1
|
Liu Y, Kong X, Zhang Y, Zhou X, Yin ZZ. An electrochemical microsensor of the SARS-CoV-2 nucleocapsid protein based on a surface-imprinted acupuncture needle. Analyst 2025; 150:851-859. [PMID: 39865998 DOI: 10.1039/d4an01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A novel electrochemical microsensor was constructed on a traditional acupuncture needle (AN) and used to monitor a biomarker of the SARS-CoV-2-N protein. The reversible interaction of the borate bond between the cis-diol in this glycoprotein and the phenylboronic acid in 4-mercaptophenylboronic acid (4-MPBA) was accomplished. This interaction was applied to anchor the SARS-CoV-2-N protein onto 4-MPBA, which was covalently self-assemblied onto electrodeposited AuNPs by the S-Au bond. Meldola blue was then electropolymerized around the protein template. After the template had eluted, three-dimensional nanocavities complementary to the protein were generated within the polymeldola blue (pMB) layer. Interestingly, nanocavities could play a channel role for the electron-transfer of outer [Fe(CN)6]3-/4-, and the signal of the electrochemical probe could be hindered after recombination of the SARS-CoV-2-N protein, which lays a platform for the detection of this biomarker. After optimizing the influencing factors, the prepared microsensor exhibited a linear range of 0.1-1000 ng mL-1 with a low detection limit of 0.01 ng mL-1 (S/N = 3). In particular, the sensing ability was dramatically affected by the thickness correlative factor for the polymer matrix. A suitable thickness is effective for sensing the signals, which corresponds to the behavior of the surface-imprinted polymer. The microsensor showed comparatively high sensitivity and selectivity and practically detected the SARS-CoV-2-N protein in the serum sample, which is of scientific significance for the development of electrochemical microsensors and acupuncture.
Collapse
Affiliation(s)
- Yan Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xue Kong
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yi Zhang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Zheng-Zhi Yin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
2
|
Zhang Y, Tang D, Wu Y, Huang X. Facile and rapid preparation of fluorinated imprinted adsorbent for magnetic solid phase extraction of liquid-crystal monomers. Mikrochim Acta 2024; 192:10. [PMID: 39643778 DOI: 10.1007/s00604-024-06851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024]
Abstract
A new fluorinated imprinted adsorbent (MIA) for magnetic solid phase extraction (MSPE) of liquid crystal monomer (LCM) pollutants was one-pot prepared within 3.5 h using 4-[difluoro(3,4,5-trifluorophenoxy)methyl]-3,5-difluoro-4'-ethyl-biphenyl (DFBP) as template and 1H,1H,2H,2H-heptadecafluorodecyl acrylate/vinylanthracene as dual monomers. The structure, morphology, and magnetic properties of MIA fabricated were investigated by various characterization techniques. Under the optimal conditions the prepared MIA presented satisfactory specific recognition performance. The recognition factor and adsorption capacity towards DFBP were 2.7 and 15.9 mg/g, respectively. The specific recognition behaviors of MIA/MSPE towards DFBP were surveyed by means of adsorption kinetics and adsorption isotherms. Combining MSPE with HPLC coupled to a diode array detector (DAD), a sensitive, reliable and anti-interference method for the monitoring of LCMs residuals in various environmental water and soil samples was established. The achieved enrichment factors were 132-248 and 96-204 in water and soil samples, respectively. The corresponding limits of detection were 0.0017-0.0051 μg/L and 0.087-0.28 μg/kg, respectively. Moreover, confirmatory experiments were adopted to inspect the accuracy of the established MIA/MSPE-HPLC/DAD approach. To the best of our knowledge, this is the first time that an imprinted material has been used for specific isolation and capture of LCMs which have been classified as emerging organic pollutants.
Collapse
Affiliation(s)
- YueYue Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Dingliang Tang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuanfei Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaojia Huang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
3
|
Gorla FA, Santana Dos Santos C, de Matos R, Antigo Medeiros R, do Prado Ferreira M, Pereira Camargo L, Henrique Dall'Antonia L, Tarley CRT. Development of novel nanocomposite-modified photoelectrochemical sensor based on the association of bismuth vanadate and MWCNT-grafted-molecularly imprinted poly(acrylic acid) for dopamine determination at nanomolar level. Talanta 2024; 266:125044. [PMID: 37586281 DOI: 10.1016/j.talanta.2023.125044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
This study proposes the development of a new photoelectrochemical (PEC) sensor for the determination of dopamine (DA) at nanomolar levels. The PEC sensor was based on a physical mixture of bismuth vanadate (BiVO4) with nanocomposite molecularly imprinted poly(acrylic acid) (MIP-AA) grafted onto MWCNTox by using the surface-controlled radical polymerization strategy with an INIFERTER reagent. XRD, diffuse reflectance spectroscopy (DRE), SEM, TEM, and TGA were employed to characterize the materials. Photoelectrochemical analyses were carried out with GCE/BiVO4/MIP-AA sensor under visible light using a potential of 0.6 V, phosphate buffer (0.1 mol L-1) at pH 7.0, and modifying the GCE with a film composed of monoclinic BiVO4 at 3.5 mg mL-1 and nanocomposite MIP prepared with acrylic acid (MIP-AA) at 0.1 mg mL-1. The proposed method using the GCE/BiVO4/MIP-AA sensor presented a limit of detection (LOD) of 2.9 nmol L-1, a linear range from 9.7 to 150 nmol L-1 and it was successfully applied for analysis of DA in urine samples using external calibration curve yielding recovery values of 90-105%. Additionally, the proposed PEC sensor allowed DA determination without interference from uric acid, ascorbic acid, epinephrine, norepinephrine, and other unwanted interferences.
