1
|
Gregoret SA, Junges CM, Culzoni MJ, Goicoechea HC, Teglia CM, Gutierrez FA. Sustainable and efficient electrochemical determination of octopamine in Apis mellifera for stress monitoring. Talanta 2025; 291:127801. [PMID: 40024132 DOI: 10.1016/j.talanta.2025.127801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
This paper presents the design and validation of an electrochemical sensor for the detection of octopamine (OA) in vitro-reared larvae of honey bees (Apis mellifera) using glassy carbon electrodes modified with multi-walled carbon nanotubes and Kolliphor (p188). Octopamine, a key neurohormone involved in the stress response in insects, is studied as an indicator of the physiological and health status of bees under various stress factors. To validate the electrochemical method, a chromatographic approach based on ultra-high-performance liquid chromatography with fast-scanning fluorescence detection was developed, as well as a retro-microextraction system optimized using design of experiment and response surface methodology. The electrochemical method achieved limits of detection and quantification of 10.8 ng mL-1 and 32.4 ng mL-1, respectively. The validation study yielded a linear range of 0.054-108.00 μg mL-1, recoveries between 88 % and 101 %, and coefficients of variation from 6.9 % to 8.4 %. The ellipse analysis allows concluding that there are neither constant nor proportional systematic errors in the electrochemical determination. The proposed methodology allowed the successful quantitation of octopamine in vitro-reared honey bee larvae, both exposed and not exposed to heat stress. Its simplicity, portability, and environmental sustainability make it particularly suitable for decentralized applications and field analyses. Finally, it was effectively applied to quantify octopamine in vitro-reared honey bee larvae.
Collapse
Affiliation(s)
- Santiago A Gregoret
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP, C1425FQB, Buenos Aires, Argentina
| | - Celina M Junges
- Laboratorio de Ecología de Enfermedades, ICIVET LITORAL (UNL-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP, C1425FQB, Buenos Aires, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP, C1425FQB, Buenos Aires, Argentina
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP, C1425FQB, Buenos Aires, Argentina
| | - Carla M Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP, C1425FQB, Buenos Aires, Argentina.
| | - Fabiana A Gutierrez
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP, C1425FQB, Buenos Aires, Argentina
| |
Collapse
|
2
|
Qureshi A, Shah A, Iftikhar FJ, Haleem A, Zia MA. Electrochemical analysis of anticancer and antibiotic drugs in water and biological specimens. RSC Adv 2024; 14:36633-36655. [PMID: 39559583 PMCID: PMC11570916 DOI: 10.1039/d4ra05685j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The increasing prevalence of pharmaceuticals in water and complex matrices necessitates accurate measurement and monitoring of their environmental contamination levels. This is crucial not only for environmental conservation but also for comprehending the intricate mechanisms involved and developing more effective treatment approaches. In this context, electrochemical techniques show significant potential for the detection of pharmaceuticals across various matrices. Specifically, voltammetry is advantageous due to its rapid, straightforward, and cost-effective nature, allowing for the simultaneous analysis of multiple anticancer and antibiotic drugs. By utilizing nanomaterial-modified electrochemical sensors, the sensitivity and selectivity of detection methods can be significantly improved. The small size and customizable properties of nanomaterials enable these sensors to identify trace amounts of drugs in diverse samples. However, challenges persist in achieving reliable and accurate electrochemical monitoring of drugs in water and biological samples. Biofluids such as saliva, urine, and blood/serum, along with environmental samples from lakes and rivers, often contain numerous interfering substances that can diminish analyte signals. This review examines electrochemical methods and their potential applications for detecting pharmaceuticals and their metabolites, while also addressing the mechanisms of action and harmful effects of these drugs on both ecosystems and human health. Recent developments in electrochemical sensors utilizing nanomaterials for the detection of health-threatening pharmaceutical contaminants are examined, providing important insights into their underlying mechanisms. The emphasis is placed on the detection of anticancer agents and antibiotics, which relies on the electrocatalytic properties of the sensor materials. Additionally, discussions on density functional theory studies are included, along with an exploration of the emerging challenges and future directions in this area, aimed at enhancing readers' comprehension of the field and underscoring the necessary actions for a sustainable future.
Collapse
Affiliation(s)
- Ayesha Qureshi
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Abdul Haleem
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Abid Zia
- Department of Chemistry, University of Education Attock Punjab 43600 Pakistan
| |
Collapse
|
3
|
Xu X, Zuo Y, Chen S, Hatami A, Gu H. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals. BIOSENSORS 2024; 14:125. [PMID: 38534232 DOI: 10.3390/bios14030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods. While lacking temporal resolution, techniques like HPLC and CE complement electrochemical sensing's selectivity, particularly for structurally similar neurochemicals. This review covers essential neurochemicals and explores miniaturized electrochemical sensors for brain analysis, emphasizing microdialysis integration. It discusses the pros and cons of these techniques, forecasting electrochemical sensing's future in neuroscience research. Overall, this comprehensive review outlines the evolution, strengths, and potential applications of electrochemical sensing in the study of neurochemicals, offering insights into future advancements in the field.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yimei Zuo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Amir Hatami
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
4
|
Agrahari S, Singh AK, Gautam RK, Tiwari I. Voltammetric analysis of epinephrine using glassy carbon electrode modified with nanocomposite prepared from Co-Nd bimetallic nanoparticles, alumina nanoparticles and functionalized multiwalled carbon nanotubes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124866-124883. [PMID: 36280636 PMCID: PMC9592539 DOI: 10.1007/s11356-022-23660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Herein, we investigated the electrochemical behaviour of fMWCNTs decorated with Co-Nd bimetallic nanoparticles and alumina nanoparticles (Co-Nd/Al2O3@fMWCNTs). The nanocomposites were synthesised using simple mechanical mixing and characterised by FT-IR, XRD, UV-visible studies, SEM, TEM and EDAX. Moreover, the crystalline size of the synthesised nanoparticles was also calculated using XRD data (Debye-Scherer formula) and was found in the nm range. The electrochemical behaviour of epinephrine (EP) was examined in the presence of Co-Nd/Al2O3@fMWCNTs nanocomposite modified glassy carbon electrode (GCE) using various electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronocoulometry. Among all the above-mentioned techniques, the DPV response of the modified Co-Nd/Al2O3@fMWCNTs/GCE under optimal circumstances revealed a dual linear range (0.2 to 4000 µM and 4000 to 14,000 µM) and LOD of 0.015 µM (S/N = 3). The sensitivities were determined to be 0.00323 µAµM-1 and 0.0004 µAµM-1 in 0.2 to 4000 µM and 4000 to 14,000 µM concentration ranges. Using chronocoulometry, the surface coverage of Co-Nd/Al2O3@fMWCNTs/GCE was calculated to be 1.37 × 10-8 mol cm-2. The fabricated Co-Nd/Al2O3@fMWCNTs/GCE demonstrated remarkable repeatability, with an RSD of 0.09%, and storage stability of 3 weeks, with 89.6% current retention. Lastly, it was found that Co-Nd/Al2O3@fMWCNTs/GCE worked well for EP analysis in a variety of biological fluids.
