a self-assembled monolayer of polyelectrolyte polydiallyldimethyl-ammonium chloride (PDDA) between two gold electrodes by dielectrophoretic and electrostatic forces, which resulted in reproducible, uniform, aligned, and aggregation-free SWCNT channels (2-10 μm in length). Avidin was immobilized onto the PDDA-SWCNT channels, and viral antibodies were immobilized using biotin-avidin coupling. The resistance of the channels increased with the binding of the influenza viruses to the antibodies. These immunosensors showed linear behavior as the virus concentration was varied from 1 to 10(4) PFU ml(-1) along with a detection time of 30 min. The immunosensors with a 2 μm channel length detected 1 PFU ml(-1) of the influenza virus accurately (R(2) = 0.99) and selectively from MS2 bacteriophages. These immunosensors have the potential to become an important component of a point-of-care test kit that will enable a rapid clinical diagnosis.
Collapse
Affiliation(s)
- Renu Singh
- School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea.
| | | | | | | |
Collapse
|
25
|
Uliana CV, Riccardi CS, Yamanaka H. Diagnostic tests for hepatitis C: Recent trends in electrochemical immunosensor and genosensor analysis. World J Gastroenterol 2014; 20:15476-15491. [PMID: 25400433 PMCID: PMC4229514 DOI: 10.3748/wjg.v20.i42.15476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/19/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C is a liver disease that is transmitted through contact with the blood of an infected person. An estimated 150 million individuals worldwide have been chronically infected with the hepatitis C virus (HCV). Hepatitis C shows significant genetic variation in the global population, due to the high rate of viral RNA mutation. There are six variants of the virus (HCV genotypes 1, 2, 3, 4, 5, and 6), with 15 recorded subtypes that vary in prevalence across different regions of the world. A variety of devices are used to diagnose hepatitis C, including HCV antibody test, HCV viral load test, HCV genotype test and liver biopsy. Rapid, inexpensive, sensitive, and robust analytical devices are therefore essential for effective diagnosis and monitoring of disease treatment. This review provides an overview of current electrochemical immunosensor and genosensor technologies employed in HCV detection. There are a limited number of publications showing electrochemical biosensors being used for the detection of HCV. Due to their simplicity, specificity, and reliability, electrochemical biosensor devices have potential clinical applications in several viral infections.
Collapse
|
26
|
Deng R, Wang L, Yi G, Hua E, Xie G. Target-induced aptamer release strategy based on electrochemical detection of staphylococcal enterotoxin B using GNPs-ZrO2-Chits film. Colloids Surf B Biointerfaces 2014; 120:1-7. [PMID: 24892561 DOI: 10.1016/j.colsurfb.2014.04.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/25/2014] [Accepted: 04/30/2014] [Indexed: 01/05/2023]
Abstract
A novel electrochemical aptasensor was developed for ultrasensitive detection of staphylococcal enterotoxin B (SEB) by combining signal amplification and target-induced aptamer release strategy. A gold electrode was modified with a nanocomposite made of gold nanoparticles reduced in situ, zirconia nanoparticles, and chitosan. The SEB aptamer was hybridized by anchoring the capture probe on the modified gold electrode surface through AuS binding. In the presence of SEB, the capture probe-aptamer duplex was compelled to open, releasing the aptamer from the electrode. The resulting single-strand capture probe was hybridized with a biotinylated detection probe and labeled with streptavidin-horseradish peroxidase, producing an ultrasensitive enzyme-catalyzed electrochemical signal. Under optimal conditions, the amperometric responses were proportional to the SEB concentrations ranging from 2 to 512ngmL(-1), with a detection limit of as low as 0.24ngmL(-1) (S/N=3). The aptasensor exhibited good stability, outstanding reproducibility, and high selectivity. The as-prepared aptasensor was used to analyze SEB in human serum specimens, and validated through enzyme-linked immunosorbent assay method. Analytical results suggest that the developed assay is a promising alternative approach for detecting SEB in clinical diagnosis.
Collapse
Affiliation(s)
- Renni Deng
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Guangzhao Yi
- Infection Control Department, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Erhui Hua
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
27
|
Label-free electrochemical immunoassay for ultrasensitive detection of norethindrone. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-013-1017-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Liang M, Wang L, Ma C, Zhang M, Xie G. Sandwich Immunoassay for Hepatitis C Virus Non-Structural 5A Protein Using a Glassy Carbon Electrode Modified with an Au-MoO3/Chitosan Nanocomposite. ANAL LETT 2013. [DOI: 10.1080/00032719.2012.755684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Ma C, Liang M, Wang L, Xiang H, Jiang Y, Li Y, Xie G. MultisHRP-DNA-coated CMWNTs as signal labels for an ultrasensitive hepatitis C virus core antigen electrochemical immunosensor. Biosens Bioelectron 2013; 47:467-74. [PMID: 23624015 DOI: 10.1016/j.bios.2013.03.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/31/2022]
Abstract
An ultrasensitive and selective electrochemical immunosensor was developed for the detection of hepatitis C virus (HCV) core antigen. The immunosensor consists of graphitized mesoporous carbon-methylene blue (GMCs-MB) nanocomposite as an electrode modified material and a horseradish peroxidase-DNA-coated carboxyl multi-wall carbon nanotubes (CMWNTs) as a secondary antibody layer. After modification of the electrode with GMCs-MB nanocomposite, Au nanoparticles were electrodeposited on to the electrode to immobilize the captured antibodies. The bridging probe and secondary antibodies linked to the CMWNTs, and DNA concatamers were obtained by hybridization of the biotin-tagged signal and auxiliary probes. Finally, streptavidin-horseradish peroxidases (HRP) were labeled on the secondary antibody layer via biotin-streptavidin system. The reduction current of MB were generated in the presence of hydrogen peroxide and monitored by square wave voltammetry. Under optimum conditions, the amperometric signal increased linearly with the core antigen concentration (0.25pgmL(-1) to 300pgmL(-1)). The immunosensor exhibites the detection limit as low as 0.01pgmL(-1) and it has a high selectivity. The new protocol showed acceptable stability and reproducibility, as well as favorable recovery for HCV core antigen in human serum. The proposed immunosensor has great potential for clinical applications.
Collapse
Affiliation(s)
- Cuixia Ma
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Cheng MS, Toh CS. Novel biosensing methodologies for ultrasensitive detection of viruses. Analyst 2013; 138:6219-29. [DOI: 10.1039/c3an01394d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|