Collapse
Affiliation(s)
- Felipe Augusto Gorla
- Federal Institute of Parana (IFPR), Campus Assis Chateaubriand, Avenida Cívica 475, Centro Cívico, Assis Chateaubriand, Parana, 85935-000, Brazil; State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Caroline Santana Dos Santos
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Roberto de Matos
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Roberta Antigo Medeiros
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Milena do Prado Ferreira
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Luan Pereira Camargo
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Luiz Henrique Dall'Antonia
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), State University of Campinas (UNICAMP), Department of Analytical Chemistry, Cidade Universitária Vaz S/n, Campinas, Sao Paulo 13083-970, Brazil
| | - César Ricardo Teixeira Tarley
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), State University of Campinas (UNICAMP), Department of Analytical Chemistry, Cidade Universitária Vaz S/n, Campinas, Sao Paulo 13083-970, Brazil.
| |
Collapse
|
4
|
Islam A, Rais S. A facile approach for grafting ion imprinted polymer onto magnetic multi-walled carbon nanotubes for selective removal and preconcentration of cadmium in food and wastewater samples prior to atomic spectrometric determination. Food Chem 2023; 405:134751. [PMID: 36347205 DOI: 10.1016/j.foodchem.2022.134751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022]
Abstract
A 3D Fe3O4@MWCNT-CdIIP was synthesized by the oxidizing surface of multi-walled carbon nanotubes with carboxylic acid end groups and its subsequent termination with an ion imprinted polymer. An artificial neural network manifests better predictability than the central composite design methodology for optimising the adsorption procedure. The adsorption capacity was 109 mg g-1 (2.5 times more than non-imprinted polymer) under optimized conditions (pH; 5.6, time; 15 min, concentration; 800 μg mL-1 temperature; 25 °C), which was in accord with Toth isotherm. Fractal-like pseudo-second-order kinetics was found reasonably fast, with 66 % adsorption in 5 min. Solid phase extraction coupled Flame atomic absorption spectrometry method provides selective recognition towards Cd(II), with limit of detection; 1.13 µg/L, limit of quantification; 3.21 µg/L after preconcentration (preconcentration factor; 50) and good robustness. The developed method was applied for Cd(II) determination in food (tea, coffee, bread, tobacco, radish, spinach), water and wastewater (>99 % removal as well). Cd(II) loaded IIP was further utilized to remove anionic dyes with >95 % removal.
Collapse
Affiliation(s)
- Aminul Islam
- Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Saman Rais
- Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Jyoti, Rybakiewicz-Sekita R, Żołek T, Maciejewska D, Gilant E, Buś-Kwaśnik K, Kutner A, Noworyta KR, Kutner W. Cilostazol-imprinted polymer film-coated electrode as an electrochemical chemosensor for selective determination of cilostazol and its active primary metabolite. J Mater Chem B 2022; 10:6707-6715. [PMID: 34927660 DOI: 10.1039/d1tb02186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An electrochemical chemosensor for cilostazol (CIL) determination was devised, engineered, and tested. For that, a unique conducting film of the functionalized thiophene-appended carbazole-based polymer, molecularly imprinted with cilostazol (MIP-CIL), was potentiodynamically deposited on a Pt disk electrode by oxidative electropolymerization. Thanks to electro-oxidation potentials lower than that of CIL, the carbazole monomers outperformed pyrrole, thiophene, and phenol monomers, in this electropolymerization. The pre-polymerization complexes quantum-mechanical and molecular dynamics analysis allowed selecting the most appropriate monomer from the three thiophene-appended carbazoles examined. The electrode was then used as a selective CIL chemosensor in the linear dynamic concentration range of 50 to 924 nM with a high apparent imprinting factor, IF = 10.6. The MIP-CIL responded similarly to CIL and CIL's pharmacologically active primary metabolite, 3,4-dehydrocilostazol (dhCIL), thus proving suitable for their determination together. Simulated models of the MIP cavities binding of the CIL, dhCIL, and interferences' molecules allowed predicting chemosensor selectivity. The MIP film sorption of CIL and dhCIL was examined using DPV by peak current data fitting with the Langmuir (L), Freundlich (F), and Langmuir-Freundlich (LF) isotherms. The LF isotherm best described this sorption with the sorption equilibrium constant (KLF) for CIL and dhCIL of 12.75 × 10-6 and 0.23 × 10-6 M, respectively. Moreover, the chemosensor cross-reactivity to common interferences study resulted in the selectivity to cholesterol and dehydroaripiprazole of 1.52 and 8.0, respectively. The chemosensor proved helpful in determining CIL and dhCIL in spiked human plasma with appreciable recovery (99.3-134.1%) and limit of detection (15 nM).