Collapse
Affiliation(s)
- Shreanshi Agrahari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Ankit Kumar Singh
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Ravindra Kumar Gautam
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Ida Tiwari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
5
|
Liljeström T, Kontturi KS, Durairaj V, Wester N, Tammelin T, Laurila T, Koskinen J. Protein Adsorption and Its Effects on Electroanalytical Performance of Nanocellulose/Carbon Nanotube Composite Electrodes. Biomacromolecules 2023; 24:3806-3818. [PMID: 37433182 PMCID: PMC10428158 DOI: 10.1021/acs.biomac.3c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Protein fouling is a critical issue in the development of electrochemical sensors for medical applications, as it can significantly impact their sensitivity, stability, and reliability. Modifying planar electrodes with conductive nanomaterials that possess a high surface area, such as carbon nanotubes (CNTs), has been shown to significantly improve fouling resistance and sensitivity. However, the inherent hydrophobicity of CNTs and their poor dispersibility in solvents pose challenges in optimizing such electrode architectures for maximum sensitivity. Fortunately, nanocellulosic materials offer an efficient and sustainable approach to achieving effective functional and hybrid nanoscale architectures by enabling stable aqueous dispersions of carbon nanomaterials. Additionally, the inherent hygroscopicity and fouling-resistant nature of nanocellulosic materials can provide superior functionalities in such composites. In this study, we evaluate the fouling behavior of two nanocellulose (NC)/multiwalled carbon nanotube (MWCNT) composite electrode systems: one using sulfated cellulose nanofibers and another using sulfated cellulose nanocrystals. We compare these composites to commercial MWCNT electrodes without nanocellulose and analyze their behavior in physiologically relevant fouling environments of varying complexity using common outer- and inner-sphere redox probes. Additionally, we use quartz crystal microgravimetry with dissipation monitoring (QCM-D) to investigate the behavior of amorphous carbon surfaces and nanocellulosic materials in fouling environments. Our results demonstrate that the NC/MWCNT composite electrodes provide significant advantages for measurement reliability, sensitivity, and selectivity over only MWCNT-based electrodes, even in complex physiological monitoring environments such as human plasma.
Collapse
Affiliation(s)
- Touko Liljeström
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Katri S. Kontturi
- Sustainable
Products and Materials, VTT Technical Research
Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Vasuki Durairaj
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Sustainable
Products and Materials, VTT Technical Research
Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Niklas Wester
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland
| | - Tekla Tammelin
- Sustainable
Products and Materials, VTT Technical Research
Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Tomi Laurila
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland
| | - Jari Koskinen
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
6
|
Rajagopalan V, Venkataraman S, Rajendran DS, Vinoth Kumar V, Kumar VV, Rangasamy G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. ENVIRONMENTAL RESEARCH 2023; 227:115724. [PMID: 36948285 DOI: 10.1016/j.envres.2023.115724] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades.
Collapse
Affiliation(s)
- Vahulabaranan Rajagopalan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
| | - Vaithyanathan Vasanth Kumar
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
7
|
Non-enzymatic rapid sensing platform based on iron doped lead sulfide nano-interfaces for chloramphenicol. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Dai Z. Recent Advances in the Development of Portable Electrochemical Sensors for Controlled Substances. SENSORS (BASEL, SWITZERLAND) 2023; 23:3140. [PMID: 36991851 PMCID: PMC10058808 DOI: 10.3390/s23063140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
This review article summarizes recent achievements in developing portable electrochemical sensing systems for the detection and/or quantification of controlled substances with potential on-site applications at the crime scene or other venues and in wastewater-based epidemiology. Electrochemical sensors employing carbon screen-printed electrodes (SPEs), including a wearable glove-based one, and aptamer-based devices, including a miniaturized aptamer-based graphene field effect transistor platform, are some exciting examples. Quite straightforward electrochemical sensing systems and methods for controlled substances have been developed using commercially available carbon SPEs and commercially available miniaturized potentiostats. They offer simplicity, ready availability, and affordability. With further development, they might become ready for deployment in forensic field investigation, especially when fast and informed decisions are to be made. Slightly modified carbon SPEs or SPE-like devices might be able to offer higher specificity and sensitivity while they can still be used on commercially available miniaturized potentiostats or lab-fabricated portable or even wearable devices. Affinity-based portable devices employing aptamers, antibodies, and molecularly imprinted polymers have been developed for more specific and sensitive detection and quantification. With further development of both hardware and software, the future of electrochemical sensors for controlled substances is bright.
Collapse
Affiliation(s)
- Zhaohua Dai
- Forensic Science Program, Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
| |
Collapse
|
9
|
Shruthi Vishwanath M, Kumara Swamy B, Vishnumurthy K. Zinc Oxide Modified Carbon Paste Electrode Sensor for the Voltammetric Detection of L-tryptophan in presence of Uric acid and Ascorbic acid. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
10
|
Da Y, Luo S, Tian Y. Real-Time Monitoring of Neurotransmitters in the Brain of Living Animals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:138-157. [PMID: 35394736 DOI: 10.1021/acsami.2c02740] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neurotransmitters, as important chemical small molecules, perform the function of neural signal transmission from cell to cell. Excess concentrations of neurotransmitters are often closely associated with brain diseases, such as Alzheimer's disease, depression, schizophrenia, and Parkinson's disease. On the other hand, the release of neurotransmitters under the induced stimulation indicates the occurrence of reward-related behaviors, including food and drug addiction. Therefore, to understand the physiological and pathological functions of neurotransmitters, especially in complex environments of the living brain, it is urgent to develop effective tools to monitor their dynamics with high sensitivity and specificity. Over the past 30 years, significant advances in electrochemical sensors and optical probes have brought new possibilities for studying neurons and neural circuits by monitoring the changes in neurotransmitters. This Review focuses on the progress in the construction of sensors for in vivo analysis of neurotransmitters in the brain and summarizes current attempts to address key issues in the development of sensors with high selectivity, sensitivity, and stability. Combined with the latest advances in technologies and methods, several strategies for sensor construction are provided for recording chemical signal changes in the complex environment of the brain.
Collapse
Affiliation(s)
- Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
11
|
Rahman S, Ajmal M, Siddiq M. Micron sized anionic poly (methacrylic acid) microgel particles for the adsorptive elimination of cationic water pollutants. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
In this article, we reported the micron sized particles of poly (methacrylic acid) (p [MAA]) microgel and explored their applications as anionic adsorbents. The micron sized particles of poly (methacrylic acid) microgel were prepared by a simple inverse suspension polymerization method. The adsorptive elimination of adsorbates of cationic nature including malachite green (MG) and methylene blue (MB) from the aqueous medium was studied systematically. The adsorption tests were carried out using various initial concentrations of dyes and with different amounts of adsorbents. The adsorption equilibrium was established in 60 min. The adsorption capacity of the p (MAA) microgel was found as high as 351 mg/g for MG and 65 mg/g for MB. The maximum removal percentage for MG and MB was recorded as 88 and 68%, respectively. The adsorption data was computed with adsorption isotherm models including Langmuir, Freundlich, and Temkin. The Langmuir model was observed to be more applicable for the adsorption of MG while the adsorption of MB was best matched with Temkin model. The adsorption data was also treated with pseudo first order and pseudo second order kinetic models along with intraparticle diffusion and Elovich models. The pseudo second order kinetic model was most suitable with adsorption of both the MG and MB.