Collapse
Affiliation(s)
- Jyoti
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Renata Rybakiewicz-Sekita
- Faculty of Mathematics and Natural Sciences, School of Sciences, Institute of Chemical Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland.,Laboratory of Organic Electronics, Linköping University, Bredgatan 33, 602 21 Norrköping, Sweden
| | - Teresa Żołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Dorota Maciejewska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Edyta Gilant
- Łukasiewicz Research Network - Industrial Chemistry Institute, Rydygiera 8, 01-793, Warsaw, Poland
| | - Katarzyna Buś-Kwaśnik
- Łukasiewicz Research Network - Industrial Chemistry Institute, Rydygiera 8, 01-793, Warsaw, Poland
| | - Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Krzysztof R Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. .,Faculty of Mathematics and Natural Sciences, School of Sciences, Institute of Chemical Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| |
Collapse
|
6
|
Singhal A, Sadique MA, Kumar N, Yadav S, Ranjan P, Parihar A, Khan R, Kaushik AK. Multifunctional carbon nanomaterials decorated molecularly imprinted hybrid polymers for efficient electrochemical antibiotics sensing. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107703. [DOI: 10.1016/j.jece.2022.107703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
7
|
Sherif A, Abdel Tawab M, Abdel-Ghani N, El Nashar R. Computational design and application of molecularly imprinted /MWCNT based electrochemical sensor for the determination of silodosin. ELECTROANAL 2022. [DOI: 10.1002/elan.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Tang H, Liu R, Huang W, Zhu W, Qian W, Dong C. Field Emission of Multi-Walled Carbon Nanotubes from Pt-Assisted Chemical Vapor Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:575. [PMID: 35159920 PMCID: PMC8838496 DOI: 10.3390/nano12030575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Multi-walled carbon nanotubes (MWNTs) were grown directly on a metal substrate with the assistance of Pt using a chemical vapor deposition method. In addition, the growth mechanism of Pt-assisted catalytic CNT was discussed. MWNTs were characterized by SEM, TEM, AFM, Raman, and EDS, and the field emission (FE) properties were investigated, comparing with the direct grown MWNTs. The results showed that CNTs could not been synthesized by Pt particles alone under the experimental condition, but Pt may accelerate the decomposition of the carbon source gas, i.e., assisting MWNT growth with other catalysts. The Pt-assisted MWNTs were longer with larger diameters of around 80 nm and possessed better structural qualities with very few catalyst particles inside. Improved field emission properties were demonstrated for the Pt-assisted MWNTs with lower turn-on fields (for 0.01 mA·cm-2 current density) of 2.0 V·μm-1 and threshold field (for 10 mA·cm-2 current density) of 3.5 V·μm-1, as well as better stability under a long-term test of 80 h (started at 3.0 mA for the Pt-assisted emitter and 3.25 mA for the direct grown emitter). This work demonstrated a promising approach to develop high performance CNT field emitters for device applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Changkun Dong
- Wenzhou Key Lab of Micro-nano Optoelectronic Devices, Wenzhou University, Wenzhou 325035, China; (H.T.); (R.L.); (W.H.); (W.Z.); (W.Q.)
| |
Collapse
|
9
|
Mustafa YL, Keirouz A, Leese HS. Molecularly Imprinted Polymers in Diagnostics: Accessing Analytes in Biofluids. J Mater Chem B 2022; 10:7418-7449. [DOI: 10.1039/d2tb00703g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bio-applied molecularly imprinted polymers (MIPs) are biomimetic materials with tailor-made synthetic recognition sites, mimicking biological counterparts known for their sensitive and selective analyte detection. MIPs, specifically designed for biomarker analysis...
Collapse
|
10
|
Ion-imprinted-based nanochelators for iron(III) removal from synthetic gastric fluid. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
C G AM, Varghese A, M N. Recent Advances in Nanomaterials Based Molecularly Imprinted Electrochemical Sensors. Crit Rev Anal Chem 2021; 53:88-97. [PMID: 34152870 DOI: 10.1080/10408347.2021.1937925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanotechnology and molecular imprinting both are omnipresent in the modern scientific world. Molecular recognition in the biological systems was mimicked to an extreme extent with its difficulties through molecular imprinting. Solving the problems related to this mimicking was the goal of science and technology. Some challenges like difficulties with the imprinting of protein, poor compatibility with aqueous environments, template leakage, and heterogeneous populations of binding sites in the polymers that contribute to a high level of nonspecific binding sites were addressed with recent advancement in the modern era. These issues were solved later with nano level instrumentations and inventions. Different types of nanomaterials were employed for this research on molecular recognition through MIPs to enhance selectivity, sensitivity and stability to specific systems such as sensors. This review paper attempts to give all the recent advances in molecular imprinting and the potential of nanomaterials in electrochemical sensors.
Collapse
Affiliation(s)
- Ann Maria C G
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Nidhin M
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
12
|
Modified electrodes for electrochemical determination of metronidazole in drug formulations and biological samples: An overview. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Generation of High-Affinity Molecularly Imprinted Nanoparticles for Protein Recognition via a Solid-Phase Synthesis Protocol. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2073:183-194. [PMID: 31612443 DOI: 10.1007/978-1-4939-9869-2_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Molecularly imprinted polymers are leading technology in the development of protein biomimetics. This chapter describes the protocol for the synthesis of protein imprinted nanoparticles. These materials exhibit exceptional affinity (into the nM/pM range) and selectivity for their target template. The nanoparticles can be developed for a wide range of targets, while exhibiting excellent robustness, solubility, and flexibility in use. They are finding use in the creation of drug delivery vectors and sensing and recognition assays.
Collapse
|
14
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
15
|
Gao M, Gao Y, Chen G, Huang X, Xu X, Lv J, Wang J, Xu D, Liu G. Recent Advances and Future Trends in the Detection of Contaminants by Molecularly Imprinted Polymers in Food Samples. Front Chem 2020; 8:616326. [PMID: 33335893 PMCID: PMC7736048 DOI: 10.3389/fchem.2020.616326] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Drug residues, organic dyes, heavy metals, and other chemical pollutants not only cause environmental pollution, but also have a serious impact on food safety. Timely and systematic summary of the latest scientific advances is of great importance for the development of new detection technologies. In particular, molecularly imprinted polymers (MIPs) can mimic antibodies, enzymes and other biological molecules to recognize, enrich, and separate contaminants, with specific recognition, selective adsorption, high affinity, and strong resistance characteristics. Therefore, MIPs have been widely used in chemical analysis, sensing, and material adsorption. In this review, we first describe the basic principles and production processes of molecularly imprinted polymers. Secondly, an overview of recent applications of molecularly imprinted polymers in sample pre-treatment, sensors, chromatographic separation, and mimetic enzymes is highlighted. Finally, a brief assessment of current technical issues and future trends in molecularly imprinted polymers is also presented.
Collapse
Affiliation(s)
- Mingkun Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhang Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ge Chen
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Huang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Lv
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture Beijing, Beijing, China
| | - Donghui Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangyang Liu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Crapnell RD, Dempsey-Hibbert NC, Peeters M, Tridente A, Banks CE. Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
17
|
Marques GL, Rocha LR, Prete MC, Gorla FA, Moscardi dos Santos D, Segatelli MG, Teixeira Tarley CR. Development of Electrochemical Platform Based on Molecularly Imprinted Poly(methacrylic acid) Grafted on Iniferter‐modified Carbon Nanotubes for 17β‐Estradiol Determination in Water Samples. ELECTROANAL 2020. [DOI: 10.1002/elan.202060270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gabriel Lopes Marques
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
| | - Luana Rianne Rocha
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
| | - Maiyara Carolyne Prete
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
| | - Felipe Augusto Gorla
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
- Campus Assis Chateaubriand Instituto Federal do Paraná Avenida Cívica 475, Centro Cívico Assis Chateaubriand PR, CEP 85935–000 Brazil
| | - Dayana Moscardi dos Santos
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
| | - Mariana Gava Segatelli
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
| | - César Ricardo Teixeira Tarley
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica Universidade Estadual de Campinas (UNICAMP) Instituto de Química Departamento de Química Analítica, Cidade Universitária Zeferino Vaz s/n, CEP 13083–970 Campinas SP Brazil
| |
Collapse
|
18
|
Selective recognition and enrichment of sterigmatocystin in wheat by thermo-responsive imprinted polymer based on magnetic halloysite nanotubes. J Chromatogr A 2020; 1619:460952. [PMID: 32057446 DOI: 10.1016/j.chroma.2020.460952] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
Two thermo-responsive molecularly imprinted polymers (MHNTs@MIP and MCNTs@MIP) for the selective extraction of sterigmatocystin have been prepared on the surface of the magnetic halloysite nanotubes (MHNTs) and magnetic carbon nanotubes (MCNTs), respectively. 1, 8-dihydroxyanthraquinone, n-isopropyl acrylamide, methacrylic acid, ethylene dimethacrylate and dimethyl sulfoxide were used as the dummy template, thermo-sensitive functional monomer, co-monomer, cross-linker and porogen, respectively. The magnetic properties, adsorption properties as well as the temperature responsive behaviors of MHNTs@MIP and MCNTs@MIP were systematically studied and compared for the first time. Enough saturation magnetizations of MHNTs@MIP (9.42 emu/g) and MCNTs@MIP (10.54 emu/g) were obtained. MHNTs@MIP and MCNTs@MIP also showed controllable adsorption and release behaviors to sterigmatocystin in response to the temperature change (35 °C and 20 °C). Compared with MCNTs@MIP, MHNTs@MIP had higher adsorption affinity (KL = 0.120 L/mg), higher adsorption kinetic (K2 = 0.0100 g/(mg•min)) and higher imprinting factor (5.22) to sterigmatocystin. These results indicated that MHNTs@MIP was favorable adsorbent for the selective separation of sterigmatocystin. Furthermore, the elution conditions of MHNTs@MIP were optimized by response surface methodology. Under the optimal conditions, MHNTs@MIP coupled with high performance liquid chromatography were successfully applied to the selective recognition, purification, enrichment and detection of sterigmatocystin in wheat samples. The recoveries were calculated from 88.62% to 102.9% with RSDs less than 3.5 % and limit of detection of 1.1 μg/kg. This work provided a suitable carrier for the preparation of imprinted polymers and a practical approach for highly selective recognition and determination of analytes in real samples.
Collapse
|
19
|
Ghorbani M, Seyedin O, Aghamohammadhassan M. Adsorptive removal of lead (II) ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109814. [PMID: 31726282 DOI: 10.1016/j.jenvman.2019.109814] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Carbon-based nanomaterials and its derivatives such as carbon nanotubes, graphene, reduced graphene oxide, and graphene oxide have been widely used as unique sorbents for removal of both organic and inorganic contaminants due to unique physical and chemical properties. In the review, application of the carbon-based nanomaterials or nanocomposites is considered with particular focus on the lead(II) removal from water and wastewater samples. Moreover, various procedures of synthesis and functionalization of each class of carbon-based nanomaterials were reviewed. A critical review has been given to the adsorption behavior of these nanomaterials and interaction type between the sorbent and lead(II) ion s due to changes in their surface structure and functional group modification for the removal of lead(II)ions. The adsorption capacity, the sorbent selectivity and structure, and the adsorption mechanism for lead(II) ion adsorption with these sorbents were studied and compared. Specific consideration is devoted to effecting of pH of samples as a critical factor in the adsorption of lead(II)ions on each class of carbon-based nanomaterials. Also, the advantages and disadvantages of the nanomaterials or nanocomposites for the adsorption of lead(II) ion were evaluated in detail. In this way, the paper will contribute to presenting suggestions for the preparation of new sorbents to researchers for future study, as well as the remaining research challenges in this field.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Orkideh Seyedin
- Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
20
|
Kazemifard N, Ensafi AA, Saberi Z. Development of Optical Sensors Based on Quantum Dots Using Molecularly Imprinted Polymers for Determination of Prilocaine. Methods Mol Biol 2020; 2135:275-283. [PMID: 32246342 DOI: 10.1007/978-1-0716-0463-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Optical sensors are analytical tools that able to provide analyte information. There are several ways to design optical sensors. This chapter presents an interesting optical sensor to detect prilocaine, a medicine, using quantum dots (QDs) combined with molecularly imprinted polymers (QDs@MIPs). This sensor simultaneously takes advantage of QDs and molecular imprinting technology, which enables the optical device to measure prilocaine with high selectivity and sensitivity. To prepare the optical sensor, CdTe QDs were used as fluorescent probes, and an imprinted silica polymer, as the recognition system, has been constructed on the QDs via sol-gel process to increase sensor selectivity.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.