Collapse
Affiliation(s)
- Sultana Rahman
- Department of Chemistry , Quaid-i-Azam University , Islamabad 45320 , Pakistan
| | - Muhammad Ajmal
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| | - Muhammad Siddiq
- Department of Chemistry , Quaid-i-Azam University , Islamabad 45320 , Pakistan
| |
Collapse
|
12
|
Biomass-derived carbon nanomaterials for sensor applications. J Pharm Biomed Anal 2023; 222:115102. [DOI: 10.1016/j.jpba.2022.115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
13
|
Advances in polysaccharide-based nano/microcapsules for biomedical applications: A review. Int J Biol Macromol 2022; 220:878-891. [PMID: 36007696 DOI: 10.1016/j.ijbiomac.2022.08.129] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/06/2023]
Abstract
Biocompatible and biodegradable polysaccharides are abundant and renewable natural materials. Polysaccharides and their derivatives are developed into various carrier materials for biomedical applications. In particular, advanced polysaccharide-based nano/microcapsules have received extensive attention in biomedical applications due to their good encapsulation ability and tunability. In recent years, polysaccharide-based nano/microcapsules have been widely used in drug carriers, gene carriers, antigen carriers, wound dressings, bioimaging and biosensors. Numerous research results have confirmed the feasibility, safety, and effectiveness of polysaccharide-based nano/microcapsules in the above-mentioned biomedical applications. This review discussed and analyzed the latest research strategies and design considerations for these applications in detail. The preparation methods, application strategies, and design considerations of polysaccharide-based nano/microcapsules are summarized and analyzed, and their challenges and future research prospects in biomedicine are further discussed. It is expected to provide researchers with inspiration and design ideas.
Collapse
|
14
|
Abstract
An optimized mixture of polydopamine (PDA) and polyvinyl alcohol (PVA) is employed as the surface functionalizing agent and reducing agent to encapsulate individual polypropylene (PP) fibers of polypropylene micromembrane (PPMM). The functionalized PPMM becomes hydrophilic to allow the formation of Au nuclei for subsequent electroless Au deposition. The metalized PPMM is further deposited with IrO2 nanoparticles, and evaluated as a flexible and porous pH sensor. Images from scanning electron microscope confirms the uniform formation of IrO2 nanoparticles on Au-coated PP fibers. For pH-sensing performance, the IrO2-decorated metalized PPMM reveals a super-Nernstian response for a sensing slope of -74.45 mV/pH in aqueous solutions with pH value ranging between 2 and 12. In addition, the pH-sensing performance is properly maintained after 5000 bending cycles and hysteresis is modest in an acidic environment. The cell viability test indicates a negligible bio-toxicity. Our strategy of using a conductive polymeric membrane decorated with IrO2 nanoparticles enables possible sensing applications in wearable and implantable electronics.
Collapse
|
15
|
Rather I, Sofi FA, Bhat MA, Ali R. Synthesis of Novel One-Walled meso-Phenylboronic Acid-Functionalized Calix[4]pyrrole: A Highly Sensitive Electrochemical Sensor for Dopamine. ACS OMEGA 2022; 7:15082-15089. [PMID: 35572746 PMCID: PMC9089685 DOI: 10.1021/acsomega.2c00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 05/29/2023]
Abstract
Facile access to new one-walled meso-substituted phenylboronic acid-functionalized calix[4]pyrrole (C4P) has been revealed for the first time, starting from cost-effective and easily accessible materials. The structures of both the intermediate dipyrromethane (DPM) and the targeted functionalized C4P have been confirmed by means of 1H-NMR, 13C-NMR, IR, and HRMS spectral data. The voltammetric investigations of the functionalized C4P films cast over a glassy carbon electrode (C4P-GCE) clearly establish the redox stability and redox accessibility of the boronic acid functional moiety present in the C4P framework. We demonstrate that the presence of the unique boronic acid functionality in the C4P endows it with an excellent potential for the highly sensitive electrochemical sensing of the neurotransmitter dopamine (DA). A linear correlation between the strength of the Faradaic signals corresponding to the electro-oxidation of DA over C4P-GCE and the concentration of DA was observed in a concentration range as wide as 0.165-2.302 μM. The C4P-GCE has revealed exceptional stability and reproducibility in the electrochemical sensing of DA, with a nanomolar level limit of detection as low as 15 nM.
Collapse
Affiliation(s)
- Ishfaq
Ahmad Rather
- Organic
and Supramolecular Functional Materials Research Laboratory, Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Feroz Ahmad Sofi
- Department
of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohsin Ahmad Bhat
- Department
of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Rashid Ali
- Organic
and Supramolecular Functional Materials Research Laboratory, Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
16
|
Zamani M, Wilhelm T, Furst AL. Perspective-Electrochemical Sensors for Neurotransmitters and Psychiatrics: Steps toward Physiological Mental Health Monitoring. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022; 169:047513. [PMID: 37577452 PMCID: PMC10421614 DOI: 10.1149/1945-7111/ac5e42] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Therapeutic monitoring of neurotransmitters (NTs) and psychiatric medications is essential for the diagnosis and treatment of mental illness. However, in-vivo monitoring of NTs in humans as well as continuous physiological monitoring of psychiatrics have yet to be realized. In pursuit of this goal, there has been a plethora of work to develop electrochemical sensors for both in-vivo NT monitoring as well as in-vitro detection of psychiatric medications. We review these sensors here while discussing next steps needed to achieve concurrent, continuous physiological monitoring of NTs and psychiatric medications as part of a closed-loop feedback system that guides medication administration.
Collapse
Affiliation(s)
- Marjon Zamani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts—02139, United States of America
| | - Tatum Wilhelm
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts—02139, United States of America
| | - Ariel L. Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts—02139, United States of America
| |
Collapse
|
17
|
Rehman Umar A, Hussain K, Aslam Z, Anwar Ul Haq M, Muhammad H, Sirajuddin, Raza Shah M. Ultra-trace level voltammetric sensor for MB in human plasma based on a carboxylic derivative of Calix[4]resorcinarene capped silver nanoparticles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Jia Q, Yang C, Venton BJ, DuBay KH. Atomistic Simulations of Dopamine Diffusion Dynamics on a Pristine Graphene Surface. Chemphyschem 2022; 23:e202100783. [PMID: 34939307 PMCID: PMC9933135 DOI: 10.1002/cphc.202100783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/04/2021] [Indexed: 11/08/2022]
Abstract
Carbon microelectrodes enable in vivo detection of neurotransmitters, and new electrodes aim to optimize the carbon surface. However, atomistic detail on the diffusion and orientation of neurotransmitters near these surfaces is lacking. Here, we employ molecular dynamics simulations to investigate the surface diffusion of dopamine (DA), its oxidation product dopamine-o-quinone (DOQ), and their protonated forms on the pristine basal plane of flat graphene. We find that all DA species rapidly adsorb to the surface and remain adsorbed, even without a holding potential or graphene surface defects. We also find that the diffusivities of the adsorbed and the fully solvated DA are similar and that the protonated species diffuse more slowly on the surface than their corresponding neutral forms, while the oxidized species diffuse more rapidly. Structurally, we find that the underlying graphene lattice has little influence over the molecular adsorbate's lateral position, and the vertical placement of the amine group on dopamine is highly dependent upon its charge. Finally, we find that solvation has a large effect on surface diffusivities. These first results from molecular dynamics simulations of dopamine at the aqueous-graphene interface show that dopamine diffuses rapidly on the surface, even without an applied potential, and provide a basis for future simulations of neurotransmitter structure and dynamics on advanced carbon materials electrodes.