| | - Zeinab Saberi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
21
|
Xu Z, Jiang X, Liu S, Yang M. Sensitive and selective molecularly imprinted electrochemical sensor based on multi-walled carbon nanotubes for doxycycline hyclate determination. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Gui R, Jin H. Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Synthesis and application of magnetic-surfaced pseudo molecularly imprinted polymers for zearalenone pretreatment in cereal samples. Food Chem 2019; 308:125696. [PMID: 31655482 DOI: 10.1016/j.foodchem.2019.125696] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/29/2023]
Abstract
Zearalenone (ZEA) is a fungal contaminant widely found in grains. In cereal samples, trace zearalenone was extracted and enriched using magnetic-surfaced pseudo molecularly imprinted polymers (SPMIPs) and detected. SPMIPs were prepared with Fe3O4 as the magnetic core, modified halloysites nanotubes as supporting materials, and selective imprinted polymers as shells. Vinyl was modified on the surface of halloysites nanotube. SPMIPs were synthesized with pseudo templates. SPMIPs as the adsorbent of dispersed-solid phase extraction (μ-SPE) were used to purify and enrich ZEA from maize samples. After optimized, the pretreatment method was evaluated. The linearity of the method was ranged within 10-200 ng mL-1. LOD and LOQ were 2.5 ng mL-1 and 8 ng mL-1 respectively. The ZEA spiking recoveries in maize samples ranged within 74.95-88.41% were with good RSDs lower than 4.25%. The developed method was successful applied in maize, oat, and wheat sample treatments and compared.
Collapse
|
24
|
Gholami H, Ghaedi M, Ostovan A, Arabi M, Bagheri AR. Preparation of hollow porous molecularly imprinted and aluminum(III) doped silica nanospheres for extraction of the drugs valsartan and losartan prior to their quantitation by HPLC. Mikrochim Acta 2019; 186:702. [DOI: 10.1007/s00604-019-3794-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/07/2019] [Indexed: 12/15/2022]
|
25
|
Huang Z, He J, Li Y, Wu C, You L, Wei H, Li K, Zhang S. Preparation of dummy molecularly imprinted polymers for extraction of Zearalenone in grain samples. J Chromatogr A 2019; 1602:11-18. [DOI: 10.1016/j.chroma.2019.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023]
|
26
|
Hamid Shirkhanloo, Kheirolnesa Merchant, Mostafa Dehghani Mobarake. Ultrasound-assisted Solid-liquid Trap Phase Extraction based on Functionalized Multi Wall Carbon Nanotubes for Preconcentration and Separation of Nickel in Petrochemical Waste Water. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819090090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Amatatongchai M, Sroysee W, Sodkrathok P, Kesangam N, Chairam S, Jarujamrus P. Novel three-Dimensional molecularly imprinted polymer-coated carbon nanotubes (3D-CNTs@MIP) for selective detection of profenofos in food. Anal Chim Acta 2019; 1076:64-72. [PMID: 31203965 DOI: 10.1016/j.aca.2019.04.075] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 11/25/2022]
Abstract
A new and facile method for selective measurement of profenofos (PFF) using a simple flow-injection system with a molecularly-imprinted-polymer-coated carbon nanotube (3D-CNTs@MIP) amperometric sensor is proposed. The 3D-CNTs@MIP was synthesized by successively coating the surface of carboxylated CNTs with SiO2 and vinyl end groups, then terminating with molecularly imprinted polymer (MIP) shells. MIP was grafted to the CNT cores using methacrylic acid (MAA) monomer, ethylene glycol dimethacrylate (EGDMA) as cross linker, and 2,2'-azobisisobutyronitrile (AIBN) as initiator. We constructed the PFF sensor by coating the surface of a glassy carbon electrode (GCE) with 3D-CNTs@MIP and removed the imprinting template by solvent extraction. Morphological and structural characterization reveal that blending of the MIP on the CNT surface significantly increases the selective surface area, leading to greater numbers of imprinting sites for improved sensitivity and electron transfer. The 3D-CNTs@MIP sensor exhibits a fast response with good recognition when applied to PFF detection by cyclic voltammetry and amperometry. The PFF oxidation current signal appears at +0.7 V vs Ag/AgCl using 0.1 M phosphate buffer (pH 7.0) as the carrier solution. The designed 3D-imprinted sensor provides a linear response over the range 0.01-200 μM (r2 = 0.995) with a low detection limit of 0.002 μM (3σ). The sensor was successfully applied to detection of PFF in vegetable samples.