Collapse
|
19
|
Karaboğa MNS, Sezgintürk MK. Biosensor approaches on the diagnosis of neurodegenerative diseases: Sensing the past to the future. J Pharm Biomed Anal 2022; 209:114479. [PMID: 34861607 DOI: 10.1016/j.jpba.2021.114479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Early diagnosis of neurodegeneration-oriented diseases that develop with the aging world is essential for improving the patient's living conditions as well as the treatment of the disease. Alzheimer's and Parkinson's diseases are prominent examples of neurodegeneration characterized by dementia leading to the death of nerve cells. The clinical diagnosis of these diseases only after the symptoms appear, delays the treatment process. Detection of biomarkers, which are distinctive molecules in biological fluids, involved in neurodegeneration processes, has the potential to allow early diagnosis of neurodegenerative diseases. Studies on biosensors, whose main responsibility is to detect the target analyte with high specificity, has gained momentum in recent years with the aim of high detection of potential biomarkers of neurodegeneration process. This study aims to provide an overview of neuro-biosensors developed on the basis of biomarkers identified in biological fluids for the diagnosis of neurodegenerative diseases such as Alzheimer's disease (AD), and Parkinson's disease (PD), and to provide an overview of the urgent needs in this field, emphasizing the importance of early diagnosis in the general lines of the neurodegeneration pathway. In this review, biosensor systems developed for the detection of biomarkers of neurodegenerative diseases, especially in the last 5 years, are discussed.
Collapse
|
20
|
Abstract
![]()
Electronically interfacing with the
nervous system for the purposes
of health diagnostics and therapy, sports performance monitoring,
or device control has been a subject of intense academic and industrial
research for decades. This trend has only increased in recent years,
with numerous high-profile research initiatives and commercial endeavors.
An important research theme has emerged as a result, which is the
incorporation of semiconducting polymers in various devices that communicate
with the nervous system—from wearable brain-monitoring caps
to penetrating implantable microelectrodes. This has been driven by
the potential of this broad class of materials to improve the electrical
and mechanical properties of the tissue–device interface, along
with possibilities for increased biocompatibility. In this review
we first begin with a tutorial on neural interfacing, by reviewing
the basics of nervous system function, device physics, and neuroelectrophysiological
techniques and their demands, and finally we give a brief perspective
on how material improvements can address current deficiencies in this
system. The second part is a detailed review of past work on semiconducting
polymers, covering electrical properties, structure, synthesis, and
processing.
Collapse
Affiliation(s)
- Ivan B Dimov
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Maximilian Moser
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom.,King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
21
|
Baghbaderani SS, Mokarian P, Moazzam P. A Review on Electrochemical Sensing of Cancer Biomarkers Based on
Nanomaterial - Modified Systems. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200917161657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diagnosis of cancer in the early stages can help treat efficiently and reduce cancerrelated
death. Cancer biomarkers can respond to the presence of cancer in body fluids before the
appearance of any other symptoms of cancer. The integration of nanomaterials into biosensors as
electrochemical platforms offer rapid, sensitive detection for cancer biomarkers. The use of surface-
modified electrodes by carbon nanomaterials and metal nanoparticles enhances the performance
of electrochemical analysis in biosensing systems through the increase of bioreceptors loading
capacity on the surface. In this review, novel approaches based on nanomaterial-modified systems
in the point of care diagnostics are highlighted.
Collapse
Affiliation(s)
- Sorour Salehi Baghbaderani
- Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441,Iran
| | - Parastou Mokarian
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14676-86831,Iran
| | - Parisa Moazzam
- School of Chemistry, University of New South Wales, Sydney, 2052,Australia
| |
Collapse
|
22
|
Michalkiewicz S, Skorupa A, Jakubczyk M. Carbon Materials in Electroanalysis of Preservatives: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7630. [PMID: 34947225 PMCID: PMC8709479 DOI: 10.3390/ma14247630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Electrochemical sensors in electroanalysis are a particularly useful and relatively simple way to identify electroactive substances. Among the materials used to design sensors, there is a growing interest in different types of carbon. This is mainly due to its non-toxic properties, low cost, good electrical conductivity, wide potential range, and the possibility of using it in both aqueous and nonaqueous media. The electrodes made of carbon, and especially of carbon modified with different materials, are currently most often used in the voltammetric analysis of various compounds, including preservatives. The objective of this paper is to present the characteristics and suitability of different carbon materials for the construction of working electrodes used in the voltammetric analysis. Various carbon materials were considered and briefly discussed. Their analytical application was presented on the example of the preservatives commonly used in food, cosmetic, and pharmaceutical preparations. It was shown that for the electroanalysis of preservatives, mainly carbon electrodes modified with various modifiers are used. These modifications ensure appropriate selectivity, high sensitivity, low limits of detection and quantification, as well as a wide linearity range of voltammetric methods of their identification and determination.
Collapse
Affiliation(s)
- Slawomir Michalkiewicz
- Institute of Chemistry, Jan Kochanowski University, PL-25406 Kielce, Poland; (A.S.); (M.J.)
| | | | | |
Collapse
|
23
|
Mezzasalma SA, Grassi L, Grassi M. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112480. [PMID: 34857266 DOI: 10.1016/j.msec.2021.112480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
The open border between non-living and living matter, suggested by increasingly emerging fields of nanoscience interfaced to biological systems, requires a detailed knowledge of nanomaterials properties. An account of the wide spectrum of phenomena, belonging to physical chemistry of interfaces, materials science, solid state physics at the nanoscale and bioelectrochemistry, thus is acquainted for a comprehensive application of carbon nanotubes interphased with neuron cells. This review points out a number of conceptual tools to further address the ongoing advances in coupling neuronal networks with (carbon) nanotube meshworks, and to deepen the basic issues that govern a biological cell or tissue interacting with a nanomaterial. Emphasis is given here to the properties and roles of carbon nanotube systems at relevant spatiotemporal scales of individual molecules, junctions and molecular layers, as well as to the point of view of a condensed matter or materials scientist. Carbon nanotube interactions with blood-brain barrier, drug delivery, biocompatibility and functionalization issues are also regarded.
Collapse
Affiliation(s)
- Stefano A Mezzasalma
- Ruder Bošković Institute, Materials Physics Division, Bijeniška cesta 54, 10000 Zagreb, Croatia; Lund Institute for advanced Neutron and X-ray Science (LINXS), Lund University, IDEON Building, Delta 5, Scheelevägen 19, 223 70 Lund, Sweden.
| | - Lucia Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| |
Collapse
|
24
|
Multiplexed assessment of engineered bacterial constructs for intracellular β-galactosidase expression by redox amplification on catechol-chitosan modified nanoporous gold. Mikrochim Acta 2021; 189:4. [PMID: 34855041 DOI: 10.1007/s00604-021-05109-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Synthetic biology approaches for rewiring of bacterial constructs to express particular intracellular factors upon induction with the target analyte are emerging as sensing paradigms for applications in environmental and in vivo monitoring. To aid in the design and optimization of bacterial constructs for sensing analytes, there is a need for lysis-free intracellular detection modalities that monitor the signal level and kinetics of expressed factors within different modified bacteria in a multiplexed manner, without requiring cumbersome surface immobilization. Herein, an electrochemical detection system on nanoporous gold that is electrofabricated with a biomaterial redox capacitor is presented for quantifying β-galactosidase expressed inside modified Escherichia coli constructs upon induction with dopamine. This nanostructure-mediated redox amplification approach on a microfluidic platform allows for multiplexed assessment of the expressed intracellular factors from different bacterial constructs suspended in distinct microchannels, with no need for cell lysis or immobilization. Since redox mediators present over the entire depth of the microchannel can interact with the electrode and with the E. coli construct in each channel, the platform exhibits high sensitivity and enables multiplexing. We envision its application in assessing synthetic biology-based approaches for comparing specificity, sensitivity, and signal response time upon induction with target analytes of interest.