Collapse
Affiliation(s)
- Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| | - Wongduan Sroysee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Porntip Sodkrathok
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Nuttapol Kesangam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Sanoe Chairam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
29
|
Radi AE, Wahdan T, El-Basiony A. Electrochemical Sensors Based on Molecularly Imprinted Polymers for Pharmaceuticals Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180501100131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
<P>Background: The electrochemical sensing of drugs in pharmaceutical formulations and biological matrices using molecular-imprinting polymer (MIP) as a recognition element combined with different electrochemical signal transduction has been widely developed. The MIP electrochemical sensors based on nanomaterials such as graphene, carbon nanotubes, nanoparticles, as well as other electrode modifiers incorporated into the MIPs to enhance the performance of the sensor, have been discussed. The recent advances in enantioselective sensing using MIP-based electrochemical sensors have been described. </P><P> Methods: The molecular imprinting has more than six decades of history. MIPs were introduced in electrochemistry only in the 1990s by Mosbach and coworkers. This review covers recent literature published a few years ago. The future outlook for sensing, miniaturization and development of portable devices for multi-analyte detection of the target analytes was also given. </P><P> Results: The growing pharmaceutical interest in molecularly imprinted polymers is probably a direct consequence of its major advantages over other analytical techniques, namely, increased selectivity and sensitivity of the method. Due to the complexity of biological samples and the trace levels of drugs in biological samples, molecularly imprinted polymers have been used to improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. The emergence of nanomaterials opened a new horizon in designing integrated electrochemical systems. The success of obtaining a high-performance electrochemical sensor based on MIPs lies in the kind of material that builds up the detection platform. </P><P> Conclusion: The novel approaches to produce MIP materials, combined with electrochemical transduction to develop sensors for screening different pharmaceutically active compounds have been overviewed. MIPs may appear indispensable for sensing in harsh conditions, or sensing that requires longterm stability unachievable by biological receptors. The electrochemical sensors provide several benefits including low costs, shortening analysis time, simple design; portability; miniaturization, easy-touse, can be tailored using a simple procedure for particular applications. The performance of sensor can be improved by incorporating some conductive nanomaterials as AuNPs, CNTs, graphene, nanowires and magnetic nanoparticles in the polymeric matrix of MIP-based sensors. The application of new electrochemical sensing scaffolds based on novel multifunctional-MIPs is expected to be widely developed and used in the future.</P>
Collapse
Affiliation(s)
- Abd-Egawad Radi
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| | - Tarek Wahdan
- Department of Chemistry, Faculty of Science, Suez Canal University, El-Arish, Egypt
| | - Amir El-Basiony
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| |
Collapse
|
30
|
Liang G, Guo X, Tan X, Mai S, Chen Z, Zhai H. Molecularly imprinted monolithic column based on functionalized β-cyclodextrin and multi-walled carbon nanotubes for selective recognition of benzimidazole residues in citrus samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
A sensitive and selective molecularly imprinted electrochemical sensor based on Pd-Cu bimetallic alloy functionalized graphene for detection of amaranth in soft drink. Talanta 2019; 197:68-76. [DOI: 10.1016/j.talanta.2019.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022]
|
32
|
Crapnell RD, Hudson A, Foster CW, Eersels K, Grinsven BV, Cleij TJ, Banks CE, Peeters M. Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1204. [PMID: 30857285 PMCID: PMC6427210 DOI: 10.3390/s19051204] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/06/2023]
Abstract
The accurate detection of biological materials has remained at the forefront of scientific research for decades. This includes the detection of molecules, proteins, and bacteria. Biomimetic sensors look to replicate the sensitive and selective mechanisms that are found in biological systems and incorporate these properties into functional sensing platforms. Molecularly imprinted polymers (MIPs) are synthetic receptors that can form high affinity binding sites complementary to the specific analyte of interest. They utilise the shape, size, and functionality to produce sensitive and selective recognition of target analytes. One route of synthesizing MIPs is through electropolymerization, utilising predominantly constant potential methods or cyclic voltammetry. This methodology allows for the formation of a polymer directly onto the surface of a transducer. The thickness, morphology, and topography of the films can be manipulated specifically for each template. Recently, numerous reviews have been published in the production and sensing applications of MIPs; however, there are few reports on the use of electrosynthesized MIPs (eMIPs). The number of publications and citations utilising eMIPs is increasing each year, with a review produced on the topic in 2012. This review will primarily focus on advancements from 2012 in the use of eMIPs in sensing platforms for the detection of biologically relevant materials, including the development of increased polymer layer dimensions for whole bacteria detection and the use of mixed monomer compositions to increase selectivity toward analytes.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Alexander Hudson
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Christopher W Foster
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Kasper Eersels
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Bart van Grinsven
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Thomas J Cleij
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Craig E Banks
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Marloes Peeters
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK.
| |
Collapse
|
33
|
Chen S, Yan J, Li J, Lu D. Magnetic ZnFe2O4 nanotubes for dispersive micro solid-phase extraction of trace rare earth elements prior to their determination by ICP-MS. Mikrochim Acta 2019; 186:228. [DOI: 10.1007/s00604-019-3342-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022]
|
34
|
Liu J, Wang Y, Liu X, Yuan Q, Zhang Y, Li Y. Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis. Talanta 2019; 199:573-580. [PMID: 30952300 DOI: 10.1016/j.talanta.2019.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/16/2019] [Accepted: 03/02/2019] [Indexed: 12/27/2022]
Abstract
Multiplex electrochemical sensors for amperometric detection of glutathione disulfide (GSSG), glutathione (GSH), cysteine (Cys), cystine (Cyss), β-nicotinamide adenine dinucleotide phosphate (NADP+) and coenzyme II reduced tetrasodium salt (NADPH) were developed, in which analysis of Cyss, NADP+ and NADPH are the first report using this sensing system. Specificity of these sensors were ensured by a layer of molecularly imprinted polymer (MIP) which was electropolymerized in situ with the analytes as template. All the sensors were tested with standard buffers and mouse blood samples, showing satisfactory performance towards the corresponding analytes. Dynamic concentration for the six analytes was in the range of 10-11-10-8 mol/L with the detection limit down to 20 pmol/L. In addition, artificially synthesized MIP film on the electrodes allowed for good selectivity and stability. Real blood sample measurement proved that the sensors owned decent accuracy with recovery value ranging from 92%~112%. More importantly, blood samples from lung cancer patients and healthy donors were assayed by using the proposed sensors. Redox potentials (Ehc) were calculated based on the contents of these endogenic substances, which were utilized to reflect the health status of human body and help diagnose lung cancer. The levels of GSH, NADPH and the absolute value of Ehc(GSH/GSSG) in patients with lung cancer are significantly lower (P < 0.01) than those in healthy people, while the contents of GSSG (P < 0.01) are higher. The blood test results suggested that the content of GSH, NADPH, NADP+ and Ehc(GSH/GSSG) might serve as biomarkers for lung cancer prediagnosis. These novel sensors for liquid biospy of cancer have cost-benefit and scalability advantage over current techniques, potentially enabling broader clinical access and efficient population screening.
Collapse
Affiliation(s)
- Jie Liu
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yuli Wang
- The first affiliated hospital of the medical college of Shihezi University, Shihezi 832000, China
| | - Xiaoxue Liu
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qunhui Yuan
- College of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Zhang
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Yingchun Li
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| |
Collapse
|
35
|
Liu H, Zhang Y, Zhang D, Zheng F, Huang M, Sun J, Sun X, Li H, Wang J, Sun B. A fluorescent nanoprobe for 4-ethylguaiacol based on the use of a molecularly imprinted polymer doped with a covalent organic framework grafted onto carbon nanodots. Mikrochim Acta 2019; 186:182. [DOI: 10.1007/s00604-019-3306-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
|
36
|
Du Q, Wu P, Hu F, Li G, Shi J, He H. Novel molecularly imprinted polymers on metal–organic frameworks as sensors for the highly selective detection of zearalenone in wheat. NEW J CHEM 2019. [DOI: 10.1039/c9nj00589g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work provides a rapid and simple method for the determination of trace substances in complex systems.
Collapse
Affiliation(s)
- Qiuzheng Du
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Pu Wu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Fan Hu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Geyuan Li
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Jianrong Shi
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base
- Institute of Food Safety and Nutrition
- Jiangsu Academy of Agriculture Science
- Nanjing 210014
- China
| | - Hua He
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|
37
|
Wang Y, Tian M, Yu K, Li L, Zhang Z, Li L. A versatile strategy to fabricate magnetic dummy molecularly imprinted mesoporous silica particles for specific magnetic separation of bisphenol A. NEW J CHEM 2019. [DOI: 10.1039/c8nj06027d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
m-DMIMSP showed an ordered mesoporous structure, favorable magnetic property, good accessibility and affinity, and excellent binding selectivity towards BPA.
Collapse
Affiliation(s)
- Yafei Wang
- School of Biology and Chemical Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Mengjie Tian
- School of Biology and Chemical Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Kai Yu
- School of Biology and Chemical Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Leyan Li
- School of Biology and Chemical Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Zulei Zhang
- School of Biology and Chemical Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Lei Li
- School of Biology and Chemical Engineering
- Jiaxing University
- Jiaxing 314001
- China
| |
Collapse
|
38
|
Lahcen AA, Amine A. Recent Advances in Electrochemical Sensors Based on Molecularly Imprinted Polymers and Nanomaterials. ELECTROANAL 2018. [DOI: 10.1002/elan.201800623] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdellatif Ait Lahcen
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| | - Aziz Amine
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| |
Collapse
|
39
|
Roushani M, Jalilian Z. Development of Electrochemical Sensor Based on Glassy Carbon Electrode Modified with a Molecularly Imprinted Copolymer and its Application for Detection of Repaglinide. ELECTROANAL 2018. [DOI: 10.1002/elan.201800322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Zeynab Jalilian
- Department of Chemistry; Payame Noor University (PNU); Mashhad Iran
| |
Collapse
|
40
|
Hashemi B, Zohrabi P, Shamsipur M. Recent developments and applications of different sorbents for SPE and SPME from biological samples. Talanta 2018; 187:337-347. [DOI: 10.1016/j.talanta.2018.05.053] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023]
|
41
|
Zhang J, Guo XT, Zhou JP, Liu GZ, Zhang SY. Electrochemical preparation of surface molecularly imprinted poly(3-aminophenylboronic acid)/MWCNTs nanocomposite for sensitive sensing of epinephrine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:696-704. [PMID: 30033304 DOI: 10.1016/j.msec.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 05/29/2018] [Accepted: 06/09/2018] [Indexed: 01/19/2023]
Abstract
A nanocomposite with multi-walled carbon nanotubes (MWCNTs) coated with surface molecularly imprinted polymers (MIPs) poly(3-aminophenylboronic acid) (PAPBA) was successfully prepared via potentiodynamic electropolymerization and tested as an effective electrochemical material for epinephrine (EP) detection. The morphology and properties of the sensing material were characterized with scanning electron microscopy and electrochemical impedance spectroscopy. Compared with MWCNTs or non-imprinted polymers PAPBA modified MWCNTs electrodes, the PAPBA(MIPs)/MWCNTs modified electrode showed a lower charge transfer resistance and enhanced electrochemical performance for EP detection. The improved performance can be attributed to the large amount of specific imprinted cavities with boric acid group which can selectively adsorb EP molecule and the synergistic effect between MWCNTs and PAPBA(MIPs). The effects of pH, the molar ratio between monomer and template molecule, the cycle number of electropolymerization, and the accumulation time of the modified electrode on the sensing performance were investigated. It was found that under the optimal conditions, the PAPBA(MIPs)/MWCNTs sensor could effectively recognize EP from many possible interferents of higher concentration within a wide linear range of 0.2-800 μmol·L-1, with low detection limit of 35 nmol·L-1, high sensitivity and good discrimination. The detection of EP in human serum and real injection samples using the PAPBA(MIPs)/MWCNTs sensor also gave satisfactory results.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; Department of Chemistry, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Tong Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jun-Ping Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guang-Zhou Liu
- School of Marine Science, Shandong University, Jinan 250100, China
| | - Shu-Yong Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
42
|
Anirudhan T, Athira V, Chithra Sekhar V. Electrochemical sensing and nano molar level detection of Bisphenol-A with molecularly imprinted polymer tailored on multiwalled carbon nanotubes. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Dabrowski M, Lach P, Cieplak M, Kutner W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens Bioelectron 2018; 102:17-26. [DOI: 10.1016/j.bios.2017.10.045] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/21/2017] [Indexed: 02/08/2023]
|
44
|