Collapse
|
25
|
Kaya SI, Yıldırım S, Cetinkaya A, Erkmen C, Uslu B, Ozkan SA. Nanomaterial-based electroanalytical sensors for the selected prohibited anabolic agents, hormones and metabolic modulators and their sensitive assays. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Beduk T, de Oliveira Filho JI, Ait Lahcen A, Mani V, Salama KN. Inherent Surface Activation of Laser-Scribed Graphene Decorated with Au and Ag Nanoparticles: Simultaneous Electrochemical Behavior toward Uric Acid and Dopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13890-13902. [PMID: 34787434 DOI: 10.1021/acs.langmuir.1c02379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Laser-scribed graphene electrodes (LSGEs) have attracted great attention for the development of electrochemical (bio)sensors due to their excellent electronic properties, large surface area, and high porosity, which enhances the electrons' transfer rate. An increasing active surface area and defect sites are the quickest way to amplify the electrochemical sensing attributes of the electrodes. Here, we have found that the activation procedure coupled to the electrodeposition of metal nanoparticles resulted in a significant amplification of the active area and the analytical performance. This preliminary study is supported by the demonstration of the simultaneous electrochemical sensing of dopamine (DA) and uric acid (UA) by the electrochemically activated LSGEs (LSGE*s). Furthermore, the electrodeposition of two different metal nanoparticles, gold (Au) and silver (Ag), was performed in multiple combinations on working and reference electrodes to investigate the enhancement in the electrochemical response of LSGE*s. Current enhancements of 32, 27, and 35% were observed from LSGE* with WE:Au/RE:LSG/CE:LSGE, WE:Au/RE:Au/CE:LSGE, and WE:Au/RE:Ag/CE:LSGE, compared to the same combinations of LSGEs without any surface activation. A homemade and practical potentiostat, KAUSTat, was used in these electrochemical depositions in this study. Among all of the combinations, the surface area was increased 1.6-, 2.0-, and 1.2-fold for WE:Au/RE:LSG/CE:LSGE, WE:Au/RE:Au/CE:LSGE, and WE:Au/RE:Ag/CE:LSGE prepared from LSGE*s, respectively. To evaluate the analytical performance, DA and UA were detected simultaneously in the presence of ascorbic acid. The LODs of DA and UA are calculated to be ∼0.8 and ∼0.6 μM, respectively. Hence, this study has the potential to open new insights into new surface activation strategies with a combination of one-step nanostructured metal depositions by a custom-made potentiostat. This novel strategy could be an excellent and straightforward method to enhance the electrochemical transducer sensitivity for various electrochemical sensing applications.
Collapse
Affiliation(s)
- Tutku Beduk
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - José Ilton de Oliveira Filho
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdellatif Ait Lahcen
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Veerappan Mani
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
27
|
Pandey U, Rani MU, Deshpande AS, Singh SG, Agrawal A. Sweetcorn husk derived porous carbon with inherent silica for ultrasensitive detection of ovarian cancer in blood plasma. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Polypyrrole-coated carbon fibre electrodes for paracetamol and clozapine drug sensing. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Application of deep eutectic solvent and SWCNT-ZrO2 nanocomposite as conductive mediators for the fabrication of simple and rapid electrochemical sensor for determination of trace anti-migration drugs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Nigdelioglu Dolanbay S, Kocanci FG, Aslim B. Neuroprotective effects of allocryptopine-rich alkaloid extracts against oxidative stress-induced neuronal damage. Biomed Pharmacother 2021; 140:111690. [PMID: 34004513 DOI: 10.1016/j.biopha.2021.111690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Oxidative stress is a significant feature in the pathomechanism of neurodegenerative diseases. Thus, the search for an effective and safe novel antioxidant agent with neuroprotective properties has increased the interest in medicinal plant products as a bioactive phytochemical source. However, little is known about the potential effects of the medically important Glaucium corniculatum as a natural antioxidant. OBJECTIVE In the present study, it was aimed to investigate the anti-oxidative, anti-apoptotic, and cell cycle regulatory mechanisms underlying the neuroprotective effects of alkaloid extracts (chloroform, methanol, and water) from G. corniculatum, which was profiled for major alkaloid/alkaloids, against H2O2-induced neuronal damage in differentiated PC12 cells. MATERIALS AND METHODS The profiles of the alkaloid extracts were analyzed by GC-MS. The effects of the alkaloid extracts on intracellular ROS production, level of apoptotic cells, and cell cycle dysregulation were analyzed by flow cytometry; the effects on mRNA expression of apoptosis-related genes were also analyzed by qRT-PCR. RESULTS The same alkaloid components, allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide were obtained in all three solvents, but the ratios of the components differed according to the solvents. Allocryptopine was determined to be the major alkaloid ingredient in the alkaloid extracts, with the highest amount of allocryptopine (497 μg/mg) being found in the chloroform alkaloid extract (CAE) (*p < 0.05). The best results were obtained from CAE, which has the highest amount of allocryptopine among alkaloid extracts in all studies. CAE suppressed intracellular ROS production (5.7-fold), percentage of apoptotic cells (3.0-fold), and cells in the sub G1 phase (6.8-fold); additionally, it increased cells in the G1 phase (1.5-fold) (**p < 0.01). CAE remarkably reduced the expressions of Bax, Caspase-9/-3 mRNA (2.4-3.5-fold) while increasing the expression of Bcl-2 mRNA (3.0-fold) (*p < 0.05). CONCLUSIONS Our results demonstrated that alkaloid extracts from G. corniculatum, which contain allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide suppressed oxidative stress-induced neuronal apoptosis, possibly by suppressing the mitochondrial apoptotic pathway and regulating the cell cycle. These results are the first report that related alkaloids have played a neuroprotective role by regulating multiple mechanisms. Thus, our study indicated that these alkaloids especially allocryptopine could offer an efficient and novel strategy to explore novel drugs for neuroprotection and cognitive improvement.
Collapse
Affiliation(s)
| | - Fatma Gonca Kocanci
- Alaaddin Keykubat University, Vocational High School of Health Services, Department of Medical Laboratory Techniques, Alanya 07425, Antalya, Turkey
| | - Belma Aslim
- Gazi University, Faculty of Science, Department of Biology, 06500 Ankara, Turkey
| |
Collapse
|
31
|
Li J, Si Y, Park YE, Choi JS, Jung SM, Lee JE, Lee HJ. A serotonin voltammetric biosensor composed of carbon nanocomposites and DNA aptamer. Mikrochim Acta 2021; 188:146. [PMID: 33792757 DOI: 10.1007/s00604-021-04798-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 01/10/2023]
Abstract
A sensitive and selective voltammetric biosensor composed of layer-by-layer (LbL) self-assembly of positively charged poly(diallyldimethylammonium)-wrapped oxidized single-walled carbon nanotubes (PDDA-oSWCNTs), negatively charged serotonin (5-hydroxytryptamine, 5-HT)-specific aptamer, and tyrosinase on Au nanoparticles deposited screen printed carbon electrode was developed for measurement of 5-HT. Surface characteristics of 5-HT biosensor were explored using scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The respective effects of 5-HT-specific aptamer and oSWCNTs on the detection of 5-HT were investigated by differential pulse voltammetry (DPV). The peak current at the potential of 0.29 V (vs. Ag/AgCl) increased with respect to 5-HT concentration resulting in two dynamic ranges from 0.05 to 0.5 and 1 to 20 μM with a limit of detection of 2 nM from the LbL biosensor in buffer solution, which were better than those without the LbL of aptamer and oSWCNTs. The developed biosensor was applied to the direct determination of 5-HT concentrations in undiluted healthy control and Internet gaming disorder serum samples. The results were verified by comparison with those from liquid chromatography-mass spectrometric analyses.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| | - Yunpei Si
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| | - Yae Eun Park
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jung-Seok Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Sung Mi Jung
- Environmental Fate & Exposure Research Group, Korea Institute of Toxicology (KIT), Jinju, Gyeongsangnam-do, 52834, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea.
| |
Collapse
|
32
|
Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the many biological entities employed in the development of biosensors, enzymes have attracted the most attention. Nanotechnology has been fostering excellent prospects in the development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio, signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via the compilation of several reports on their applications in different industrial segments. To provide detailed insights into the state of the art of this technology, all the relevant concepts around the topic are discussed, including the properties of enzymes, the mechanisms involved in their immobilization, and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a discussion around the pressing challenges in this technology, which will be useful for guiding the development of future research in the area.