Floating liquid crystalline molecularly imprinted polymer coated carbon nanotubes for levofloxacin delivery. Eur J Pharm Biopharm 2018; 127:150-158. [PMID: 29438726 DOI: 10.1016/j.ejpb.2018.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/07/2017] [Accepted: 02/07/2018] [Indexed: 01/12/2023]
Abstract
Liquid crystalline molecularly imprinted polymers (LC-MIPs) were low cross-linking MIPs (5-20 mol%) by introducing a LC monomer into the MIP polymerization system to keep the shape of the imprinted cavities due to additional interactions between the mesogenic groups. The multiwalled carbon nanotubes (MWCNTs) coated LC-MIP (MWCNT@LC-MIP) was the first fabricated as a novel floating interaction-controlled DDS. The synthesis was achieved by adding 9-vinylanthracene to obtain the high-density vinyl group functionalized MWCNTs firstly, and then polymerization of LC MIPs was performed on the surface of MWCNTs using a mixture of methacrylic acid, ethylene glycol dimethacrylate, and 4-methyl phenyl dicyclohexyl ethylene (LC monomer) with levofloxacin (LVF) as model template drug. Both template/functional monomer ratio and levels of crosslinker were optimized to obtain the best imprinting factor. Characterizations of polymer were investigated by the transmission electron microscope, nitrogen adsorption, thermogravimetric analysis, Fourier transform infrared spectra and floating behavior studies. The imprinting effect was confirmed by the adsorption isotherms, adsorption kinetics and effect of selectivity. In vitro release studies were examined by the LVF-loaded MWCNT@LC-MIP and the control samples, MWCNT@LC-NIP, MWCNT@MIP, MWCNT@NIP and the bare MWCNT using acetonitrile as the dissolute medium. The release profiles showed an obvious zero-order release of LVF from MWCNT@LC-MIP, which exhibited 3.8 μg/h of the release rate with duration of about 20 h. In vivo pharmacokinetic study displayed the relative bioavailability of the gastro-floating MWCNT@LC-MIP was 578.9%, whereas only 58.0% of MWCNT@MIP and 11.7% of the bared MWCNT. As a conclusion, MWCNT@LC-MIP showed potentials for oral administration by the innovative combination of floating and controlled release properties.
Collapse
|
45
|
Selective extraction of theophylline from plasma by copper-doped magnetic microspheres prior to its quantification by HPLC. Mikrochim Acta 2018; 185:113. [PMID: 29594664 DOI: 10.1007/s00604-017-2667-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/31/2017] [Indexed: 12/15/2022]
Abstract
The authors describe the preparation of copper-doped magnetic microspheres (Cu-Fe3O4) by a solvothermal method. Due to their good magnetic property and high affinity for compounds containing an imidazole moiety (containing N-H), they are excellent adsorbents for such compounds as tested by eighteen compounds. Specifically, a method has been developed for magnetic solid-phase extraction (MSPE) of theophylline (TP) from plasma. The method enables selective enrichment of TP over many potential interferents that can occur in plasma. Following elution with alkaline methanol, TP was quantified by HPLC-UV at a detection wavelength of 272 nm. Under the optimized conditions, a linear response is found for the 0.02 to 20 μg·mL-1 concentration range, and the limit of detection is as low as 3 ng·mL-1. Recoveries from spiked samples range from 91.2 to 100.4%, and the repeatabilities are between 2.9 and 12% (for n = 6). The method was successfully applied to the determination of TP in rabbit and rat plasma. Graphical abstract Copper-doped magnetic microspheres are described that show good magnetic property and high affinity for compounds containing an imidazole moiety (containing an N-H group). They were successfully applied to the selective extraction of theophylline in plasma.
Collapse
|
46
|
Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Mikrochim Acta 2018; 185:89. [PMID: 29594390 DOI: 10.1007/s00604-017-2626-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
This review (with 210 references) summarizes recent developments in the design of voltammetric chemical sensors and biosensors based on the use of carbon nanomaterials (CNMs). It is divided into subsections starting with an introduction into the field and a description of its current state. This is followed by a large section on various types of voltammetric sensors and biosensors using CNMs with subsections on sensors based on the use of carbon nanotubes, graphene, graphene oxides, graphene nanoribbons, fullerenes, ionic liquid composites with CNMs, carbon nanohorns, diamond nanoparticles, carbon dots, carbon nanofibers and mesoporous carbon. The third section gives conclusion and an outlook. Tables are presented on the application of such sensors to voltammetric detection of neurotransmitters, metabolites, dietary minerals, proteins, heavy metals, gaseous molecules, pharmaceuticals, environmental pollutants, food, beverages, cosmetics, commercial goods and drugs of abuse. The authors also describe advanced approaches for the fabrication of robust functional carbon nano(bio)sensors for voltammetric quantification of multiple targets. Graphical Abstract Featuring execellent electrical, catalytic and surface properies, CNMs have gained enormous attention for designing voltammetric sensors and biosensors. Functionalized CNM-modified electrode interfaces have demonstrated their prominent role in biological, environmental, pharmaceutical, chemical, food and industrial analysis.
Collapse
|
47
|
Dhanjai, Sinha A, Lu X, Wu L, Tan D, Li Y, Chen J, Jain R. Voltammetric sensing of biomolecules at carbon based electrode interfaces: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Zhang J, Liu J, Zhang Y, Yu F, Wang F, Peng Z, Li Y. Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer. Mikrochim Acta 2017; 185:78. [DOI: 10.1007/s00604-017-2551-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
49
|
Selective adsorption of Cr(VI) ions from aqueous solutions using a Cr(VI)-imprinted polymer supported by magnetic multiwall carbon nanotubes. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.10.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Zhong C, Yang B, Jiang X, Li J. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing. Crit Rev Anal Chem 2017; 48:15-32. [PMID: 28777018 DOI: 10.1080/10408347.2017.1360762] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.
Collapse
Affiliation(s)
- Chunju Zhong
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| | - Bin Yang
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| | - Xinxin Jiang
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| | - Jianping Li
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| |
Collapse
|