Collapse
|
33
|
Zhang X, Li G, Chen G, Zhu N, Wu D, Wu Y, James TD. Recent progresses and remaining challenges for the detection of Zika virus. Med Res Rev 2021; 41:2039-2108. [PMID: 33559917 DOI: 10.1002/med.21786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Zika virus (ZIKV) has emerged as a particularly notorious mosquito-borne flavivirus, which can lead to a devastating congenital syndrome in the fetuses of pregnant mothers (e.g., microcephaly, spasticity, craniofacial disproportion, miscarriage, and ocular abnormalities) and cause the autoimmune disorder Guillain-Barre' syndrome of adults. Due to its severity and rapid dispersal over several continents, ZIKV has been acknowledged to be a global health concern by the World Health Organization. Unfortunately, the ZIKV has recently resurged in India with the potential for devastating effects. Researchers from all around the world have worked tirelessly to develop effective detection strategies and vaccines for the prevention and control of ZIKV infection. In this review, we comprehensively summarize the most recent research into ZIKV, including the structural biology and evolution, historical overview, pathogenesis, symptoms, and transmission. We then focus on the detection strategies for ZIKV, including viral isolation, serological assays, molecular assays, sensing methods, reverse transcription loop mediated isothermal amplification, transcription-mediated amplification technology, reverse transcription strand invasion based amplification, bioplasmonic paper-based device, and reverse transcription isothermal recombinase polymerase amplification. To conclude, we examine the limitations of currently available strategies for the detection of ZIKV, and outline future opportunities and research challenges.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guang Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Niu Zhu
- Department of Public Health, Xi'an Medical University, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
34
|
Gholizadeh H, Ong HX, Bradbury P, Kourmatzis A, Traini D, Young P, Li M, Cheng S. Real-time quantitative monitoring of in vitro nasal drug delivery by a nasal epithelial mucosa-on-a-chip model. Expert Opin Drug Deliv 2021; 18:803-818. [PMID: 33410717 DOI: 10.1080/17425247.2021.1873274] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES A human nasal epithelial mucosa (NEM) on-a-chip is developed integrated with a novel carbon nanofibers-modified carbon electrode for real-time quantitative monitoring of in vitro nasal drug delivery. The integration of platinum electrodes in the chip also enables real-time measurement of transepithelial electrical resistance (TEER). METHODS The air-liquid interface culture of nasal epithelial RPMI 2650 cells in the NEM-on-a-chip was optimized to mimic the key functional characteristics of the human nasal mucosa. The epithelial transport of ibuprofen in the NEM-on-a-chip was electrochemically monitored in real-time under static and physiologically realistic dynamic flow conditions. RESULTS The NEM-on-a-chip mimics the mucus production and nasal epithelial barrier function of the human nasal mucosa. The real-time drug quantification by the NEM-on-a-chip was validated versus the high-performance liquid chromatography method. The drug transport rate monitored in the NEM-on-a-chip was influenced by the flow in the bottom compartment of the chip, highlighting the importance of emulating the dynamic in vivo condition for nasal drug transport studies. CONCLUSION This novel NEM-on-a-chip can be a low-cost and time-efficient alternative to the costly laborious conventional techniques for in vitro nasal drug transport assays. Importantly, its dynamic microenvironment enables conducting nasal drug transport tests under physiologically relevant dynamic conditions.
Collapse
Affiliation(s)
- Hanieh Gholizadeh
- School of Engineering, Macquarie University, Sydney, NSW, Australia.,Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, Australia.,Discipline of Pharmacology, Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Peta Bradbury
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, NSW, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, Australia.,Discipline of Pharmacology, Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Paul Young
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, Australia.,Discipline of Pharmacology, Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Shaokoon Cheng
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
35
|
Buleandră M, Popa DE, David IG, Ciucu AA. A simple and efficient cyclic square wave voltammetric method for simultaneous determination of epinephrine and norepinephrine using an activated pencil graphite electrode. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Madhurantakam S, Karnam JB, Brabazon D, Takai M, Ahad IU, Balaguru Rayappan JB, Krishnan UM. "Nano": An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chem Neurosci 2020; 11:4024-4047. [PMID: 33285063 DOI: 10.1021/acschemneuro.0c00355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The growing importance of nanomaterials toward the detection of neurotransmitter molecules has been chronicled in this review. Neurotransmitters (NTs) are chemicals that serve as messengers in synaptic transmission and are key players in brain functions. Abnormal levels of NTs are associated with numerous psychotic and neurodegenerative diseases. Therefore, their sensitive and robust detection is of great significance in clinical diagnostics. For more than three decades, electrochemical sensors have made a mark toward clinical detection of NTs. The superiority of these electrochemical sensors lies in their ability to enable sensitive, simple, rapid, and selective determination of analyte molecules while remaining relatively inexpensive. Additionally, these sensors are capable of being integrated in robust, portable, and miniaturized devices to establish point-of-care diagnostic platforms. Nanomaterials have emerged as promising materials with significant implications for electrochemical sensing due to their inherent capability to achieve high surface coverage, superior sensitivity, and rapid response in addition to simple device architecture and miniaturization. Considering the enormous significance of the levels of NTs in biological systems and the advances in sensing ushered in with the integration of nanotechnology in electrochemistry, the analysis of NTs by employing nanomaterials as interface materials in various matrices has emerged as an active area of research. This review explores the advancements made in the field of electrochemical sensors for the sensitive and selective determination of NTs which have been described in the past two decades with a distinctive focus on extremely innovative attributes introduced by nanotechnology.
Collapse
Affiliation(s)
- Sasya Madhurantakam
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Jayanth Babu Karnam
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Inam Ul Ahad
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | | | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
- School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
37
|
Evolution of in vivo dopamine monitoring techniques. Pharmacol Biochem Behav 2020; 200:173078. [PMID: 33278398 DOI: 10.1016/j.pbb.2020.173078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023]
Abstract
The brain dopamine system is central to numerous behavioral processes, including movement, learning, and motivation. Accordingly, disruptions of this neural system underlie numerous neurological and psychiatric disorders. Current understanding of how dopamine neurotransmission contributes to behavior and its dysfunction has been driven by technological advancements that permit spatiotemporally-defined measurements of dopaminergic signaling in behaving animals. In this review, we will discuss the evolution of in vivo neural monitoring technologies for measuring dopamine neuron function. We focus on the dopamine system for two reasons: (1) the central role of dopamine neurotransmission in normal behavior and disease, and (2) dopamine neuron measurements have long been at the forefront of in vivo neural monitoring technologies. We will provide a brief overview of standard techniques for monitoring dopamine function, including electrophysiology, microdialysis, and voltammetry. Then, we will discuss recent advancements in optical technologies using genetically-encoded fluorescent proteins (GEFPs), including a critical evaluation of their advantages and limitations.
Collapse
|
38
|
|
39
|
Poolakkandy RR, Menamparambath MM. Transition metal oxide based non‐enzymatic electrochemical sensors: An arising approach for the meticulous detection of neurotransmitter biomarkers. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
40
|
Alhaddad M, Sheta SM. Dual Naked-Eye and Optical Chemosensor for Morphine Detection in Biological Real Samples Based on Cr(III) Metal-Organic Framework Nanoparticles. ACS OMEGA 2020; 5:28296-28304. [PMID: 33163813 PMCID: PMC7643277 DOI: 10.1021/acsomega.0c04249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 05/12/2023]
Abstract
The analytical detection and quantification of abuse drugs such as morphine (MOR) in biological samples are vital missions and remains to attract challenges for forensic toxicology, law enforcement, world antidoping organization, and social health fields. MOR, a benchmark analgesic drug known as "pain killer", is one of the powerful opioid medications for relieving pain, and overdose of MOR is toxic. In this article, novel promising chromium metal-organic framework nanoparticles [Cr(III)-MOF-NPs] were produced via facile synthesis and characterized using high-resolution transmission electron microscopy, field-emission scanning electron microscopy/energy-dispersive X-ray spectroscopy, mass spectrometry, X-ray photoelectron spectroscopy, elemental analysis, UV-vis, Fourier transform infrared, and thermogravimetry/differential scanning calorimetry, as well as photoluminescence (PL) investigation and magnetic properties. The PL study results revealed that the Cr(III)-MOF-NPs exhibited an emission band at 593 nm. The Cr(III)-MOF-NPs could be used in fast, selective, and sensitive MOR detection and quantification. Under the optimum experimental conditions, with the addition of MOR, a blueshift from 593 to 566 nm occurred with a remarkable PL intensity enhancement, and the color changed from brown to yellow (visually/naked-eye detection). The Cr(III)-MOF-NPs optical chemosensor exhibited a stable response for MOR in a concentration range between 0.1 and 350 nM. The detection and quantification limits were 0.167 and 0.443 nM, respectively, with a correlation coefficient (r 2) of 0.96. The developed PL chemosensor showed high selectivity for MOR over other competing interfering matrices. Moreover, the ultrasensitive chemosensor was extensively used for the determination of MOR spiked in different real samples (serum and urine samples) with acceptable recoveries and satisfactory results.
Collapse
Affiliation(s)
- Maha Alhaddad
- Department
of Chemistry, Faculty of Science, King Abdulaziz
University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
| | - Sheta M. Sheta
- Department
of Inorganic Chemistry, National Research
Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
| |
Collapse
|
41
|
Recent Advances in Noninvasive Biosensors for Forensics, Biometrics, and Cybersecurity. SENSORS 2020; 20:s20215974. [PMID: 33105602 PMCID: PMC7659947 DOI: 10.3390/s20215974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Recently, biosensors have been used in an increasing number of different fields and disciplines due to their wide applicability, reproducibility, and selectivity. Three large disciplines in which this has become relevant has been the forensic, biometric, and cybersecurity fields. The call for novel noninvasive biosensors for these three applications has been a focus of research in these fields. Recent advances in these three areas has relied on the use of biosensors based on primarily colorimetric assays based on bioaffinity interactions utilizing enzymatic assays. In forensics, the use of different bodily fluids for metabolite analysis provides an alternative to the use of DNA to avoid the backlog that is currently the main issue with DNA analysis by providing worthwhile information about the originator. In biometrics, the use of sweat-based systems for user authentication has been developed as a proof-of-concept design utilizing the levels of different metabolites found in sweat. Lastly, biosensor assays have been developed as a proof-of-concept for combination with cybersecurity, primarily cryptography, for the encryption and protection of data and messages.
Collapse
|
42
|
Feroz M, Vadgama P. Molecular Imprinted Polymer Modified Electrochemical Sensors for Small Drug Analysis: Progress to Practical Application. ELECTROANAL 2020. [DOI: 10.1002/elan.202060276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Momina Feroz
- Institute of Chemistry University of the Punjab 54590 Lahore Pakistan
| | - Pankaj Vadgama
- School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS United Kingdom
| |
Collapse
|
43
|
Teymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht A, Van Echelpoel R, De Wael K, Wang J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens 2020; 5:2679-2700. [PMID: 32822166 DOI: 10.1021/acssensors.0c01318] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wearable electrochemical sensors capable of noninvasive monitoring of chemical markers represent a rapidly emerging digital-health technology. Recent advances toward wearable continuous glucose monitoring (CGM) systems have ignited tremendous interest in expanding such sensor technology to other important fields. This article reviews for the first time wearable electrochemical sensors for monitoring therapeutic drugs and drugs of abuse. This rapidly emerging class of drug-sensing wearable devices addresses the growing demand for personalized medicine, toward improved therapeutic outcomes while minimizing the side effects of drugs and the related medical expenses. Continuous, noninvasive monitoring of therapeutic drugs within bodily fluids empowers clinicians and patients to correlate the pharmacokinetic properties with optimal outcomes by realizing patient-specific dose regulation and tracking dynamic changes in pharmacokinetics behavior while assuring the medication adherence of patients. Furthermore, wearable electrochemical drug monitoring devices can also serve as powerful screening tools in the hands of law enforcement agents to combat drug trafficking and support on-site forensic investigations. The review covers various wearable form factors developed for noninvasive monitoring of therapeutic drugs in different body fluids and toward on-site screening of drugs of abuse. The future prospects of such wearable drug monitoring devices are presented with the ultimate goals of introducing accurate real-time drug monitoring protocols and autonomous closed-loop platforms toward precise dose regulation and optimal therapeutic outcomes. Finally, current unmet challenges and existing gaps are discussed for motivating future technological innovations regarding personalized therapy. The current pace of developments and the tremendous market opportunities for such wearable drug monitoring platforms are expected to drive intense future research and commercialization efforts.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Parrilla
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Noelia Felipe Montiel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Abbas Barfidokht
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Robin Van Echelpoel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
44
|
Afshar S, Zamani HA, Karimi-Maleh H. NiO/SWCNTs coupled with an ionic liquid composite for amplified carbon paste electrode; A feasible approach for improving sensing ability of adrenalone and folic acid in dosage form. J Pharm Biomed Anal 2020; 188:113393. [PMID: 32504973 DOI: 10.1016/j.jpba.2020.113393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 11/30/2022]
Abstract
Electrochemical sensors have shown great appeal for the simultaneous analysis of pharmaceutical compounds. In this way, the presence study described first electroanalytical sensor for simultaneous determination of adrenalone and folic acid. The two-amplified voltammetric sensor was developed by modifying carbon paste electrode (CPE) with NiO/SWCNTs composite and 1-butyl-3-methylimidazolium methanesulfonate (1B3MIMS) and used for simultaneous determination of adrenalone and folic acid. The NiO/SWCNTs was synthesised by a fast and low-cost precipitation strategy and then characterised by EDS, FESEM and XRD methods. The results confirmed a particle size range of ⁓ 26.93-33.87 nm for NiO nanoparticle decorated at SWCNTs. The cyclic voltammetric investigation showed that oxidation potentials of adrenalone and folic acid depend on changing the pH value. The maximum oxidation current for the simultaneous analysis of two compounds occurred at pH = 7.0. In this condition, the sensor showed linear dynamic range 0.01-400 μM and 0.3-350 μM for determination of adrenalone and folic acid, respectively. The NiO/SWCNTs/1B3MIMS/CPE was then used as an ultrasensitive electroanalytical sensor for determination of adrenalone and folic acid in injection samples with recovery ratio between 98.2-103.66 %.
Collapse
Affiliation(s)
- Safoora Afshar
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hassan Ali Zamani
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hassan Karimi-Maleh
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
45
|
Zinoubi K, Chrouda A, Soltane R, Al‐Ghamdi YO, Garallah Almalki S, Osman G, Barhoumi H, Jaffrezic Renault N. Highly Sensitive Impedimetric Biosensor Based on Thermolysin Immobilized on a GCE Modified with AuNP‐decorated Graphene for the Detection of Ochratoxin A. ELECTROANAL 2020. [DOI: 10.1002/elan.202060247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Khaoula Zinoubi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
| | - Amani Chrouda
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
- Department of chemistry, College of Science at Zulfi Majmaah University Zulfi 11932 Saudi Arabia
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| | - Raya Soltane
- Department Faculty of Sciences of Tunis Tunis El Manar University Tunisia
- Department of Basic Sciences, Adham University college Umm Al-Qura University Adham 21971 Saudi Arabia
| | - Youssef O. Al‐Ghamdi
- Department of chemistry, College of Science at Zulfi Majmaah University Zulfi 11932 Saudi Arabia
| | - Sami Garallah Almalki
- Department of Biology, College of Science Al-zulfi Majmaah University Al-Majmaah 11952 Saudi Arabia
| | - Gamal Osman
- Department of Biology, Faculty of Applied Sciences Umm Al-Qura University Makkah Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science Umm Al-Qura University Mecca Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), ARC 12619 Giza Egypt
| | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| | - Nicole Jaffrezic Renault
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| |
Collapse
|
46
|
Dehnavi A, Soleymanpour A. Highly sensitive voltammetric electrode for the trace measurement of methyldopa based on a pencil graphite modified with phosphomolibdate/graphene oxide. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Point-of-care diagnostics for drugs of abuse in biological fluids: application of a microfabricated disposable copper potentiometric sensor. Mikrochim Acta 2020; 187:491. [DOI: 10.1007/s00604-020-04445-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
|
48
|
Veeralingam S, Badhulika S. X (metal: Al, Cu, Sn, Ti)-functionalized tunable 2D-MoS 2 nanostructure assembled biosensor arrays for qualitative and quantitative analysis of vital neurological drugs. NANOSCALE 2020; 12:15336-15347. [PMID: 32648865 DOI: 10.1039/d0nr03427d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work we report for the first time surface functionalization of 2D MoS2 with X (metals: Al, Cu, Sn, Ti) to develop a low-cost, ultra-selective biosensor array based Electronic Tongue (E-Tongue) for the detection of 4 vital neurological drugs in human saliva. The hydrothermally grown surface functionalized X-MoS2 was integrated onto a single 1 × 1 cm aluminium foil and contacts were defined using Cr electrodes. Detailed characterization revealed the formation of 2-H MoS2 and metal-X (Al, Cu, Sn, Ti)-functionalized MoS2 nanoflower like morphology decorated with nanoflake, nanorod, nanocube and nanostick structures, respectively. The response of the sensor array was recorded for aspirin, nicotine, caffeine and tramadol. Principal Component Analysis (PCA) was performed to reduce the dimension of numerous response data sets from all sensors and predict the likely possible response from various neurological drugs towards each sensor. Pattern-recognition analysis confirmed a definite pattern in response to respective functionalization and could efficiently differentiate neurological drugs from one another. Real-time analysis was performed using saliva samples for monitoring the therapeutic neurological drug concentration in the human body. Furthermore, the biosensor array was exposed to respective neurological drugs to study their sensitivity, selectivity, stability, reproducibility and adhesion onto the device. The strategy outlined can be used to develop lab-on-a-chip devices for the real-time detection of numerous bioanalytes in body fluids.
Collapse
Affiliation(s)
- Sushmitha Veeralingam
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, 502285, India.
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, 502285, India.
| |
Collapse
|
49
|
Sonuç Karaboga MN, Sezgintürk MK. Analysis of Tau-441 protein in clinical samples using rGO/AuNP nanocomposite-supported disposable impedimetric neuro-biosensing platform: Towards Alzheimer's disease detection. Talanta 2020; 219:121257. [PMID: 32887148 DOI: 10.1016/j.talanta.2020.121257] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/18/2022]
Abstract
Changes in isoforms of Tau protein, which are critical for microtubule functioning, are accepted as being responsible for diseases characterized by dementia, in particular Alzheimer's disease (AD). In this comprehensive study, a single-use neuro-biosensing probe for the determination of Tau-441 protein was developed by utilizing the power of nanocomposites consisting of reduced graphene oxide (rGO) and gold nanoparticles (AuNP) using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The nanocomposite surface (rGO-AuNP) was modified with 11-mercaptoundecanoic acid (11-MUA) act as covalent anchorer to increase the sensitivity of the assay. Surface coverage value and pinhole ratio were calculated using EIS data. Kramers-kronig data, which helps to interpret instrumental errors, are also calculated. The immunoreaction of Tau-441 with anti-Tau was monitored simultaneously with Single Frequency Impedance (SFI). The changes in surface morphology were evaluated with scanning electron microscopy (SEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). The designed immunosensor showed a linear response within the concentration range of 1-500 pg/mL for the target analyte Tau-441 and the limit of detection was found to be 0.091 pg/mL. The promising point of the study is that this neuro-biosensor system can capture the Tau-441 target protein in both serum fluid and cerebrospinal fluid (CSF) samples with recoveries ranging from 96% to 108%.
Collapse
|
50
|
Wang L, Zhang F, Lu K, Abdulaziz M, Li C, Zhang C, Chen J, Li Y. Nano-copper enhanced flexible device for simultaneous measurement of human respiratory and electro-cardiac activities. J Nanobiotechnology 2020; 18:82. [PMID: 32471516 PMCID: PMC7257177 DOI: 10.1186/s12951-020-00632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/12/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Dysfunction of human respiratory and electro-cardiac activities could affect the ability of the heart to pump blood and the lungs to inhale oxygen. Thus, a device could simultaneously measure electro-cardiac signal and respiratory pressure could provide vital signs for predicting early warning of cardio-pulmonary function-related chronic diseases such as cardiovascular disease, and respiratory system disease. RESULTS In this study, a flexible device integrated with piezo-resistive sensing element and voltage-sensing element was developed to simultaneously measure human respiration and electro-cardiac signal (including respiratory pressure, respiration frequency, and respiration rhythm; electro-cardio frequency, electro-cardio amplitude, and electro-cardio rhythm). When applied to the measurement of respiratory pressure, the piezo-resistive performance of the device was enhanced by nano-copper modification, which detection limitation of pressure can reduce to 100 Pa and the sensitivity of pressure can achieve to 0.053 ± 0.00079 kPa-1. In addition, the signal-to-noise ratio during bio-electrical measurement was increased to 10.7 ± 1.4, five times better than that of the non-modified device. CONCLUSION This paper presents a flexible device for the simultaneous detection of human respiration and cardiac electrical activity. To avoid interference between the two signals, the layout of the electrode and the strain sensor was optimized by FEA simulation analysis. To improve the piezo-resistive sensitivity and bio-electric capturing capability of the device, a feather-shaped nano-copper was modified onto the surface of carbon fiber. The operation simplicity, compact size, and portability of the device open up new possibilities for multi-parameter monitoring.
Collapse
Affiliation(s)
- Li Wang
- Advanced Micro and Nanoinstruments Center (AMNC), School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Feng Zhang
- Advanced Micro and Nanoinstruments Center (AMNC), School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Kechao Lu
- Advanced Micro and Nanoinstruments Center (AMNC), School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Mohammed Abdulaziz
- Department of Mechanical and Process Engineering, University of Duisburg Essen, Forsthausweg, 247057, Germany
| | - Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chongyu Zhang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jun Chen
- Advanced Micro and Nanoinstruments Center (AMNC), School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|